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In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that
decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-
interacting protein kinases (CIPKs). CBL-CIPK gene families and their interacting
complexes are involved in regulating plant responses to various environmental stimuli.
To gain insight into the functional divergence of CBL-CIPK genes in honeysuckle, a total of
six LjCBL and 17 LjCIPK genes were identified. The phylogenetic analysis along with the
gene structure analysis divided both CBL and CBL-interacting protein kinase genes into
four subgroups and validated by the distribution of conserved protein motifs. The 3-D
structure prediction of proteins shown that most LjCBLs shared the same Protein Data
Bank hit 1uhnA and most LjCIPKs shared the 6c9Da. Analysis of cis-acting elements and
gene ontology implied that both LjCBL and LjCIPK genes could be involved in hormone
signal responsiveness and stress adaptation. Protein-protein interaction prediction
suggested that LjCBL4 is hypothesized to interact with LjCIPK7/9/15/16 and SOS1/
NHX1. Gene expression analysis in response to salinity stress revealed that LjCBL2/4,
LjCIPK1/15/17 under all treatments gradually increased over time until peak expression at
72 h. These results demonstrated the conservation of salt overly sensitive pathway genes
in honeysuckle and amodel of Ca2+-LjCBL4/LjSOS3-LjCIPK16/LjSOS2module-mediated
salt stress signaling in honeysuckle is proposed. This study provides insight into the
characteristics of the CBL-CIPK gene families involved in honeysuckle salt stress
responses, which could serve as a foundation for gene transformation technology, to
obtain highly salt-tolerant medicinal plants in the context of the global reduction of
cultivated land.
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INTRODUCTION

Calcium (Ca2+), whose level fluctuates when cells undergo
external changes, acts as a universal secondary messenger
for numerous signals and confers specific cellular responses
(Ma L. et al., 2019). Ca2+ sensors or Ca2+-binding proteins can
sense changes in cytoplasmic Ca2+ concentrations and
transmit signals to regulate the function of the downstream
proteins (such as transcriptional factors or membrane
transporters) and elicit changes in cellular processes (such
as gene expression or ionic fluxes) in response to
environmental changes (Wang et al., 2020). In plants, there
are three major classes of Ca2+-binding proteins include
calmodulin (CaM) and CaM-like proteins (CMLs),
calcineurin B-like proteins (CBLs), and calcium-dependent
protein kinases (CDPKs) (Tang et al., 2020).

CBL proteins contain four typical helix-loop-helix motifs (EF-
hands) for calcium-binding. However, unlike CDPKs, CBL
proteins lack kinase activity and function in calcium signal
transduction by interacting specifically with a group of Ser/
Thr protein kinases, namely CBL-interacting protein kinases
(CIPKs)/SNF1-related kinase group 3 (SnRK3s) (Hrabak et al.,
2003). After sensing the change of Ca2+ level, CBLs physically
interact with the NAF/FISL motifs at the C-terminal of CIPKs to
activate CIPKs, and then, the activated CIPKs participate in
calcium signaling by phosphorylating target proteins (Luan,
2009). Multiple experiments have proved the core role of the
CBL-CIPK signal pathway in fine-tuning plants adaptive
response to external environmental changes, including
Arabidopsis, rice (Kolukisaoglu et al., 2004; Kanwar et al.,
2014), maize (Chen et al., 2011), grapevine (Xi et al., 2017),
turnip (Yin et al., 2017), eggplant (Li et al., 2016), and pineapple
(Aslam et al., 2019). Among the 10 CBLs and 26 CIPKs in
Arabidopsis, not only does each CBL interact with several
CIPKs, but each CIPK interacts with one or more CBLs. Such
interaction specificity and overlap between different members of
CBL and CIPK family may confer both signaling specificity and
functional synergism of CBL-CIPK complexes, forming a truly
complex CBL-CIPK network when plants confronting a variety of
external changes such as nutrient ions deprivation and abiotic
stresses (Luan, 2009).

Soil salinization is one of the major environmental stress that
reduces plant growth and productivity throughout the world,
affecting an estimated 45 million hectares of irrigated land
(Huang et al., 2019a). Under salt stress, extracellular high salt
environment increased intracellular osmotic pressure and
accumulated intracellular Na+ to a toxic level (Cheeseman,
1988; Deinlein et al., 2014). Although osmotic pressure and
Na+ stress sensors in plants have not yet been identified, it
seems that such stress signal transduction is closely related to
Ca2+ pathway (Cheeseman, 1988). The SOS (salt overly
sensitive) pathway was originally discovered from the model
plant Arabidopsis and was a well-studied Ca2+-dependent
CBL-CIPK module involved in salinity stress response
regulation in plants (Olías et al., 2009). The SOS pathway,
which involves two Ca2+ sensor proteins, SOS3/AtCBL4 and
SCaBP8/AtCBL10; the protein kinase SOS2/AtCIPK24; and the

PM (plasma membrane)- Na+/H+ antiporter SOS1/AtNHX7
(Liu et al., 2020). The Ca2+ signal induced by high-salt is
decoded by SOS3 and SCaBP8. SOS3 recruit SOS2 to the PM
and activate its kinase activity. SOS2/SOS3 complex then
phosphorylates and activates downstream PM-binding
AtNHX7/SOS1 to transport Na+ out of the cell (Ji et al.,
2013). Besides, AtCIPK24 can interact with AtCBL10, then
phosphorylates and activates the vacuolar NHX, pumping
excess Na+ into the vacuole. The SOS pathway also exists in
many other plants, such as rice, poplar (Tang et al., 2010), and
spinach (Zhao et al., 2020). In rice, OsCIPK24/OsSOS2
interacts with OsCBL4/OsSOS3 regulating the activity of
PM-located OsSOS1, thus participating in the regulation of
plant salt tolerance (Pandey et al., 2015).

