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Random forest is considered as one of the most successful machine learning algorithms,
which has been widely used to construct microbiome-based predictive models. However,
its use as a statistical testing method has not been explored. In this study, we propose
“Random Forest Test” (RFtest), a global (community-level) test based on random forest for
high-dimensional and phylogenetically structured microbiome data. RFtest is a
permutation test using the generalization error of random forest as the test statistic.
Our simulations demonstrate that RFtest has controlled type I error rates, that its power is
superior to competing methods for phylogenetically clustered signals, and that it is robust
to outliers and adaptive to interaction effects and non-linear associations. Finally, we apply
RFtest to two real microbiome datasets to ascertain whether microbial communities are
associated or not with the outcome variables.
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1 INTRODUCTION

The microbiome, the collection of microorganisms and their genetic materials in an environment,
has been intricately related to human health (Gao et al., 2018; Gentile and Weir, 2018) and
ecosystem functioning (Fierer, 2017). Studying the composition and function of the microbiome
has been greatly facilitated by next-generation sequencing viamarker gene (Weisburg et al., 1991)
and/or shotgun metagenomic sequencing techniques (Handelsman, 2004). For the past
three decades, the marker gene sequencing has been the dominant approach to investigate the
phylogenies and the abundance of microbial groups (Weisburg et al., 1991), while shotgun
metagenomics has become increasingly popular to study the functional potential of the
microbiome (Quince et al., 2017). Sequences stemming from this marker gene sequencing
procedure are usually quality-filtered, merged, and clustered into operational taxonomic units
(OTUs) (Schloss et al., 2009; Edgar, 2013) or denoised into amplicon sequence variants (ASVs)
(Callahan et al., 2016; Bharti and Grimm, 2021). These OTUs and ASVs are regarded as surrogates
of microbial taxa, and downstream statistical analyses are then performed based on the OTU/ASV
abundance table, which records the frequencies of the detected OTUs/ASVs in each microbiome
sample, together with a phylogenetic tree relating the OTUs/ASVs and the metadata describing the
characteristics of the samples.
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One central task of microbiome data analyses is to test the
association between the microbiome and a variable of interest,
while adjusting for potential confounders. Although the ultimate
goal is to identify specific microbial taxa associated with the
variable of interest, a process also known as differential
abundance analysis (Chen et al., 2018), the large abundance
variation, weak effects, and the need for multiple testing
correction makes differential abundance analysis
underpowered for a moderate sample size. It is not
uncommon that differential abundance analysis fails to make
any discoveries after multiple testing correction when a number
of microbial taxa are weakly associated with the variable of
interest. In such cases, a community-level test, which jointly
analyzes the abundance data at the community level, may be
more powerful due to its ability to pool individual weak signals
and no need for multiple testing correction. It is also possible to
explore the interspecific interactions (Zengler and Zaramela,
2018) and phylogenetic relations (Washburne et al., 2018) in
the test to further improve the statistical power. In fact, the
community-level tests have been routinely applied, as the first
step in statistical analysis of microbiome data, to establish an
overall association between the microbiome and the variable of
interest. They have been instrumental in disentangling microbial
association with, for example, clinical outcomes (Clooney et al.,
2021) and environmental gradients (Zhang et al., 2021).

The first community-level test for microbiome data is based on
permutational multivariate analysis of variance (PERMANOVA)
(Anderson, 2001). PERMANOVA is a distance-based
permutation test for assessing the association between a
multivariate outcome and a covariate of interest, where the
variability of the multivariate outcome is summarized in a
distance/dissimilarity matrix. In microbiome applications,
ecologically motivated distances/dissimilarities, such as
UniFrac (Lozupone and Knight, 2005; Lozupone et al., 2007)
distance and Bray–Curtis dissimilarity (Bray and Curtis, 1957),
are frequently used. As an alternative to PERMANOVA, the
microbiome regression-based kernel association test (MiRKAT)
(Zhao et al., 2015) follows a similar logic but treats the abundance
data as the covariate and transforms those distance or
dissimilarity matrices into kernels; subsequently, community-
level associations are evaluated using semi-parametric kernel
machine regressions. MiRKAT is computationally efficient,
allows a straightforward adjustment for covariates, and
accommodates multiple distance kernels through an omnibus
test (Zhao et al., 2015). Another community-level test is the
adaptive microbiome-based sum of powered scores (aMiSPU),
which is an adaptive test based on a series of microbiome-based
sum of powered scores (MiSPU) calculated using different powers
(Wu et al., 2016). aMiSPU utilizes the variable selection/
weighting of the SPU framework (Pan et al., 2014) based on
weighted and unweighted generalized taxon proportions and is
designed to adapt to the underlying signal structure. Combining
the strength of MiRKAT and aMiSPU, the optimal microbiome-
based association test (OMiAT) (Koh et al., 2017) substitutes
MiSPU with its non-phylogenetic version, sum of powered scores
(SPU), and integrates these two criteria via an omnibus p-value to
improve power. These methods all use permutation to assess the

