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The parasitoid wasp Muscidifurax raptorellus (Hymenoptera: Pteromalidae) is a gregarious
species that has received extensive attention for its potential in biological pest control
against house fly, stable fly, and other filth flies. It has a high reproductive capacity and
can be reared easily. However, genome assembly is not available for M. raptorellus or
any other species in this genus. Previously, we assembled a complete circular
mitochondrial genome with a length of 24,717 bp. Here, we assembled and
annotated a high-quality nuclear genome of M. raptorellus, using a combination of
long-read (104x genome coverage) and short-read (326x genome coverage)
sequencing technologies. The assembled genome size is 314 Mbp in 226 contigs,
with a 97.9% BUSCO completeness score and a contig N50 of 4.67 Mb, suggesting
excellent continuity of this assembly. Our assembly builds the foundation for
comparative and evolutionary genomic analysis in the genus of Muscidifurax and
possible future biocontrol applications.

Keywords: Muscidifurax, parasitoid wasp, biological control, housefly, linked-read technology, PacBio sequencing

INTRODUCTION

Muscidifurax (Hymenoptera: Pteromalidae) is a chalcid wasp genus with nine characterized species,
all of which are pupal parasitoids. Muscidifurax raptor was the first species described in the genus, in
1910 by Girault and Sanders (Girault and Sanders, 1910). In 1970, four sibling species were described:
M. zaraptor Kogan and Legner, collected from the southwestern United States; M. raptoroides Kogan
and Legner collected from Central America and Mexico; M. raptorellus Kogan and Legner collected
from Uruguay and Chile; and a thelytokous species M. uniraptor Kogan and Legner collected from
the central mountain range of the island of Puerto Rico (Kogan and Legner, 1970). Based on the
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mitochondrial gene sequence alignment in this genus, the most
closely related sexual species to the asexual M. uniraptor is M.
raptorellus (Taylor et al,, 1997). Four additional Muscidifurax
species were identified in China (Xiao et al., 2018).

Muscidifurax raptorellus (Chilean strain) is a gregarious
parasitoid that typically produces 2-10 offspring per
parasitized host pupa (Geden and Moon, 2009). The number
of eclosed offspring depends on the host size (Seidl and King,
1993). The population found in Uruguay is partially gregarious
(Legner, 1969). Females can lay 16-20 eggs per day during their
peak ovipositional period and about 150 eggs during their lifetime
(Petersen and Currey, 1996). In sharp contrast, M. zaraptor only
deposits one egg per host, and the first larva will eliminate
subsequent larvae or eggs deposited by superparasitism
(McKay and Broce, 2004). M. uniraptor only produces a single
female offspring from each host, and the parthenogenesis is
caused by the infection of A strain Wolbachia bacteria
(Zchori-Fein et al., 2000; Newton et al, 2016). The diverse
reproductive strategies make this genus an excellent model
system for the study of sexual vs. asexual evolution.

M. raptorellus is an effective biological control agent of
dipteran filth flies, including house fly (Musca domestica L.),
stable fly (Stomoxys calcitrans L.), horn fly (Haematobia irritans
L.), black dump fly [Hydrotaea aenescens (Weidemann)], and
flesh fly (Sarcophaga bullata Parker) (Petersen and Currey, 1996;
Geden and Hogsette, 2006; Geden and Moon, 2009). Application
of insecticide, which is the primary control strategy, is of limited
effectiveness due to the evolution of resistant genes in these pests.
Parasitoid wasps have great potential as an alternative
management strategy that is more environmentally friendly
and sustainable (Heraty, 2009). Wasps in the genus
Muscidifurax are also of interest for comparative genomic
studies, due to their close relationship to the model parasitoid
genus Nasonia, which currently has genome assemblies for three
species (Werren et al, 2010; Wang et al, 2020), with
Muscidifurax estimated to be 15 million years divergent
(Martinson et al, 2017a). Here, we report the first draft
genome assembly of M. raptorellus using PacBio long-read
sequencing. This well-assembled and annotated genome will
provide an essential genetic toolkit for functional and
evolutionary genomic studies in M. raptorellus and its sibling
species. The high-quality reference genome could also inform and
facilitate future genome manipulation in parasitoid wasps for
more effective biological control strategies (Leung et al., 2020).