Lonicera japonica belongs to the honeysuckle family and is
widely cultivated as an ornamental plant. Its dried flower buds
have been prescribed in traditional Chinese medicine (TCM) to
treat fever, influenza, sores and swelling for thousands of years
(Pu et al., 2020). It is also a crucial antiviral drug used to treat the
SARS coronavirus, influenza A viruses, the H1N1, H5N1, H7N9
flu virus, and Enterovirus 71 in recent years (Liu et al., 2005;
Shang et al., 2011). It has further value as a component of
cosmetic, healthy food, and beverages due to its unique aroma
and pharmacological activity. Previously, Huang et al. found that
the honeysuckle cultivar “Huajin 6” has high salt tolerance, but
the physiological and molecular mechanisms are remained
elusive until now (Huang et al., 2019b). Due to the great
significance of CBL-CIPK networks in various physiological
and stress resistance processes, it is of great significance to
explore the salt tolerance mechanism of honeysuckle start
from the analysis of CBL-CIPK gene.

In this study, we identified 6 CBL and 17 CIPK genes based on
the genome sequences of honeysuckle. Various characteristics
of these genes were analyzed, including physicochemical
properties, phylogenetic relationship, conserved motifs, gene
structures, cis-acting elements analysis, protein three-
dimensional (3-D) structure prediction, and putative protein-
protein interaction (PPI) prediction. Additionally, the gene
expression patterns of CBL-CIPK genes were analyzed in
different tissues and gradient salt stress. Our results could
reveal the roles of CBL-CIPK genes in response to high-salt
environments, and our study aimed to provide a valuable
reference for further utilization of CBL-CIPK genes to
develop salt-tolerant medicinal plants in the context of the
global reduction of cultivated land.

MATERIALS AND METHODS

Identification of CBL-CIPK Genes in
Honeysuckle
The published CBL and CIPK gene sequences of Arabidopsis and
Oryza sativa were downloaded from Arabidopsis Information
Resource (TAIR) database (http://www.arabidopsis.org) and the
rice genome database (http://rice.plantbiology.msu.edu//),
respectively. The CBL and CIPK genes were further used as
queries to search against Lonicera japonica genome databases to
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identify CBL-CIPK genes from honeysuckle. Then, The EF-hand
calcium-binding domain (PS50222) of CBL proteins was
determined based on PROSITE (https://prosite.expasy.org/)
and HMMER (https://www.ebi.ac.uk/Tools/hmmer/). Each
CIPK protein was subjected to the PROSITE (https://prosite.
expasy.org/), NCBI Conserved Domain database (CDD, https://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and
InterProscan (http://www.ebi.ac.uk/Tools/pfa/iprscan/)
databases to confirm the presence of the pkinase domain
(PF00069) and the NAF domain (PF03822). Finally, Expert
Protein Analysis System (ExPASy, http://web.expasy.org/
compute_pi/) was used to predicate the isoelectric point (pI)
and molecular weight (M.W) (Bjellqvist et al., 1993; Bassil et al.,
2019). The palmitoylation sites and myristoylation sites of CBLs
were determined with GPS-Lipid 1.0 (http://lipid.biocuckoo.
org/index.php) (Ren et al., 2008; Xie et al., 2016).

Phylogenetic Analysis
The protein sequences of all the identified CBLs and CIPKs from
Lonicera japonica (Lj), Arabidopsis thaliana (At), Oryza sativa
(Os) were aligned using the Clustal-Omega (https://www.ebi.ac.
uk/services). The whole phylogenetic trees were constructed by
MEGA six using the Maximum likelihood (ML) method (Kumar
et al., 2016). Pair distance among the CBL-CIPK genes was
calculated by EMBOSS needle (https://www.ebi.ac.uk/Tools/
psa/).

Conserved Motifs, Gene Structures, and
Cis-Acting Elements Analysis
Multiple ExpectationMaximization forMotif Elicitation program
(MEME version 5.0.5, http://meme-suite.org/tools/meme) was
used to identify the conserved motifs of the CBL-CIPK
proteins from honeysuckle (Bailey et al., 2009). The exon/
intron organization for individual CBL-CIPK genes of
honeysuckle were analyzed by the Gene Structure Display
Serve (GSDS, http://gsds.cbi.pku.edu.cn/) (Hu et al., 2015). For
cis-acting regulatory elements analysis, 2000 bp upstream of the
coding sequence (CDS) was analyzed using PlantCARE (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot
et al., 2002).

Chromosome Location
The chromosome location of CBL-CIPK genes were identified
from the honeysuckle genome database. TBtools was used to
draw the distribution graph of CBL-CIPK genes on chromosomes
(Chen et al., 2020). MCScanX (http://chibba. pgml.uga.edu/
mcscan2/) was used to analyze the gene duplication events
(Wang et al., 2012). PAL2NAL program (http://www.bork.
embl.de/pal2nal/) was used to calculate the rate of
synonymous (Ks) and non-synonymous (Ka) substitution (Ks/
Ka) (Goldman and Yang, 1994).

Three-Dimensional Structural Prediction
The 3-D structure of CBL-CIPK proteins was modeled using the
I-TASSER program (https://zhanglab.ccmb.med.umich.edu/I-
TASSER/) (Yang et al., 2015).

Protein-Protein Interaction Network
Analysis
The PPI network of CBL-CIPK proteins was predicted using a
model plant Arabidopsis on STRING protein interaction
database (http://string-db.org) (Szklarczyk et al., 2019).

Plant Material, Treatment, and qRT-PCR
Analysis
The honeysuckle cultivar ‘Huajin 6’ was used in this study. For
tissue-specific expression analysis, five tissues (flowering stage)
including root, stem, mature leaf, young leaf, and flower were
collected from 2-year-old honeysuckle grown at Shandong
University of Traditional Chinese Medicine Medicinal Botanical
Garden for quantitative real-time PCR (qRT-PCR). For salt stress,
annual honeysuckle seedling plants were transplanted to plastic
containers filled with quartz sand/vermiculite (1/3) in April 2021,
one seedling per container. The seedlings were treated with the
mixed solution containing NaCl (0, 100, 200, or 300 mM) and half-
strength Hoagland’s nutrient solution. The seedlings were grown in
climatic chambers (30°C day/25°C night, average RH of 65%,
300 μmolm−2· s−1 PAR, 14/10 h photoperiod). Samples for gene
expression analysis were harvested at 0, 3, 6, 12, 24, 48 and 72 h
after treatments and stored at –80°C until biochemical analysis. The
roots were used for further study. Primers were designed using
Primer Premier six and Oligo 7 with melting temperature of
58–62°C and production of 80–150 bp. The sequences of
primers used in this study are listed in Supplementary Table
S1 Sheet 2. 2–ΔCt and 2–ΔΔCt methods were applied to calculate the
relative expression of genes in different tissues and gradient salt
stress, respectively.