statistical significance and hence the type I error rates are well
controlled (Anderson, 2001; Zhao et al., 2015; Wu et al., 2016;
Koh et al., 2017). However, their power relies on the choice of
candidate distances/kernels or specific data transformation (e.g.,
the power function for MiSPU). Moreover, they have limited
ability to exploit the interactions among taxa, which are expected
to be prevalent in microbiome data (Zengler and Zaramela, 2018).
Additionally, they have not leveraged the strength of machine
learning algorithms, which have been shown to be effective in
building up microbiome-based predictive models (Marcos-
Zambrano et al., 2021).

In the present study, we propose a community-level test based
on random forest (RFtest) for testing the associations between the
microbiome and an outcome variable. Random forest (Breiman,
2001) is considered as one of the most successful machine
learning algorithms, which can be readily applied to diverse
tasks, such as variable selection and prediction from high-
dimensional omics datasets (Degenhardt et al., 2019). As a
non-parametric decision tree-based method, it is robust to
outliers and can automatically adapt to the complex
relationship between the taxa abundance and the outcome
variable without the need for data transformation. Moreover,
they can capture high-order interactions in the data without prior
knowledge provided (Wright et al., 2016). The proposed method
RFtest uses the generalization error estimate of random forest as
the test statistic and uses permutation to calculate p-values. It
incorporates the phylogenetic information via creating features
that accumulate OTU/ASV abundance along the branches of the
phylogenetic tree. RFtest is flexible and can be applied to different
types of outcomes. It can also adjust covariates, which facilitates
confounder adjustment in microbiome association analysis. By
comprehensive simulations, we show that our approach has
controlled type I error rates, and is particularly powerful to
detect phylogenetically clustered signal, robust to outliers, and
capable of detecting complex relationships between microbial
taxa, and between the taxa and the outcome.

2 METHODS AND MATERIALS

2.1 Notations
Suppose that we have abundance measurements from n
independent microbiome samples and p OTUs/ASVs, denoted
by X � (X1, X2, . . . , Xi, . . . , Xn)

T (1 ≤ i ≤ n), where Xi � (xi1,
xi2, . . . , xij, . . . , xip)

T (1 ≤ j ≤ p) and xij is the (normalized)
abundance of the jth OTU/ASV in the ith sample. Let Y � (y1,
y2, . . . , yi, . . . , yn)

T (1 ≤ i ≤ n) denote the vector for the outcome
variable, such as clinical outcomes and environmental gradients.
Additionally, we may have q covariates, such as age and biological
sex, which are denoted by Zn×q � (Z1, Z2, . . . , Zi, . . . , Zn)

T, where
Zi � (zi1, zi2, . . . , zik, . . . , ziq)

T (1 ≤ k ≤ q) are the measurement of
the q covariates in the ith sample. Moreover, we may have a
rooted phylogenetic treeG capturing the phylogenetic relatedness
of the OTUs/ASVs.G has p leaves (terminal vertices with a degree
of 1) and one node (an internal vertex with a degree greater than
1) called root. The p leaves correspond to the pOTUs/ASVs while
the root is theoretically assumed to be the last common ancestor
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of all vertices in the phylogenetic tree. In a path connecting a leaf
and the root, the vertices closer to the root are regarded as
“ancestors” of vertices that are farther from; thus, this
ancestral relationship describes the relative closeness of
vertices to the root of G. The aim for RFtest is to test the
association between Yn×1 and Xn×p while adjusting Zn×q.