MATERIALS AND METHODS

Sample Source and Insect Rearing

The source of M. raptorellus used in this study was derived from a
colony maintained by Dr. Chris Geden at the Center for Medical,
Agricultural and Veterinary Entomology, USDA Agricultural
Research Service (Gainesville, FL). Genomic sequencing
samples were collected from two independent colonies, both
derived from the same USDA colony: one maintained at the
Auburn University College of Veterinary Medicine in Auburn,
Alabama, since 2019 (Aub sample) and the other one maintained
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at Koppert Biological Systems in the Netherlands (Kop sample)
since 20 years ago. M. raptorellus was originally collected in 1965
from Chile but was referred to as M. raptor (Legner et al., 1967);
subsequently described as M. raptorellus in 1970 (Kogan and
Legner, 1970); and afterward distributed in North America for
biological control efforts. The current colony was originally
established from field-collected specimens on a New York
poultry farm (Kaufman et al, 2001) and maintained in the
Geden laboratory on housefly pupae. Samples from the colony
were obtained from the Werren laboratory in 2016 and
maintained on Sarcophaga bullata pupae and then sent to the
Woang laboratory in Auburn, Alabama, in 2019 and maintained
on commercial Sarcophaga bullata pupae (flesh fly pupae) at a
constant temperature of 25°C and 24 h constant light. The Kop
sample was maintained on Lucilia spp. pupae for 20 years and
was sent to the Verhulst laboratory in 2014 and maintained on
Calliphora spp. pupae at 25°C and 18 h/6 h light/dark conditions.
Both the Aub and Kop samples were from the same fully inbred
strain of M. raptorellus.

Genomic DNA Extraction, Library

Preparation, and Sequencing
High-molecular-weight (HMW) genomic DNA (gDNA) was
extracted from adults of the M. raptorellus Aub sample using
the Genomic-tip 20/G kit (Qiagen, Catalog No. 10223) with DNA
concentration checked on a Qubit 3.0 Fluorometer (Thermo
Fisher Scientific, United States). The size distribution and
gDNA quality were assessed on an Agilent TapeStation 4200
machine (Agilent Technologies, CA) using the genomics kit
(Agilent, Catalog No. 5067-5366). A total of 10 ug high-quality
M. raptorellus genomic DNA was sheared into 20 kb fragments,
and the end damage was repaired. After sequencing adapter
ligation, the DNA fragment was annealed with Sequencing
Primer v2 and Sequel II DNA Polymerase and bound to the
SMRTbell templates, and the library was constructed following
SMRTbell Template Prep Kit v2 following the CCS HiFi library
protocol (Pacific Biosciences, CA). The size distribution of the
constructed library was assessed using LabChip GX Touch HT
(PerkinElmer, MA, United States), and the final library quantity
was examined with a Qubit 3.0 Fluorometer (Thermo Fisher
Scientific, United States). The PacBio library was sequenced on
a PacBio Sequel II System at the HudsonAlpha Genome
Sequencing Center (Supplementary Table S1).

HMW genomic DNA was diluted to ~ 0.8 ng/pl with elution
buffer for 10x Genomics library preparation using Chromium
Genome Reagent Kit v2 (10x Genomics, Inc., CA). The diluted
denatured gDNA, sample master mix, and gel beads were loaded
to the genomic chip following the protocol and then ran on a 10x
Chromium Controller to generate Gel Bead-In-EMulsions
(GEMs). The obtained GEMs were used for the subsequent
incubation and cleanup. The Chromium i7 Sample Index
served as the library barcode to provide linked information.
After quality control with a Qubit 3.0 Fluorometer (Thermo
Fisher Scientific, MA, United States) and Agilent TapeStation
4200 (Agilent Technologies, CA), the 10x genomic sequencing
was performed on an Illumina NovaSeq 6000 machine.
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TABLE 1 | Summary statistics of the Muscidifurax raptorellus genome assemblies.