RESULTS

Identification of LjCBLs and LjCIPKs Genes
A total of 6 CBL and 17 CIPK genes were finally obtained from
the honeysuckle genome. All the LjCBLs contained the EF-hand
while all the LjCIPKs possessed the conserved NAF/FISL motif at
the C-terminal and the protein kinase domain at the N-terminal.
These honeysuckle genes were named LjCBL1-LjCBL6 and
LjCIPK1-LjCIPK17 respectively, according to their
chromosomal positions.

As shown in Table 1, the deduced amino acid sequences of 6
LjCBL genes demonstrated great conservation in length, which
ranged from 207 aa (LjCBL5) to 231 aa (LjCBL2), with an
average length of 221 aa. The length of the LjCIPK genes was
between 362 aa (LjCIPK14) and 519 aa (LjCIPK3), with an
average length of 445 aa. The predicted M.W of the LjCBL
proteins ranged from 23.82 to 26.62 kDa, and 41.06–58.35 kDa
for CIPK proteins. The pI of the LjCBL proteins ranged from
4.64 to 5.43, with an average pI of 4.91, and 6.58 to 9.22 for
CIPK proteins, with an average pI of 8.45. Overall, the PI of all
LjCBL proteins was less than 7, while 88% of the LjCIPK
proteins had a pI of greater than 7. Therefore, the LjCBL
proteins are rich in acidic amino acids and the LjCIPKs are rich
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in basic amino acids. Additionally, LjCBL1/2/4/6 have
conserved myristoylation sites at their N-terminal, which
play roles in protein-protein interactions and protein-
membrane attachment; all LjCBLs are palmitoylated proteins.

Phylogenetic Analysis
To determine evolutionary relationships and functional
associations, multi-species phylogenetic trees using the
identified CBL and CIPK full-length protein sequences
from Lonicera japonica (Lj), Arabidopsis thaliana (At),
Oryza sativa (Os) were constructed (Figure 1). Multiple
protein sequence alignment showed that both CBLs and
CIPKs were clustered into four subgroups. There are two
LjCBL (LjCBL1/3) proteins in Group I, one LjCBL (LjCBL5)
protein in group II, one LjCBL (LjCBL6) protein in group III,
and two LjCBL (LjCBL2/4) proteins in group IV. Among
CIPK subgroups, the Group i had the largest number of
members, with eight LjCIPK (LjCIPK2/3/6/7/10/11/13/15)
proteins. Group iii had the fewest members, with only one
LjCIPK (LjCIPK17) protein. Group ii and Group iv contained
five LjCIPK (LjCIPK1/4/5/8/9) and three LjCIPK (LjCIPK12/
14/16) proteins respectively.

The conservation of sequence among the CBL-CIPK genes
was also confirmed by the identities and similarities of amino
acid sequences (Supplementary Table S1 Sheet 3 and Sheet
4). The results showed that the identity of different LjCBLs

ranged from 29.6 to 89.4% and the identity of different
LjCIPKs ranged from 33.6 to 82.7%. The LjCBLs clustered
into the same subgroup display higher identities of sequence
in amino acid level (LjCBL1/LjCBL3 � 89.4% and LjCBL2/
LjCBL4 � 82.2%), whilst the LjCBL genes in different
subgroups exhibit lower identities. The sequences of
LjCIPK10/LjCIPK15 and LjCIPK4/LjCIPK9 have higher
identities (82.7 and 72.1%), which were the members of a
close evolutionary relationship.

Chromosomal Location, Ka/Ks Ratio
Calculation
As shown in Figure 2, six LjCBL genes were mapped onto five
of total nine honeysuckle chromosomes while seventeen
LjCIPK genes were mapped onto eight of total nine
chromosomes, indicating a diverse distribution. LjCIPK1
and LjCIPK2 on chromosome 1 overlapped, but the two
genes are located far away in the phylogenetic tree,
indicating that their biological functions may be different.
The same overlap was also observed on chromosome 1
(LjCIPK3 and LjCIPK4) and chromosome 2 (LjCIPK5 and
LjCIPK6). In the present study, only one (LjCIPK10/
LjCIPK15) duplicated gene pair was identified
(Supplementary Table S1 Sheet 5). Ka/Ks ratio between
LjCIPK10 and LjCIPK15 is 0.0561, implying that the genes

TABLE 1 | Characteristics of CBL and CIPK genes identified from honeysuckle.

(a) Characteristics of honeysuckle CBL genes

Gene
name

Gene ID Chr No.
Amino
acid

pI Protein
M.W (kDa)

Arabidopsis
ortholog

Exon EF-
hands

Palmitoylation sites
amino acid (location)

Myristoylation sites
amino acid (location)

LjCBL1 Ljap00012651 1 225 4.68 25.74 At4g26570 8 4 C (4, 18) G (7)
LjCBL2 Ljap00029480 1 231 5.43 26.62 At4g26570 8 4 C (5) G (2)
LjCBL3 Ljap00022270 2 226 4.76 26.02 At5g55990 8 4 C (4, 12, 18) \
LjCBL4 Ljap00010024 4 221 4.64 25.52 At5g24270 8 4 C (3, 5) G (2)
LjCBL5 Ljap00010536 7 207 5.23 23.82 At4g33000 8 4 C (16, 36, 39) \
LjCBL6 Ljap00011794 9 213 4.74 24.26 At5g47100 8 4 C (3) G (2)

(b) Characteristics of honeysuckle CIPK genes

Gene name Gene ID Chr No. Amino acid pI Protein M.W (kDa) Arabidopsis ortholog Exon Protein kinase domain NAF motif