2.2 Methods
The tree of life underpins our understanding towards
microorganisms (Washburne et al., 2018). Closely related
microorganisms share similar biological traits and association
signals tend to be clustered with respect to their phylogenetic
relationship (Xiao et al., 2017; Xiao et al., 2018a; Xiao et al.,
2018b). We therefore aim to utilize the phylogenetic information
in the random forest test to improve its power. We incorporate
such phylogenetic information by augmenting the OTU/ASV-
level abundance data with the abundances of the internal nodes of
the phylogenetic tree G. This is achieved by creating an n-by-m
feature matrix Wn×m � (wil)n×m for the m internal nodes in G,
where the features accumulate the abundance of OTUs/ASVs
belonging to the same ancestor in G. As each leaf corresponds to
one OTU/ASV in microbiome and there exists exactly one path
between each leaf and the root, the total abundance of all OTU/
ASV leaves that shares a specific common ancestor or internal
node l is well-defined. Thus, we have

wil � ∑
j∈A

xij (1)

where wil is the collective abundance of the l
th internal node of the

ith sample andA is the set of OTUs/ASVs whose ancestor is the lth

internal node.
The RFtest uses the generalization error rate estimate

(Breiman, 2001) of random forest as a test statistic, and uses
permutation to calculate p-values. Specifically, random forest is
firstly grown using the “ranger” package (Wright and Ziegler,
2017) in the R platform (Team, 2020) using Yn×1 as outcome
variable and Xn×p and Wn×m as input features, and the observed
out-of-bag (OOB) error rate Tobs is used as the test statistic. The
OOB error is the average error for each observation calculated
using predictions from the trees that do not contain in their
respective bootstrap sample. Here, we use the probabilistic
prediction for classification and the OOB error is essentially a
Brier’s score (Malley et al., 2012). Regression and classification
trees are used for continuous and binary Ys, respectively. When
there are no covariates, it permutes the outcome Yn×1 B times and
calculates the OOB error rate ~T

b (b � 1, . . . , B) based on the
permuted Yn×1. The p-value is calculated using:

p-value � [#(~Tb
≤Tobs) + 1]/(B + 1) (2)

where #(~T
b ≤ Tobs) is the number of permuted datasets satisfying

~T
b ≤ Tobs.
When covariates are present, RFtest accommodates covariates

using the following steps. Firstly, Yn×1 is regressed on covariate Zk

(1 ≤ k ≤ q) using linear model if Y is continuous:

yi � β̂0 + β̂1zi1 + . . . + β̂qziq + ei � β̂0 +∑q
k�1

β̂kzik + ei (3)

and using logistic regression model if Y is binary:

logit(P(yi � 1)) � β̂0 +∑q
k�1

β̂kzik (4)

where β̂0 and β̂k (1 ≤ k ≤ q) are the estimated coefficients, and ei
are regression residuals. Next, for a continuous Y, we generate ~Y

b

using residual permutation. The observed error rate Tobs is
calculated based on the input features Xn×p and Wn×m and the
adjusted outcome Yadj � (e1, e2, . . . , ei, . . . , en)

T (1 ≤ i ≤ n).
Thereafter, the permutated ~Y

b � (~yb
1, ~y

b
2, . . . , ~yb

i , . . . , ~yb
n)T is

generated by

~yb
i � ~ebi (5)

where ~ebi is the permutated regression residuals for the ith sample.
For a binary covariate Y, ~Y

b
is generated using a (0, 1) random

number generator according to adjusted probabilities of

logit⎛⎝P⎛⎝~yb
i � 1

∣∣∣∣∣∣∣∣∣ ∑i ~yb
i � ∑

i

yi
⎞⎠⎞⎠ � β̂0 +∑q

k�1
β̂kzik (6)

where we conditioned on the number of observed cases.
Finally, we calculate the error rate ~T

b
under permutation

based on ~Y
b

similarly. Consequently, p-value can be
obtained using (Eq. 2).

We implemented the random forest test in the package
“RFtest” on the R platform, which is available on GitHub
(https://github.com/Lujun995/Random-forest-test-RFtest).

2.3 Simulation Studies
Simulations were conducted under various scenarios to study
whether RFtest would control type I error rates at desired levels
and whether it would be a powerful testing approach compared
with competing methods. Instead of using a parametrical
model such as the Dirichlet-multinomial model (Chen and
Li, 2013), the microbiome data were directly resampled from a
large gut microbiome study by Hale et al. (2017). Briefly, the
study compared the fecal microbiome profiles of patients with
adenomas versus healthy controls. 16s rRNA sequences were
analyzed using IM-TORNADO pipeline (Jeraldo et al., 2014),
OTUs were clustered at 97% identity, and singletons were
removed (Hale et al., 2017). After rarefaction to 20,000 counts
per sample, the adenoma dataset contained 439 samples and
2,100 OTUs, where we resampled n � 50 samples, i.e., X50×p,
without replacement for each simulated dataset. We then
constructed the outcome variable Y50×1 under six scenarios,
following the strategy by Zhao et al. (2015). Let S denote the set
that comprises OTUs associated with Y. We generated the
continuous and binary outcome Y � (y1, y2, . . . , yi, . . . , y50)