Genome assembly Aub_hifiasm

Data and coverage

PacBio sequencing data

llumina sequencing data

Genome coverage

Assembly statistics
Genome size (bp) 315,727,724
No. of scaffolds 489

15.0 Gb Sequel Il CCS reads
81.6 Gb
CCS: 48x, lllumina: 260x

Scaffold N50 (bp) 1,479,014
Contig N50 (bp) 1,479,014
Maximum contig length (bp) 8,668,935
Completeness
BUSCO completeness 97.90%
Single-copy BUSCO 95.90%
Duplicated BUSCO 2.00%
Fragmented BUSCO 0.50%
Missing BUSCO 1.60%
Mapping statistics
% of gDNA-seq reads mapped 96.67%
% of gDNA-seq covered positions 99.99%
Adult RNA-seq, all mapped 97.41%
Adult RNA-seq, uniquely mapped 95.02%

HMW gDNA was extracted from a pool of thirty females of
the M. raptorellus Kop sample that were collected at the black
pupal stage (~16 days after egg-laying), using the Genomic-tip
100/G kit (Qiagen, Catalog No. 10243) combined with the
Genomic DNA Buffer Set (Qiagen, Catalog No. 19060). The
sample was ground to fine powder in liquid nitrogen by a plastic
pestle, and the total DNA was extracted following the protocol
provided by the manufacturer. After extraction, genomic DNA
was sheared into 8-30kb range by using g-TUBE (Covaris)
following the manufacturer’s protocol. The quality and
quantity of sheared genomic DNA were checked by gel
electrophoresis with 1.5% TAE agarose gel stained with Midori
Green (NIPPON Genetics) and by spectrophotometry
(Nanodrop™ 2000, Thermo Fisher). The genomic DNA was
measured and quality controlled at Novogene Co., Ltd.
(Beijing, China). SMRTbell library templates were prepared for
long-read sequencing on the PacBio Sequel system using three
flow cells, to generate up to 70 kb long reads with an average read
length of 12-15kb. A total of 1.57 million high-quality subreads
were obtained, with an estimated read depth of 55.8x
(Supplementary Table S1).

Genome Assembly, Polishing, and

Assessment

The raw sequencing reads (Aub sample) from both PacBio
library and 10x Genomics library were checked for
sequencing quality using FastQC (Andrews et al., 2010)
before genome assembly. De novo genome assembly for the
M. raptorellus Aub sample was performed by a Supernova
2.1.1 (Weisenfeld et al., 2017) assembler using 400 million
reads subsampled from the total amount of reads generated
from the 10x Genomics library. Filtered HiFi PacBio reads
were assembled by hifiasm v0.13 (Cheng et al., 2021) and

Aub_HiCanu

15.0 Gb Sequel Il CCS reads
81.6 Gb
CCS: 48x, llumina: 260x

Genome Assembly of Housefly Parasitoid

Kop_PacBio Final

17.7 Gb Sequel CLRs -
20.6 Gb

CLS: 56x, lllumina: 66x PacBio: 104x, lllumina: 326x

316,569,142 316,926,883 313,931,273
527 384 226 + chrM
2,597,351 2,784,708 4,673,378
2,697,351 2,784,708 4,673,378
14,498,644 14,510,203 21,163,931
97.90% 97.90% 97.90%
95.90% 96.20% 96.80%
2.00% 1.70% 1.10%
0.50% 0.50% 0.50%
1.60% 1.60% 1.60%
96.74% 96.71% 96.68%
99.91% 99.78% 99.94%
97.49% 97.42% 97.24%
94.78% 95.19% 94.56%