LjCIPK1 Ljap00011922 1 430 6.58 48.96 At2g30360 2 24–278 305–361
LjCIPK2 Ljap00011917 1 455 9.10 51.82 At5g58380 1 12–266 313–368
LjCIPK3 Ljap00029001 1 519 8.80 58.35 At5g58380 2 60–314 361–409
LjCIPK4 Ljap00029003 1 429 8.08 48.77 At5g01820 1 23–277 302–358
LjCIPK5 Ljap00011214 2 434 9.05 48.27 At2g30360 1 30–284 311–367
LjCIPK6 Ljap00011209 2 448 9.22 51.00 At5g58380 1 12–266 311–366
LjCIPK7 Ljap00031638 2 436 8.57 49.27 At5g58380 1 12–266 306–360
LjCIPK8 Ljap00019729 2 474 8.75 53.83 At4g18700 2 31–285 342–396
LjCIPK9 Ljap00009548 3 438 8.44 49.67 At5g01820 1 30–284 313–366
LjCIPK10 Ljap00017728 4 432 9.18 48.43 At4g30960 2 14–268 300–358
LjCIPK11 Ljap00014653 4 442 8.60 50.35 At5g10930 2 25–280 312–366
LjCIPK12 Ljap00030195 5 477 6.88 54.62 At4g24400 14 9–278 324–380
LjCIPK13 Ljap00029708 7 446 8.57 50.62 At5g10930 1 11–266 297–352
LjCIPK14 Ljap00016707 7 362 7.05 41.06 At1g01140 13 27–234 274–332
LjCIPK15 Ljap00019130 7 428 9.19 48.21 At4g30960 3 15–269 299–357
LjCIPK16 Ljap00025477 7 490 9.07 55.67 At5g35410 13 11–292 338–394
LjCIPK17 Ljap00033052 8 423 8.57 47.04 At3g23000 2 23–278 320–358
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had undergone strong purifying selection pressure, which
reduces the rate of change in amino acid profile.

Gene Structure and Conserved Motifs
Analysis
Members with close evolutionary relationships shown
uniform or similar gene structure and motif composition

(Figure 3B). The gene structure analysis along with the
phylogeny results showed that the genes with a similar
intron/exon pattern clustered near to each other in the
same groups. LjCBL genes contained 8 exons and seven to
nine introns. Group i/ii/iii of LjCIPK genes possessed one to
three exons and one to two introns, whilst Group iv of LjCIPK
genes had 13–14 exons and 12–13 introns. In general, the
exon length, exons/intron number were moderately

FIGURE 1 | Phylogenetic tree of the CBL (A) proteins and CIPK (B) proteins from Lonicera japonica (Lj), Arabidopsis thaliana (At), Oryza sativa (Os). The different
colored arcs indicate different subgroups. Proteins from honeysuckle, Arabidopsis, and rice are denoted by green triangles, blue circles, and purple squares,
respectively. Details of CBL and CIPK protein sequence from three species are listed in Supplementary Table S1 Sheet 1.

FIGURE 2 | Physical mapping of honeysuckle CBL-CIPK genes. The numbers of CBL-CIPK genes are indicated on the right of each chromosome. The scale on the
left represents chromosome length.
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conserved among the various subgroups, indicating similar
biological function.

To further investigate the characteristic region of CBL-CIPK
proteins, the motif distributions were investigated (Figure 3C).
A total of six putative motifs were identified in LjCBL proteins,
and 15 motifs were identified in LjCIPK proteins. In the LjCBL
family, three motifs (motif 1,3, and 5) existed in all the members,
whilst motif 6 was only detected in Group I. Motif 2 existed in all
subgroups except group III. In the LjCIPK family, seven motifs
(motif 1, 2, 3,4, 9,10, and 13) existed in all the members,
including the NAF motif (motif 10) and Protein kinase
domain (motif 1, 2). Motif 11 was existed in both Group i
and ii, while motif 15 was only detected in Group iv, suggesting
that they might perform group-specific functions. The results
indicate that members of the CBL-CIPK family belonging to the
same subgroup have very similar motif types and numbers, but
there are also differences in motif patterns among members of
the same subgroup.

Cis-Acting Elements Analysis
To further investigate the potential regulatory mechanism of
the CBL-CIPK genes in honeysuckle, the cis-acting
regulatory elements of the 2000 bp upstream region from
the translation initiation site of the CBL-CIPK genes were
surveyed (Table 2). In the CBL-CIPK promoters, seven
hormone-related (e.g., ABRE, TCA-element, CGTCA-
motif), seven stress-related (e.g., LTR, ARE, WUN-motif,
MBS), and twelve development-related (e.g., G-box, GT1-
motif) elements were identified. There were half of the LjCBL
genes that contained more than five types of hormone-

related cis-acting elements, but only LjCIPK9 in the
LjCIPK family contained so many types. Among stress-
related cis-acting elements, ARE and STRE were found in
most LjCBL and LjCIPK promoters. LjCBL4 contained nine
stress-response elements, including four ARE, one WUN-
motif, and four STRE. LjCIPK13 contained fourteen stress-
response elements, including five STRE, four ARE, two
WUN-motif, 2 W box, and one TC-rich repeats, which
was the largest number of stress-response elements
contained within one gene. LjCIPK6/8/16 contained ten
stress-response elements respectively, which is slightly less
than LjCIPK13. Among development-related cis-acting
elements, the circadian, TCT-motif, and GCN4 motif were
only predicted in CIPK genes, but not found in CBL genes.
These results implied that both LjCBL and LjCIPK genes
could be involved in hormone signal responsiveness and
stress adaptation.

Proteins Structures Analysis
To gain more insight into the putatively functional mechanism
of CBL-CIPK proteins in honeysuckle, all the proteins were
modeled by I-TASSER (Figure 4). The 3-D structures were
construed based on the best structural templates and crystal
structures from Protein Data Bank (PDB). The parameters of
the best PDB structure (Table 3) illustrated that the models
were constructed with high credibility since all of them had a
C-score varied from −2.63 to 0.26. Most LjCBL proteins shared
the same PDB hit 1uhnA (The crystal structure of the calcium-
binding protein AtCBL2 from Arabidopsis thaliana) and
LjCIPK proteins shared the 6c9Da (Crystal structure of

FIGURE 3 | Phylogenetic relationships(A), gene structure(B), and conserved motifs(C) in CBL-CIPK genes from honeysuckle (A) Phylogenetic relationships (B)
gene structure. Green boxes indicate untranslated 5′- and 3′-regions, yellow boxes indicate exons, and black lines indicate introns. The length of the protein can be
estimated using the scale at the bottom (C)Conserved motifs. The motifs are displayed in different colored boxes. The sequence information for each motif is provided in
Supplementary Table S1, Sheet 6 and Supplementary Figures S1,S2.
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KA1-autoinhibited MARK1 kinase). The same PDB hit
indicating that their 3-D structures were similar.