T (1
≤ i ≤ 50) based on

yi � β0 + zi + β scale[∑
j∈S

(xij)] + εi, (7)
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and

logit(P(yi � 1)) � β0 + zi + β scale[∑
j∈S

(xij)], (8)

where β0 is a constant, β is an adjustable effect size, εi ∼ N (0, σ2),
and the “scale” function standardizes the data to have mean 0 and
standard deviation 1.We used β0 � 10 for a continuousY and β0 �
0 for a binary Y, εi ∼ N (0, 1).

The first scenario (S0) was used to study the type I error rate of
RFtest by setting the effect size β � 0 under three cases, including
no covariates [zi � 0 and εi ∼ N (0, 1)], one covariate independent
of X (zi ∼ N (0, 1) and εi ∼ N (0, 9)), and one covariate associated
with X {zi � scale[Σj∈S(xij)] + N (0, 1) and εi ∼ N (0, 9)},
respectively. In the third case, S consisted of OTUs from an
abundant lineage SA, which contributed to 15% of the total OTU
number and 21% of the total abundance.

The other five scenarios (S1–S5) were used to evaluate the
power of RFtest. No covariates were included (zi � 0) in these
scenarios. In S1, we investigated different signal types
(phylogenetically clustered vs. non-phylogenetically clustered)
and different signal densities (5% vs. 15%). For
phylogenetically clustered signals, the signal OTUs for 5% and
15% densities were from two abundant lineages SB and SA,
respectively, where SB was contained in SA described above
and contributed to 5% of the total OTU number and 11% of
the total abundance. For non-clustered signals, the signal OTUs
were randomly selected and OTUs for 5% density were also
contained in those for 15%. We further substituted the term
Σj∈S(xij) in Eq. 7 and Eq. 8 with Σj∈S(xij/x·j), where
x·j � 1

n ∑n
i�1 (xij), to avoid several OTUs dominating the

overall signal strength.
The scenario S2 was designed to further validate the results of

clustered signals in S1 using different lineages. We studied seven
disjoint major lineages (SI: I �A, C,D, E, F,G,H) in the dataset of
Hale et al. (2017), which spanned 80% of the total OTU number
and more than 80% of the total abundance. Each lineage
possessed 5%–20% of the total OTU number and 1%–40% of
the overall abundance. The simulations in this scenario were
conducted under β � 2.25 for a binary Y and β � 0.75 for a
continuous Y.

The scenario S3 was to evaluate the power of the RFtest when
the outcome variable was non-linearly associated with the signal
OTUs. We applied a non-linear link function flink to xij.
Specifically,

yi � β0 + β scale[∑
j∈S

flink(xij)] + εi (9)

for a continuous Y, and

logit(P(yi � 1)) � β0 + β scale[∑
j∈S

flink(xij)] (10)

for a binary Y, where flink(xij) � log2(xij + 1) (xij ≥ 0).
The scenario S4 studied a complex association between Y and

X where there was interaction between two sets of signal OTUs.
Particularly, for a continuous Y, it was generated via

yi � β0 + β scale[∑
j∈S

(xij)] · scale[∑
j’∈S’

(xij’)] + εi (11)

and for a binary Y, it was generated using

logit(P(yi � 1)) � β0 + β scale[∑
j∈S

(xij)] · scale[∑
j’∈S’

(xij’)], (12)

where β was fixed at 1.33 and 5 for a continuous and binary Y,
respectively, and S and S’ were two disjoint sets comprising 15%
and 13% of total OTUs, respectively. For phylogenetic signals, we
let S � SA and S’ � SC, where SA had been characterized in S0
and SC was another major lineage accounting for 12% of the total
abundance. For non-phylogenetic signal, the terms ∑j∈S (xij) and∑j’∈S’ (xij’) in Eq. 11 and Eq. 12 were normalized using∑
j∈S orS

(xij/x·j), where x·j � 1
n ∑n

i�1(xij). The sample size used

in this scenario ranged from 50 to 250 as detection of an
interaction generally requires a relatively large sample size.

The last scenario (S5) was used to assess the robustness of
RFtest to outliers. Firstly, the outcome variable Y was generated
according to the procedure in S1, using clustered or non-clustered
signals with a density of 15%. Subsequently, the order of OTUs in
0, 1, or 3 samples was randomly shuffled, yielding 0, 1, or 3
outliers; therefore, these outliers would possess distinct
microbiome profiles.