HiCanuv2.1.1 (Nurk et al., 2020), dedicated assemblers using
long-read sequencing. The Kop CLS PacBio data were
assembled using Canu v2.1 (Koren et al., 2017). The Kop
CANU assembly was polished with Pilon (version 1.22;
parameter settings: fix = all) (Walker et al, 2014) to
correct small errors based on high-quality 150 bp paired-
end Illumina short reads (Table 1). A final round of polishing
with Arrow (VariantCaller version 2.1.0) was performed to
correct large structural errors, based on the raw PacBio reads
that were aligned with Minimap2 (Li, 2018). Aub and Kop
cultures have identical mitochondrial genomes (100%
sequence identity) with only one 11 bp indel. The Aub 10x
Genomics reads were aligned to the repeat-masked Kop
assembly using the Longranger v2.1.6 (Zheng et al., 2016)
software suite with the ALIGN pipeline. 58,350 SNPs were
called by UnifiedGenotyper in the Genome Analysis Toolkit
(GATK) (McKenna et al., 2010; DePristo et al., 2011). SNP
positions in repetitive regions and variants outside the
coverage depth threshold (120-500bp) were filtered out
using BEDTools v2.30.0 (Quinlan, 2014). A total of 11,523
homozygote SNPs between Aub and Kop were identified, and
the percentage of fixed differences in the nuclear genome was
estimated to be 0.0038%. To achieve the best assembly, these
draft assemblies with different assemblers from both Aub and
Kop samples were merged into a draft assembly using an
assembly combination tool quickmerge v0.3.0 (Chakraborty
etal., 2016). Potential bacterial contaminations were checked
using a pipeline described in our previous research (Wang
et al., 2020), and no bacteria contig contamination was
discovered. The draft assembly was polished to yield a
final high-quality assembly with the 10x Genomics
Ilumina short reads for indel correction using Pilon
v1.23.0 (Walker et al., 2014). The final genome assembly
was evaluated based on the N50 size of contigs and RNA-
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seq read mapping percentages, and genome completeness was
assessed by BUSCO version 4.0.6 (Seppey et al., 2019). The
BUSCO scores were calculated using arthropoda_odb10 with
a total of 1,013 orthologs.

RNA-Seq Data Processing and

Transcriptome Assembly

Total RNA was isolated from adult whole-body samples of adult
male and female M. raptorellus in three biological replicates for
each sex from samples collected in the Werren laboratory. The
RNA extraction, quantification, library preparation, and
sequencing protocol were performed as previously described
(Martinson et al,, 2017b). A total of 308,475,537 reads were
obtained from six samples. FastQC (Andrews et al, 2010) was
used for quality control of raw RNA-seq data. The paired-end
RNA-seq reads were processed with Trimmomatic v0.38 (Bolger
et al, 2014). After trimming the potential adapter sequences, we
performed de novo assembly of the M. raptorellus transcriptome
using Trinity v2.4.0 (Haas et al,, 2013), and pre-aligned transcripts
were annotated by Cufflinks v2.2.1 (Trapnell et al., 2012).

Repeat Annotation

A de novo M. raptorellus repeat database was constructed using
RepeatModeler v2.0.1 (Flynn et al., 2020) with the default
parameters,  which  employs  three  complementary
computational programs, RECON v1.0.8 (Bao and Eddy,
2002), RepeatScout v1.0.5 (Price et al, 2005), and Tandem
Repeats Finder (TRF) (Benson, 1999), to annotate repetitive
elements in our genome assembly. RepeatScout is a de novo
repeat finder to identify highly conserved repetitive elements,
while RECON can find less conserved elements. TRF is a program
to locate and display tandem repeats. The high-quality library of
transposable element (TE) families was then used to mask
homologous repeats and low-complexity DNA sequences using
RepeatMasker v4.0.6 (Chen, 2004) with RMBIlast v2.10.0 as the
default search engine.