Protein-Protein Interaction Prediction
To further explore the potential function of LjNHX members,
the PPI network was constructed with STRING database,
which was based on either known experimental or predicted
interactions. Because the PPI network of Lonicera japonica is
not available in the STRING database so far, we used the
homolog gene between Arabidopsis thaliana and Lonicera
japonica to search in the database. As shown in Figure 5,
no immediately interacted relationship was predicted among
LjCBLs or LjCIPKs. However, LjCBL and LjCIPK proteins
have significantly more interactions. Individual LjCBL6
protein was hypothesized to interact with LjCIPK5/8/12/13/
14/17 and CIPK1, and these proteins were clustered to red
cluster in the PPI network. LjCBL4 protein was hypothesized
to interact with LjCIPK7/9/15/16 and SOS1/NHX1, and these
proteins were clustered to green cluster. However, individual

LjCBL5 only interacts with CIPK23 and AKT1, and LjCBL3 was
hypothesized to interact with CIPK23 and AKT1, these
proteins were clustered into the blue cluster.

Then, genes from PPI network were described using three
categories of GO classification: molecular function (MF),
biological processes (BP) and cellular components (CC).
The results of GO analysis showed that the proteins
involved in the network were mainly localized to the
cytoplasm, membrane, nucleus, and intracellular membrane-
bounded organelle. Regarding MF, most of the proteins
possessed protein serine/threonine kinase activity, catalytic
activity, ion binding, and ion transmembrane transporter
activity. Regarding BP, most of the proteins mainly
participate in intracellular signal transduction, plant
development process and respond to external stimuli.

Expression Patterns of LjCBLs and LjCIPKs
To investigate the potential roles of LjCBLs and LjCIPKs in
different tissues, their expression patterns across five

TABLE 2 | Kinds and amounts of hormone-, stress-, and development-related cis-acting element in the promoters of CBL-CIPK genes of honeysuckle.

Functional
class

Elements Function LjCBLs LjCIPKs

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Hormone ABRE ABA-responsive ele`ment 0 1 1 0 3 1 3 0 2 0 2 1 0 3 4 2 1 2 4 5 10 0 2
TCA-element salicylic acid-responsive

element
0 2 1 0 1 2 0 1 0 1 2 3 1 1 1 1 0 1 0 0 0 2 0

P-box gibberellin-responsive
element

0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0

TATC-box gibberellin-responsive
element

5 1 0 0 0 1 1 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 1

CGTCA-
motif

MeJA-responsive element 2 2 1 0 3 1 1 0 3 0 2 1 0 0 2 0 0 0 1 1 0 0 1

TGACG-
motif

MeJA-responsive element 2 2 1 0 3 1 1 0 3 0 2 1 0 0 2 0 0 0 1 1 0 0 1

TGA-element auxin-responsive element 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0

Stress ARE anaerobic induction 0 2 0 4 3 3 1 0 3 3 2 1 1 4 1 0 1 0 4 1 2 4 1
LTR low-temperature

responsiveness
0 0 2 0 1 0 0 0 1 0 0 3 0 0 0 1 0 0 0 2 1 1 1

MBS MYB binding site involved
in drought-inducibility

1 1 1 0 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 1 1

TC-rich
repeats

defense and stress
responsive element

0 0 0 0 1 2 0 1 0 0 0 3 0 0 0 1 0 0 1 0 0 0 1

W box WRKY Transcription factor
binding site

1 0 2 0 0 0 2 0 0 0 1 2 0 0 1 0 2 0 2 1 1 2 0

WUN-motif wound-responsive element 0 2 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 2 0 2 0 0
STRE Stress response element 1 1 0 4 0 2 0 0 2 3 4 1 2 5 0 1 5 3 5 3 3 2 4

Others MYB Transcription factor 4 5 3 7 3 3 4 6 2 3 7 7 8 3 4 6 4 3 3 1 4 2 2
AE-box light-responsive element 1 1 1 0 1 1 0 0 0 0 0 2 0 0 1 0 0 1 0 0 0 0 0
GATA-motif light-responsive element 3 0 2 0 1 0 0 0 0 1 0 1 0 0 2 0 0 1 0 1 0 1 0
G-box light-responsive element 1 1 1 0 3 0 1 0 2 0 3 1 1 6 4 3 1 1 5 4 13 0 3
GT1-motif light-responsive element 2 0 1 2 0 1 2 1 1 1 2 0 0 3 0 1 0 0 2 2 0 2 1
TCT-motif light-responsive element — 2 1 1 1 1 2 1 1 0 0 1 2 1 0 1 0 3
Box 4 light responsiveness 4 2 3 2 11 0 7 1 2 1 2 3 2 0 4 6 2 3 2 0 3 3 4
MRE MYB binding site involved

in light responsiveness
0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 3 1

circadian circadian control — 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
CAT-box meristem expression 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1
GCN4_motif endosperm expression — 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O2-site zein metabolism regulation 0 0 0 0 0 1 0 0 1 1 0 1 1 0 3 0 1 0 0 0 0 0 0
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FIGURE 4 | Structural analysis of six LjCBL (A) and seventeen LjCIPK (B)modeled proteins. The α-helix, β-strand, and random coil are marked by red, yellow and
blue, respectively. The parameters of the best PDB structure for LjCBLs and LjCIPKs are listed in Table 3. Details of secondary structure are shown in Supplementary
Figures S3,S4.
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honeysuckle tissues (root, stem, mature leaf, young leaf,
flower) were analyzed using qRT-PCR. As illustrated in
Figure 6A, the examined genes were expressed in all
selected tissue samples, although their expression levels
differed among tissues. Hierarchical cluster analysis
divides the tissue expression data of CBL into two
categories. In the first group, LjCBL6, LjCIPK4/17
exhibited a high level of expression in mature leaf and
root, while LjCBL1/2/4, LjCIPK1/7/11/13/16 exhibited low
levels of expression in almost all tissues. In the second group,
LjCBL3, LjCIPK3/10 had a high level of expression in almost
all tissues. Notably, LjCBL3 and LjCIPK3/9/10/14/15 showed
high specific expression in mature leaves. These results
collectively illustrate that LjCBL and LjCIPK genes are
important for honeysuckle growth and development, and
different genes may have functional variations.