The source code of this section is available at GitHub (https://
github.com/Lujun995/RFtest-Simulations).

2.4 Competing Methods and Evaluation
The competing methods include the optimal microbiome
regression-based kernel association test (optimal MiRKAT)
(version 1.1.1, https://cran.r-project.org/package�MiRKAT)
(Zhao et al., 2015), the adaptive microbiome-based sum of
powered score test (aMiSPU) (version 1.0, https://cran.r-
project.org/package�MiSPU) (Wu et al., 2016) and optimal
microbiome-based association test (OMiAT) (version 6.0,
https://github.com/hk1785/OMiAT) (Koh et al., 2017).
While multiple distance or dissimilarity functions could be
used in MiRKAT, we followed the example in the “MiRKAT”
package (Zhao et al., 2015) and selected weighted and
unweighted UniFrac distance (Lozupone and Knight, 2005;
Lozupone et al., 2007) and Bray–Curtis dissimilarities (Bray
and Curtis, 1957), which have been widely used in microbiome
studies. All the results were averaged over 1,000
simulation runs.

3 RESULTS

3.1 Simulation Studies
3.1.1 Factors Influencing the Power of RFtest
We first studied factors that might influence the performance of
RFtest including choice of the test statistic, method for p-value
calculation, sparsity filtering, and the parameters of the random
forest (“ranger”). Results of these evaluations were obtained
under the scenario S1 (binary outcome).
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For the choices of test statistic, we investigated the OOB error
rate (“OOB_P”), training error, 0.632 error, and 0.632
+ error based on probabilistic predictions. It is well known
that the training error underestimates the generalization error
while OOB error overestimates it. The 0.632 and 0.632 + rule
proposed by Efron and Tibshirani (Efron and Tibshirani, 1997)
tried to obtain a more unbiased estimate. In addition to the use of
probabilistic predictions, we also compared to the OOB error rate
based on binary prediction (“OOB_noP”). Supplementary
Figure S1 shows that error rates based on probability
predictions were found to be more powerful than that based
on binary predictions, while for different types of error rates
based on probabilistic predictions, their performance was similar
(Supplementary Figure S1). Thus, we selected the OOB error
rate with probabilistic predictions as the test statistic. Next, we
compared the permutation test to a naïve test, which applied a
Wilcoxon rank sum test based on the OOB predicted
probabilities. We observed that their p-values were highly
correlated (Supplementary Figure S2); nonetheless, the naïve
approach was unable to adjust for covariates and slightly less
powerful than the permutation-based RFtest (Supplementary
Figure S3). We also examined the effect of sparsity filtering
on power and computational time of RFtest by filtering features at
sparsity thresholds of 98%, 96%, 90%, and 80%. Supplementary
Figure S4 shows that mild filtering (e.g., filter OTUs present in
less than 4%–10% of samples) was more beneficial than no
filtering or aggressive filtering. Such mild filtering could
remarkably reduce computation time while maintaining a
similar power. Finally, we studied the impact of the
parameters of random forest (“ranger”) on the power of
RFtest. Concerning the number of split variables, splitting a
proportion of 2%–3% of the total OTU number (close to the
default) generally performed well under both phylogenetic and
non-phylogenetic signals while a greater or smaller numbermight
be preferrable for phylogenetic or non-phylogenetic signals,
respectively (Supplementary Figure S5). A larger number of
decision trees in random forest would stabilize the error rate
(Supplementary Figure S6A); however, the variance of the
sampling distribution of the error rate under permutation was
observed 10 times larger than the variance of the OOB error rate
across different runs (Supplementary Figure S6A). Thus, a larger
number would hardly increase the power of the RFtest
(Supplementary Figure S6B) but significantly increase
computational burden. Based on these evaluations, we used an
ensemble of 500 decision trees in the RFtest to accelerate the
computation and stabilized the estimated error rate by averaging
over three runs.

3.1.2 Type I Error Control
We studied the type I error rate control of RFtest by simulating
null datasets (S0) with or without covariates. At the nominal level
of 5%, we observed that the type I error was controlled at the
desired level in situations where a covariate was absent,
independent with X or correlated with X (Table 1).