Gene Prediction and Functional Annotation
To annotate the structures and functions of the M. raptorellus
genome, we integrated ab initio and RNA-seq based methods to
predict the genes in repeat-masked assembly. For RNA-seq
prediction, the trimmed RNA-seq reads were aligned to the
repeat-masked genome assembly using Tophat v2.1.1 (Kim
et al, 2013) and then assembled into transcripts using
cufflinks v2.2.1 (Trapnell et al., 2012) with default parameters.
In addition, de novo assembly of M. raptorellus transcriptomes
was achieved by Trinity v2.4.0 (Haas et al., 2013). The annotation
of the genome assembly was performed using the MAKER v2.31.9
(Cantarel et al., 2008) annotation pipeline. Gene models were
predicted using ab initio gene prediction algorithms with protein
and transcriptome evidence by EST2GENOME and
PROTEIN2GENOME procedures in MAKER (Data S1). The
generated GFF3 file and assembled transcriptome from RNA-
seq prediction were provided as expressed sequence tag (EST)
evidence. The Arthropoda_odbl0 dataset served as protein
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homology evidence. After evaluation and filtering with
evidence scores, the predicted genes were used to train both
SNAP (Korf, 2004) and AUGUSTUS (Stanke and Waack, 2003;
Stanke et al., 2006) gene predictors. Two additional iterations
were performed to generate the final predicted gene models for
the M. raptorellus genome. A homology-based gene prediction
tool, Gene Model Mapper (GeMoMa) (Keilwagen et al., 2019),
was also utilized to annotate the coding genes in M. raptorellus
using well-annotated Nasonia vitripennis OGS2 (official gene set
2) (Rago et al,, 2016) as the protein reference.

Comparative Genome Analysis

To compare the genome structure between M. raptorellus and N.
vitripennis genomes, the homologous regions in these two genomes
were identified using MCScanX (Wang et al., 2012) with default
parameters, which is a Python package for synteny detection and
evolutionary analysis. The inferred gene pairs and linked relationships
were visualized and placed in the context of whole-genome
collinearity using a genomic circle generated by Circos (Krzywinski
etal,, 2009). The chromosome-level genome assembly of N. vitripennis
(Nvit_psr_1.1) (Dalla Benetta et al., 2020) was downloaded at NCBI
Assembly with accession number GCA_009193385.2.

Phylogenetic Analysis

To investigate the phylogenetic relationship between M.
raptorellus and other Hymenoptera insect species, nine
representative species (jewel wasp Nasonia vitripennis, honey
bee Apis mellifera, turnip sawfly Athalia rosae, fig wasp
Ceratosolen solmsi marchali, Indian jumping ant Harpegnathos
saltator, Braconid wasp Microplitis demolitor, wood wasp Orussus
abietinus, red paper wasp Polistes canadensis, and minute
polyphagous wasp Trichogramma pretiosum) were selected
from 40 Hymenoptera species in OrthoDB v10.1 (https://www.
orthodb.org/) (Kriventseva et al., 2018). A total of 4,390 1:
1 single-copy orthologs among these nine genomes were
identified. The protein sequences for M. raptorellus were
aligned to N. vitripennis using BLASTp alignments with a
minimum of 60% sequence identity, and 3,662 1:1 orthologs
were identified. The detailed information of 3,662 1:1 single-copy
genes in the M. raptorellus genome and the nine representative
Hymenoptera genomes is provided in Data S1. Subsequently,
the protein sequences of the single-copy orthologs in the nine
species were extracted from the OrthoDB fasta file, and M.
raptorellus protein sequences of these genes were extracted
from our genome assembly. The protein sequences across the
selected Hymenoptera species and M. raptorellus were
independently aligned with MAFFT v7.407 (Katoh and
Standley, 2014). The protein alignments were concatenated
for phylogenomic analysis. ProtTest 3 (Darriba et al., 2011)
was used to estimate the best protein model of protein
evolution. The maximum-likelihood (ML) phylogenetic tree
was finally built with the concatenated protein sequence by
using RAXML v8.2 (Stamatakis, 2014) with the best JTT
protein model. 1,000 rapid bootstrap replicates were applied
for evaluation of their branch supports. The tree was displayed
by FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/).
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FIGURE 1| Genome comparisons between Muscidifurax raptorellus and Nasonia vitripennis. A total of 25 largest scaffolds in the M. raptorellus assembly showed a
one-to-one relationship with the five chromosomes in the V. vitripennis genome. Chrs 1-5 on the left of the circle represent N. vitripennis chromosomes, and scaffolds on
the right represent M. raptorellus assembled scaffolds. Parts of the figure were created with BioRender.com.