To determine which LjCBL and LjCIPK genes contribute
to salt stress tolerance, the time-course change in expression
levels of genes was analyzed in the roots of the “Huajin 6”
cultivar under different concentrations of NaCl by RT-
qPCR. As shown in Figure 6B, the expression of LjCBL2/
4, LjCIPK1 under all treatments gradually increased over
time until peak expression at 72 h. When exposed to
moderate (200 mM NaCl) and high salt stresses (300 mM
NaCl), the expression of LjCBL4 was 7.54- and 16.6-fold
higher at 72 h than under control conditions, respectively.
Notably, LjCIPK11/13 rapidly increased the expression level
at 3 h and maintained a lower level from 12 or 24 h, then
significantly increased their expression level over a 48-h
period.

DISCUSSION

Honeysuckle plays an irreplaceable role in the development of
TCM. The completion of the whole-genome sequencing of
honeysuckle (unpublished) makes it possible to analyze
various gene families of honeysuckle by bioinformatics. Here,
a total of six LjCBL genes and 17 LjCIPK genes have been
identified and characterized. There are 10 LjCBL genes and 26
LjCIPK genes in Arabidopsis (Arabidopsis thaliana), 10 OsCBL
genes and 33 OsCIPK genes in rice (Oryza sativa) (Kolukisaoglu
et al., 2004; Kanwar et al., 2014), seven VvCBL genes and 20
VvCIPK genes in Grapevine (Vitis vinifera) (Xi et al., 2017), 10
PtCBL genes and 27 PtCIPK genes in poplar (Populus
trichocarpa) (Tang et al., 2010), five SmCBL genes and 15
SmCIPK genes in eggplant (Solanum melongena) (Li et al.,
2016), eight ZmCBLs and 43 ZmCIPK in maize (Zea mays)
(Chen et al., 2011), 19 BrrCBL and 51 BrrCIPK genes in
Turnip (Brassica rapa) (Yin et al., 2017). It is well known that
gene duplication and loss events during evolution lead to these
differences in the number of CBL-CIPK genes among various
species (Tian et al., 2017). The presence of multiple CBL-CIPK
genes in the genome of the honeysuckle indicates the functional
diversity of the CBL-CIPK gene family.

CBL proteins share an overall structural homology consisting
of four elongation factor EF-hand domains responsible for
binding Ca2+. Differences in the EF-hand motifs may result in
different ways of binding to Ca2+ (Raymond, 1998; Kim et al.,
2000; Tang et al., 2020). As shown inTable 1, EF-hands of LjCBLs
were highly conserved in honeysuckle, indicating the functional
conservation of binding Ca2+ ions. CIPK consists of a conserved

TABLE 3 | Structural dependent modeling parameters for the CBL-CIPK proteins.

Protein C-score TM-score RMSD (Å) Best identified structural analogs in PDB

PDB hit TM-score RMSD IDEN Cov

LjCBL1 −0.68 0.63 ± 0.14 7.0 ± 4.1Å 1uhnA 0.838 0.27 0.931 0.84
LjCBL2 −0.80 0.61 ± 0.14 7.4 ± 4.2Å 1uhnA 0.809 0.61 0.55 0.818
LjCBL3 −0.92 0.60 ± 0.14 7.6 ± 4.3Å 1uhnA 0.835 0.26 0.968 0.836
LjCBL4 −0.62 0.63 ± 0.13 6.9 ± 4.1Å 1uhnA 0.852 0.35 0.582 0.855
LjCBL5 −2.63 0.41 ± 0.14 11.5 ± 4.5Å 1v1gA 0.664 2.43 0.553 0.768
LjCBL6 −0.49 0.65 ± 0.13 6.5 ± 3.9Å 1uhnA 0.885 0.26 0.698 0.887

LjCIPK1 −0.43 0.66 ± 0.13 7.9 ± 4.4Å 6c9dA 0.890 2.14 0.326 0.928
LjCIPK2 −0.87 0.60 ± 0.14 9.1 ± 4.6Å 6c9dA 0.920 0.98 0.270 0.927
LjCIPK3 −2.10 0.46 ± 0.15 12.5 ± 4.3Å 6c9dA 0.803 0.780 0.305 0.807
LjCIPK4 −0.14 0.70 ± 0.12 7.3 ± 4.2Å 6c9dA 0.906 1.140 0.322 0.921
LjCIPK5 0.110 0.73 ± 0.11 6.8 ± 4.0Å 6c9dA 0.906 1.080 0.304 0.917
LjCIPK6 −0.290 0.68 ± 0.12 7.7 ± 4.3Å 6c9dA 0.926 0.750 0.286 0.933
LjCIPK7 0.030 0.72 ± 0.11 6.9 ± 4.1Å 6c9dA 0.933 1.100 0.295 0.947
LjCIPK8 −0.55 0.64 ± 0.13 8.4 ± 4.5Å 6c9dA 0.878 0.990 0.295 0.888
LjCIPK9 −0.26 0.68 ± 0.12 7.6 ± 4.3Å 6c9dA 0.887 1.240 0.322 0.902
LjCIPK10 0.26 0.75 ± 0.10 6.4 ± 3.9Å 6c9dA 0.928 1.12 0.292 0.944
LjCIPK11 −0.440 0.66 ± 0.13 8.0 ± 4.4Å 6c9dA 0.906 1.160 0.305 0.919
LjCIPK12 −1.250 0.56 ± 0.15 10.1 ± 4.6Å 6c9dA 0.862 1.140 0.301 0.876
LjCIPK13 −0.710 0.62 ± 0.14 8.7 ± 4.5Å 6c9dA 0.902 0.990 0.290 0.913
LjCIPK14 −0.670 0.63 ± 0.14 8.1 ± 4.4Å 6c9dA 0.929 1.600 0.285 0.970
LjCIPK15 −1.240 0.56 ± 0.15 9.8 ± 4.6Å 2y94A 0.826 2.750 0.318 0.899
LjCIPK16 −1.880 0.49 ± 0.15 11.8 ± 4.5Å 2y94A 0.816 1.080 0.325 0.829
LjCIPK17 −1.740 0.50 ± 0.15 11.0 ± 4.6Å 6c9dA 0.891 1.150 0.308 0.903
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N terminal catalytic domain for kinase activity and a less
conserved C terminal regulatory region containing the NAF
motif/FISL motif for interaction with CBL as well as the
protein phosphatase interaction motif for interaction with
type-2C protein phosphatases (PP2C) and is separated by a
junction domain (Albrecht et al., 2001; Liu et al., 2019). Once