3.1.3 Power Studies
Next, we studied the power of RFtest under different scenarios
with association signals (S1–S5). In scenario S1, RFtest was more
powerful than competing methods under phylogenetically
clustered signals across signal densities for both binary and
continuous outcomes (Figures 1C,DS7c & S7d). While the
margin by which the RFtest led might expand or contract for
different OTU clusters defined based on the phylogenetic tree in
scenario S2 (Figure 2 & S8), RFtest was generally considered as a
leading test among all competing methods except in lineage
“3590” (Figure 2 & S8). Furthermore, this margin was more
notable when the outcome variable is binary (Figures 1C,D, S7c
& S7d). For random or non-phylogenetic signals, however, the
RFtest appeared to be less powerful than OMiAT and optimal
MiRKAT but outperformed aMiSPU (Figures 1A,B, 1b,
S7a & S7b).

Scenarios S3–6 demonstrated the robustness of the RFtest to
outliers and its adaptivity to diverse association patterns between
X and Y. In scenario S3, the microbiome profile X was related to
Y on the log scale yielding a non-linear relationship. We found
that the results remained similar to those in scenario S1, where a
linear relationship was assumed. The RFtest was observed to
maintain a leading position under phylogenetical signals but
became relatively less powerful under non-phylogenetic signals
(Figure 3 & S9). However, compared to scenario S1, the
difference diminished among the RFtest, the optimal
MiRKAT, and the OMiAT (Figure 3 & S9). These three
methods also outperformed aMiSPU (Figure 3 & S9).

In scenario S4, where we simulated interaction effects between
OTU clusters, we observed that while the RFtest was a leading
method in this scenario, the pattern differed for a binary and
continuous outcome. For a binary outcome, RFtest could
effectively detect interactions between two phylogenetic
clusters or non-phylogenetic groups at a relatively larger
sample sizes (Figure 4). Meanwhile, the competing methods
appeared powerless for both phylogenetic and non-
phylogenetic signals (Figure 4). For a continuous outcome,
RFtest could powerfully detect the association for both types
of signals (Supplementary Figure S10). Meanwhile, the optimal
MiRKAT and the OMiAT became considerably more powerful

TABLE 1 | Estimated type I error rate of the random forest test (RFtest).

Binary outcome variable (Y) Continuous Y

No covariates (Z) 4.7% (3.6%, 6.2%)a 5.3% (4.1%, 6.9%)
Z independent with microbiome data (X) 5.2% (4.0%, 6.8%) 4.7% (3.6%, 6.2%)
Z correlated with X 3.6% (2.6%, 4.9%) 2.9% (2.0%, 4.1%)

aData are presented as “proportion (L, U),” where the proportion is a point estimate of type I error rate and the L and the U are the lower and upper bounds of Wilson’s 95% confidence
interval for proportion data. Type I error rates are expected to be ≤ ∼5%.
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FIGURE 1 | Power comparison among the competing methods for a binary outcome variable under different signal types and densities. Abbreviation: O.MiRKAT,
optimal MiRKAT. (A,B) Random signals with a density of 5% and 15%, respectively. (C,D) Phylogenetically clustered signal with a density of 5% and 15%, respectively.

FIGURE 2 | Power comparison among the four competingmethods under signals from sevenmajor lineages. The lineage numbers correspond to node numbers in
the phylogenetic tree used in simulation in the present study. These lineages span ≥80% of the total OTUs and the total abundance. Abbreviations have the same
meaning as in Figure 1.
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than the binary case under a non-phylogenetic signal (Supplementary
Figure S10); however, they remained underpowered under a
phylogenetic signal (Supplementary Figure S10).

In scenario S5, we simulated one and three outliers to assess
the reduction in power when outlier samples were present. The
results indicated that RFtest was the most robust among the
competing methods, and that the presence of several outliers did
not affect the power much for both binary and continuous
outcomes with phylogenetic or non-phylogenetic signals, while
the power of other methods might be considerably reduced
(Figure 5; Supplementary Figure S11).

3.2 Real Data Analysis
In this section, we aimed to compare the results of RFtest, optimal
MiRKAT, aMiSPU, and OMiAT in real-world examples. We re-

analyzed the relationship between outcome variables and
microbiome profiles in two published datasets. The first
example was taken from a study on the throat microbiome
(Charlson et al., 2010). That study investigated the effect of
smoking on human microbiota in the upper respiratory tract.
While detailed information of sample collecting and data
processing procedures can be accessed from Charlson et al.
(2010), a summary is provided here. Nylon-flocked swabs
were taken from the nasopharynx and oropharynx of 62
healthy subjects, including 33 non-smokers and 29 smokers.
From each swab, DNA was extracted using the QIAamp DNA
Stool Minikit (Qiagen) and the V1–V2 region of the 16S rRNA
was amplified. Thereafter, this 16S rRNA was sequenced using a
454 Life Sciences Genome Sequencer FLX instrument (Roche).
The sequence reads were denoised (Quince et al., 2009), analyzed

FIGURE 3 | Power comparison among the competing methods for a binary outcome variable when X and Y are non-linearly associated. The raw OTU abundance
data were transformed using a link function of flog2 (xij) � log2 (xij + 1) (xij ≥ 0). Two signal types, phylogenetic and non-phylogenetic, with a density of 15% were used.