RESULTS AND DISCUSSION

Genome Assembly and Assessment

Two independent PacBio libraries were constructed for the
assembly of M. raptorellus genome (see Materials and
Methods). The PacBio Sequel II HiFi reads (14,992,520,996
bp) generated from the Aub sample were assembled using
hifiasm and HiCanu, and the Kop PacBio data
(17,675,696,457 bp) were assembled using Canu (see
Materials and Methods). The genome size of all three
assemblies ranges from 315.7 to 316.9 Mbp (Table 1),
which is very close to the estimated size from 10x
Genomics data using Supernova based on K-mer profiles
(315 Mbp), indicating high confidence in the genome size.
The merged genome has significant improvement over
individual assemblies, in terms of reduction in the number
of contigs (from 527 to 226), the increase in contig N50 (from

1.5 to 4.7 Mb), and the maximum contig length (from 8.7 to
21.2 Mb), as well as a reduced proportion of duplicated
BUSCO (from 2 to 1.1%; Table 1), without sacrificing the
DNA and RNA sequencing mapping rate (Table 1). The final
assembled genome is 313,931,273 bp in length with 226
scaffolds (the GC content is 40.06%) and a circularized
mitochondrial genome (GenBank accession number
MT985329) (Lin et al., 2021). The contig N50 is 4,673,378
bp, and the BUSCO completeness score is 97.9% (96.8%
single-copy, 1.1% duplicated, 0.5% fragmented, and 1.6%
missing). The adult RNA-seq reads were aligned to the M.
raptorellus assembly using Tophat (Trapnell et al., 2009), and
97% of the reads were mapped to the genome. The 10x
Genomics short-read data were also mapped to the
genome assembly, and the alignment rate was 96.68%. The
proportion of the genome with zero depth was 0.06%. The
assembly and mapping statistics suggest that the quality of
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TABLE 2 | Summary repeat element classes in Muscidifurax raptorellus and Nasonia vitripennis genomes.

Retroelements

Muscidifurax raptorellus

# of elements

Length (%)

Nasonia vitripennis

# of elements

Length (%)

Penelope 913 327,347 (0.1%) 1,065 317,344 (0.11%)
LINEs 17,663 18,752,397 (5.97%) 14,783 14,534,403 (5.07%)
L2/CR1/Rex 7,925 7,800,224 (2.48%) 6,577 5,837,873 (2.03%)
R1/LOA/Jockey 6,013 6,346,905 (2.02%) 4,008 3,617,626 (1.26%)
R2/R4/NeSL 0 0 (0%) 151 406,741 (0.14%)
LTR elements
BEL/Pao 1,496 1,683,607 (0.54%) 883 993,809 (0.35%)
Ty1/Copia 1,992 1,660,186 (0.53%) 2,396 2,624,950 (0.91%)
Gypsy/DIRS1 17,473 22,464,754 (7.16%) 9,516 9,681,184 (3.37%)
DNA transposons
hobo-Activator 5,99 261,203 (0.08%) 646 248,902 (0.09%)
Tc1-1S630-Pogo 5,037 2,550,239 (0.81%) 3,453 4,340,897 (1.51%)
PiggyBac 443 257,410 (0.08%) 549 293,323 (0.1%)
Tourist/Harbinger 115 54,423 (0.02%) 61 35,468 (0.01%)
Rolling-circles 2,391 1,701,169 (0.54%) 5,841 2,970,560 (1.04%)
Unclassified 136,718 55,208,650 (17.59%) 136,074 63,582,769 (22.16%)
Simple repeats 150,695 6,103,642 (1.94%) 132,857 5,673,959 (1.98%)
Low complexity 10,350 497,537 (0.16%) 8,588 400,956 (0.14%)
Total 359,224 125,669,693 (40.03%) 327,448 115,560,764 (40.27%)

our assembly is high in both genome completeness and
continuity (Table 1).