signal transduction begins, Ca2+-bound CBL interacts with CIPK
via the NAF domain and releases the inhibitory effect of the C
terminus, leading to activation of the kinase (Guo et al., 2001;
Tang et al., 2020). It has been shown that the putative NAF
domains are highly conserved in the CIPK gene families, which is
specific to mediate the interaction between CBL and CIPK

FIGURE5 | Protein-protein interaction (PPI) prediction of LjCBLs and LjCIPKs (A)PPI network. Line thickness indicates the strength of data support. The network is
clustered into 3 clusters, which are represented with red, green, and blue nodes, respectively (B) Gene Ontology (GO) analysis of the genes from the PPI network.
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(Zhang et al., 2019). Motif analysis showed that the NAF domain
was located in motif 10 of the LjCIPKs and it existed in all the
detected CIPKs in honeysuckle. Similar results were found in
pepper (Capsicum annuum) (Ma X. et al., 2019) and canola
(Brassica napus) (Zhang et al., 2014). These results indicated the
CIPK family genes in honeysuckle are relatively conserved during
evolution.

Protein myristoylation and palmitoylation are two critical
modifications necessary for protein stability, aggregation, and
trafficking (Kim et al., 2000; Hemsley and Grierson, 2008).
Myristoylation is an irreversible protein modification in which
myristate, a 14-carbon saturated fatty acid, is covalently attached
through an amide bond to an N-terminal glycine residue in a co-
translational process (Ishitani et al., 2000). In honeysuckle,
LjCBL1/2/4/6 starts from a conserved N-myristoylation site,
similar to the CBL protein structures from canola (Brassica
napus) (Zhang et al., 2014) and rice (Oryza sativa) (Gu et al.,
2008), which may play a role in the membrane targeting of the
CBL-CIPK complex. Palmitoylation is the reversible addition of
fatty acids to proteins, which increases their membrane affinity
(Hemsley and Grierson, 2008). In Arabidopsis, the S-acylation-
dependent (S-acylation, also known as palmitoylation)
association of AtCBL2 with the vacuolar membrane is essential
for ABA responses (Hrabak et al., 2003). Consistent with the

results of Arabidopsis and canola (Brassica napus) (Zhang et al.,
2014), all the six LjCBL proteins possess typical palmitoylation
sites at the N-terminal.

The phylogenetic analysis serves as an excellent method to
analyze evolutionary relationships among genes. Phylogenetic
analysis of LjCBL and LjCIPK genes in honeysuckle, together
with Arabidopsis and rice, classified both CBLs and CIPKsmainly
into four different groups. Similar results have also been found in
eggplant (Solanum melongena) (Li et al., 2016) and canola
(Brassica napus) (Zhang et al., 2014). The results also
demonstrated that the CBL-CIPK were unevenly distributed
among subfamilies, and the CBL-CIPK gene family members
in honeysuckle, rice, and Arabidopsis subfamilies. Consistent
with the current information of plant evolution, the
phylogenetic tree of LjCBLs and LjCIPKs were more closely
related to Arabidopsis (dicot) compared to rice (monocot).
However, several CBL-CIPK presented in Arabidopsis but was
absent in honeysuckle, which mainly because of gene loss. The
evolutionary characteristics of exon/intron structure provide
strong evidence for phylogenetic grouping (Boudet, 2001). For
LjCBLs, all of the CDS was discontinuous by the presence of
introns. Whereas, CIPK genes were divided into an exon-poor
clade (Group i/ii/iii) and an exon-rich clade (Group iv), similar to
those in Arabidopsis (Mao et al., 2016), pepper (Ma X. et al.,

FIGURE 6 | Expression patterns of CBL-CIPK genes in different tissues (A) and under salt stresses (B) (A) The relative mRNA abundance of the CBL-CIPK was
quantified in five tissues. All values were expressed relative to the expression levels of reference genes using formula 2−ΔCt (Wang et al., 2020). Different colors indicate
different levels of gene expression; the asterisk indicates the relative expression level was less or greater than 0.05 (B) The expression patterns of the CBL-CIPK at 0, 3, 6,
12, 24, 48, and 72 h after treated with NaCl (100, 200, and 300 mM NaCl). All values were expressed relative to the expression levels of reference genes using
formula 2−ΔΔCt. Ljactin was used as a marker gene. Different colors indicate different levels of gene expression based on the log2 value of the fold change by RT-qPCR;
blue indicates downregulation, and red indicates upregulation. The asterisk indicates significant (p < 0.05) up/down-regulated expression (>2-fold).
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2019), and cotton (Cui Y. et al., 2020). Combined with the
evolutionary analysis of CIPK in plants, our results indicate
that intron gain or loss events were the major driving factors
for the gene structural evolution of the CIPK gene family before
eudicot-monocot divergence (Zhu et al., 2016; Cui Y. et al., 2020).
The structural diversification among the CBL-CIPK genes
families may allow CBL-CIPK genes to function differently
(Yin et al., 2017).

Gene duplication provides opportunities for the new gene
production and its functional divergence in the process of gene
family expansion and evolution. The paralogous genes were
generated during the divergent evolution from a common
ancestral gene through duplication events (segmental or
tandem duplication) (Xi et al., 2017). It has been shown that
the expansion of the CIPK gene family in Gossypium hirsutum
and Gossypium barbadense mainly due to whole-genome
duplication and segmental duplications (Cui Y. et al., 2020). In
honeysuckle, only one CIPK paralogous pair (LjCIPK10/
LjCIPK15) was identified and were generated by segmental
duplication events, as the genes present on different
chromosomes. The Ka/Ks ratio is used to identify whether
selective pressure existed on amino acid substitutions
(Nekrutenko et al., 2002). Our results suggested that the
function of the duplicated CIPK genes in honeysuckle did not
diverge much during their evolution course, and purifying
selection could mainly contribute to the maintenance of
function in CIPK gene families. Noticeably, the duplicated
genes of LjCIPKs were only detected in the intron-poor clade,
a similar phenomenon has been observed in Grapevine (Vitis
vinifera), indicating that the intron-poor clade of the LjCIPK gene
family may play a more specific role to fulfill the specific
characteristics of honeysuckle (Xi et al., 2017).