FIGURE 4 | Power comparison among the competing methods when there was interaction between two microbial groups. The outcome variable was binary, and
two signal types, phylogenetic and non-phylogenetic, were investigated. The two microbial groups comprised 13% and 15% of the total OTUs.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7495737

Zhang et al. Random Forest-Based Test for Microbiome

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


using the QIIME pipeline (Caporaso et al., 2010), and clustered
into OTUs at 97% similarity using UCLUST (Edgar, 2010).

In the original study (Charlson et al., 2010), the association
between smoking and the respiratory tract microbiome was tested
by Permutational Multivariate Analysis of Variance (Anderson,
2001). based on weighted and unweighted UniFrac distances
(Lozupone and Knight, 2005; Lozupone et al., 2007). A
difference in microbial community structure was reported
between smokers and non-smokers (p < 0.05). In the present
study, we re-analyzed the microbiome data and found consistent
results with previous studies (Charlson et al., 2010; Zhao et al.,
2015; Wu et al., 2016). When no covariate was considered, the
p-value estimated by the RFtest was 0.001 while those of the
optimal MiRKAT, the OMiAT, and the aMiSPU were 0.006,
0.008, and 0.009, respectively. When biological sex was included
as a confounder, the estimated p-values became 0.002, 0.009, 0.010,
and 0.005 for the RFtest, the optimal MiRKAT, the OMiAT, and
the aMiSPU, respectively. The RFtest provided more significant
p-values in general, while all competing methods rejected the null
hypotheses at a significance level of 0.01.

Another relevant example was taken from a study of the
distance–decay relationship in microbial ecology (Xue et al.,
2021). This relationship can be portrayed as relatedness of
microbial communities decreases as their spatial distance
increases (Hanson et al., 2012). In brief, surface soil was
collected intact from a paddy field in Wenling, Zhejiang
Province, China (28°21′ N, 121°15′ E) in November 2017.
From the sample, a soil cube (2.0 cm × 2.0 cm × 2.0 cm) was
selected and further divided into 4 × 4 × 4 cubes of which each
had sides 0.5 cm in length. DNA samples were extracted from
these sub-cubes, and the V4–V5 region of the 16S rDNA genes

was amplified and subsequently sequenced using an Illumina
HiSeq platform. After removal of adaptors and quality control,
16s rDNA sequences were aligned using USEARCH11 (https://
www.drive5.com/usearch/) and OTUs were clustered at 97%
identity using UPARSE (Edgar, 2013). Finally, the microbial
communities were rarefied to 41,752 sequences per sample.

As one of the original findings (Xue et al., 2021), a decreased
community similarity, measured by 1 − Bray–Curtis dissimilarity
(Bray and Curtis, 1957) between microbial communities, was
observed as the spatial distance increased in the 64 sub-cubes
(Mantel test, p � 0.001). Herein, we re-examined this
distance–decay association using the RFtest via an assessment
of microbial changes along each spatial axis of the xyz-coordinate
defined in the study of Xue et al. (2021). We found a similar result
that the microbiome was associated with the x- and y-axes, and
p-values by the RFtest were 0.001, 0.001, and 0.310 for the x-, y-,
and z-axes, respectively. Those of the optimal MiRKAT were
0.011, 0.001, and 0.618, respectively; those of the OMiAT were
0.001, 0.001, and 0.265; and those of aMiSPU were 0.006, 0.001,
and 0.135. While all methods discovered a statistically significant
association between microbial changes and the x-axis, the RFtest
reported a more significant p-value than the optimal MiRKAT
and the aMiSPU, rejecting the null hypotheses at a significance
level of 0.01.