Syntenic Analysis With Nasonia vitripennis
Genome

N. vitripennis and the congeners of M. raptorellus, M. uniraptor,
and M. zaraptor have a haploid karyotype of n = 5 (Gokhman
and Westendorff, 2000; Goodpasture, 1974; Silva-Junior et al.,

2000). A total of 25 scaffolds from our M. raptorellus assembly
with a total length of 187.4 Mb (59.7% of the whole assembly)
were unambiguously aligned to the five assembled chromosomes
in the N. vitripennis genome (Figure 1). The N. vitripennis
chromosome assembly was based on recombination data
between two closely related species (N. vitripennis and N.
giraulti) (Niehuis et al., 2010; Desjardins et al., 2013), with all
non-repetitive and non-centromeric regions correctly assembled
and oriented (total chromosome size 159.4 Mb, 55% of the
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0.0794 Harpegnathos saltator % (Ant)
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FIGURE 2 | Phylogenetic relationship between M. raptorellus and nine representative hymenopteran species. A maximum-likelihood phylogenetic tree of M.
raptorellus with nine other hymenopteran species was constructed based on 3,662 shared 1:1 single-copy proteins, using RAXML v8.2. The sawfly Athalia rosae was
used as the outgroup. The bootstrap values were supported at 100/100. The length of each branch is shown on the branches. Parts of the figure were created with
BioRender.com.
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genome). The remaining 40% repetitive regions (Table 2) were
not assembled into N. vitripennis chromosomes. The majority of
N. vitripennis chromosomal regions have a collinearity
relationship with M. raptorellus scaffolds (Table 1), suggesting
high evolutionary conservation. The synteny analysis results also
identified regional inversion, translocation, and duplication
events, which will shed light on the genome evolution in these
two genera.

Repeat Annotation

Repetitive regions accounted for 40% of the M. raptorellus
genome with a total length of 126 Mbp based on the M.
raptorellus specific repeat database (Table 2). The proportion
of repeat regions is similar to that in Nasonia vitripennis, a jewel
wasp species in the Nasonia genus (40.27%). LINEs (6.0%) and
Gypsy (7.2%) elements are the most abundant classes in M.
raptorellus, both with significantly higher abundance compared
to those in N. vitripennis (Table 2).

Phylogeny With Hymenopteran Genomes
To construct the phylogenetic tree of M. raptorellus and other
hymenopteran species, we used 3,662 single-copy 1:1 orthologs in
nine species (turnip sawfly, parasitic wood wasp, Braconid wasp,
minute polyphagous wasp, jewel wasp, fig wasp, paper wasp, ant, and
honey bee). M. raptorellus clustered with the chalcid wasp species
within the superfamily Chalcidoidea (Figure 2). M. raptorellus is the
closest outgroup species to the jewel wasp Nasonia genus that has a
high-quality reference genome, which will facilitate the evolutionary
studies in the Nasonia subgroup and parasitoid wasp comparative
genomics.

Gene Annotations

After repeat regions were soft-masked, the first-round MAKER
annotation based on Trinity output generated 18,392 gene models
(Supplementary Data S2). Subsequent MAKER iterations resulted in
10,362 protein-coding genes supported by both RNA-seq and gene
prediction algorithms (Supplementary Data S2). Among them,
7,520 single-copy orthologs were identified between M. raptorellus
and N. vitripennis (Supplementary Data S3). To evaluate the
completeness and quality of predicted genes, we compared the
gene length distributions of the 7,520 orthologs and found an
average CDS length of 1,008 bp in M. raptorellus (standard
deviation = 1,585) and 1,035 bp in N. vitripennis (standard
deviation = 1,631). The 3,662 single-copy 1:1 orthologs between
M. raptorellus and nine other hymenopteran species also have
similar CDS length distributions (Supplementary Figure S1),
indicating good gene model quality for these orthologs in M.
raptorellus. To perform the gene annotation using an independent
approach, 9,520 protein-coding genes (with 20,493 transcript
isoforms) were annotated using the homology-based gene
predictor GeMoMa (Keilwagen et al., 2016; Keilwagen et al., 2018)
(Supplementary Data S2). 417 tRNA (transfer RNA) genes and 83
rRNA (ribosomal RNA) gene clusters were also annotated in the
genome (Supplementary Data S4).
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