4 DISCUSSION

Random forest has been one of the most successful machine
learning methods for microbiome data (Marcos-Zambrano et al.,
2021). The superior predictive performance of random forest is

FIGURE 5 | Power curves of the competing methods when outliers were present. The outcome variable was binary, and two signal types, phylogenetic and non-
phylogenetic, with a density of 15% were assessed. Zero to three outlier samples were included.
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due to its ability to model a complex nonlinear relationship
between the microbiome and the outcome, to capture high-
order interactions among taxa, and to accommodate a large
number of taxa. In this study, we proposed a random forest-
based test (RFtest) to assess the association between the
microbiome and an outcome variable, borrowing the strengths
of random forest in prediction. In RFtest, we incorporated
phylogenetic structure by creating features that accumulate
OTU abundance along the branches of the phylogenetic tree
and used residual permutation to address covariates. Simulation
results showed that RFtest could control type I error rate at the
desired level with or without confounders (Table 1). This approach
was closely linked to the naïve approach (Supplementary Figure
S2); however, the naïve method could not address covariates,
which limits its use in real-world applications.

Our benchmarking study further revealed that RFtest had a clear
edge over the competing methods to detect phylogenetically
clustered signals (Figure 1; Supplementary Figure S11). This is
because our approach incorporates topological information of a
phylogenetic tree G into random forest via creating features that
accumulate leaf OTU abundances. This strategy could also be
explored in other machine learning algorithms to capture a
clustered signal. Conversely, when the signal OTUs are randomly
distributed in the phylogenetic tree, the OMiAT (Koh et al., 2017)
and optimal MiRKAT (Zhao et al., 2015) may become a better
choice than the RFtest (Figure 1A; Supplementary Figure S7A).
Though non-phylogenetic signal cases were less advantageous to
RFtest, we consider that the superior power of RFtest for
phylogenetically clustered signals may be practically more
important, since phylogenetic signals are extensively observed in
microbiome studies, and phylogenetic approaches are of particular
interest in microbiome analysis (Washburne et al., 2018).

Our simulation results also demonstrated the robustness of RFtest
to outliers and its adaptivity to various types of associations (Figures
3–5; Supplementary Figure S9–11). Microbiome composition is
highly variable, which would largely be ascribed to stochasticity
rather than explained (Clooney et al., 2021). Such large biological
variation might consequently result in several outliers in a study.
Remarkably, outliers affected the power of RFtest minimally, and
RFtest was the most robust method to outliers in our benchmarking
study (Figure 5; Supplementary Figure S11). Moreover, microbial
communities have been portrayed as a complex ecosystem, in which
its components closely interact with each other (Zengler and
Zaramela, 2018). These interactions are generally categorized into
two groups—beneficial and neutral relationships, such as mutualism
and commensalism, and antagonistic relationships, such as
competition and predation (Little et al., 2008). For mutualism and
commensalism, they can be depicted as a non-linear, positive
correlation between bacterial lineages and the outcome variable Y.
For antagonistic relationships, a possible signal indicating competitive
exclusion, denoted by Y � 0, would occur when one of two lineages
overwhelms the other, denoted by X1 (+), X2 (–); otherwise, Y � 1
when X1, X2 (+) or X1, X2 (–). Therefore, they would be identified as
interaction effects. Notably, our results showed that the RFtest was
efficient in discovering a non-linear relationship (Figure 3 & S9) as
well as an interaction effect (Figure 4& S10). Given the relatively high
performance of the RFtest under these complex conditions (Figures

3–5, S9, S10& S11), it may be projected that the RFtest can be flexibly
applied to a wide range of data structures to ascertain associations
between a microbiome profile X and an outcome variable Y.

There are several limitations for our proposed method. First,
because of the use of bootstrapping in the random forest algorithm,
RFtest can be computationally intensive. For example, it took 68 s
and 70MB in memory using a single core on a laptop computer to
test the dataset of throat microbiome in our first real data example,
compared to 2–4 s and 60–100MB memory usage of its
counterparts. Although computation is usually not a problem for
a small dataset, more time would be required for larger datasets. The
computation time of random forest increases linearly with the
number of variables, i.e., p, and approximately linearly with the
sample size n (Wright and Ziegler, 2017). To accelerate the
computation of RFtest, we have implemented parallel computing
in our software, where each permutation could be run in parallel.
Moreover, we could perform sparsity-based filtering to reduce the
number of input features to speed up the computation, without
affecting the power much (Supplementary Figure S4). Another
limitation may be that current random forest test could not as
effectively identify random, non-phylogenetical signals as OMiAT
(Figures 1A,B; Supplementary Figures S7A,B). Increasing the
power for non-phylogenetic signal is our future direction of
research, for example, by leveraging multiple weighting schemes
in RFtest from external data with an omnibus test (Li et al., 2020).
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