As a key molecular switch, cis-acting regulatory elements
participate in the transcriptional regulation of gene activities that
control various biological processes (Wu et al., 2019). Hormones,
such as ABA, salicylic acid (SA), auxin (IAA), and gibberellin, play
critical roles in several developmental stages and stress response
(Gallego-Giraldo et al., 2008; Mishra et al., 2014; Li et al., 2019;
Zhang and Li, 2019). Here, seven regulatory elements related to
hormones were identified in the promoters of CBL-CIPK genes.
ABRE (ABA-responsive element), which belongs to the so-called
G-box family, contains an ACGT core, a sequence known to be
recognized by plant bZIP proteins. ABREwas found in two-thirds of
LjCBL and 13 out of 17 LjCIPK genes, respectively, which was also
identified in both Arabidopsis and rice (Gomez-Porras et al., 2007),
suggesting that the most CBL-CIPK genes might be involved in the
ABA signal pathway, which mainly controls stomatal closure, seed
and bud dormancy, and physiological responses to cold, drought,
and salinity stress (Mishra et al., 2014). Furthermore, seven stress-
responsive regulatory elements were identified namely ARE, W box,
LTR, STRE, MBS, TC-rich repeats. Similar elements were found in
CBL-CIPKs from Grapevine (Vitis vinifera) and BnaNHXs from
oilseed rape (Brassica napus) (Cui J.-q. et al., 2020). Interestingly, W
box (TTGACC) was identified in half of the CBL-CIPK genes from
honeysuckle. W box is recognized by the family of WRKY
transcription factors, which is involved in certain developmental
processes and stress response, such as drought stress response in

tomato (Ahammed et al., 2020), salt response in Arabidopsis (Xu
et al., 2018) and populus (Jiang et al., 2020). In general, the identified
cis-acting elements here help in understanding their roles in the
developmental and various biotic stress-related mechanisms.

All CBL-CIPK gene expression displayed tissue specificity,
which indicated the distinct effect of CBL-CIPK genes.
Interestingly, LjCBL3 and LjCIPK3/9/10/14/15 were highly
expressed in mature leaves. Same result was found in cassava
(Manihot esculenta), MeCBL1/9 and MeCIPK23 have higher
transcriptional levels in the mature stage (Mo et al., 2018).
Since CBL-CIPK is a modulator system for efficient nutrient
acquisition, it is speculated that different tissues have different
requirements for nutrient ions, resulting in tissue-specific
expression of related genes (Dong et al., 2021; Verma et al.,
2021). CBL and CIPK genes have been reported to enhance
salinity tolerance in different species by establishing the
homeostasis of macro-nutrients in the cytosol and subcellular
compartments, such as in pigeon pea (Cajanus cajan) (Meng
et al., 2021) and cotton (Gossypium hirsutum) (Sun et al., 2021).
Our study revealed that in honeysuckle, several CBL-CIPK genes
express differentially at different time intervals under salinity
stress. The SOS pathways, consisting of SOS3, SOS2, and SOS1,
have been well defined as crucial pathways to control cellular ion
homeostasis, by extruding Na+ to the extracellular space, thus
conferring salt stress resistance in plants. As shown in Table 1,
LjCBL4 exhibited orthologous relationships with
AtSOS3(At5g24270), while LjCIPK16 exhibited orthologous
relationships with AtSOS2(At5g35410). As shown in Figure 1,
there is a close evolutionary relationship between LjCBL4 and
SOS3, LjCIPK16 and SOS2. Interestingly, SOS1, a plasma
membrane Na+/H+ antiporter, was predicted to interact with
LjCIPK15/16 and LjCBL4 in the PPI network, while NHX1, the
Na+/H+ antiporter located on tonoplast, was also predicted to
interact with LjCIPK16 and LjCBL4, which indicated the key role
of LjCIPK16 and LjCBL4 proteins in the salt tolerance of
honeysuckle. Moreover, LjCBL4, LjCIPK16 and SOS1 were
clustered into green cluster in the PPI network, indicating that
they may act in the same pathway. As shown in Figure 6,
expression profile analyses revealed that LjCBL4 and LjCIPK16
were upregulated under salt stress. The SOS pathway genes
upregulated in response to salinity stress were confirmed in
many plants, such as spinach (Spinacia oleracea) (Zhao et al.,
2020) and poplar (Populus trichocarpa) (Tang et al., 2010). This
result suggested that the Ca2+-SOS3-SOS2-cation/H+ antiporters
(NHXs/AKTs) pathway might be not only a common but also an
essential pathway regulating plant salt stress resistance (Zhao
et al., 2020). This result also demonstrated the conservation of
SOS pathway genes in honeysuckle and a model of Ca2+-LjCBL4/
LjSOS3-LjCIPK16/LjSOS3 module-mediated abiotic stress
signaling in honeysuckle is proposed.

At the same time, the functions of LjCBL2/5, LjCIPK1/11/13/
15/17 in the response of honeysuckle to salt stress are worth
further exploring. Notably, LjCIPK1 and LjCIPK15 show greater
enhanced expression under salt stress, even higher than
LjCIPK16. LjCIPK15 exhibited orthologous relationships with
AtCIPK6 (At4g30960). In Arabidopsis, overexpression of
AtCIPK6 increased plant tolerance to salt stress (Chen et al.,

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 75104012

Huang et al. CBL-CIPK Gene Family in Honeysuckle

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2013); cipk6mutant was more sensitive to salt stress compared to
wild-type (Tripathi et al., 2009), which indicated LjCIPK15 may
play significant roles in salt tolerance. LjCIPK1 exhibited
orthologous relationships with AtCIPK11 (At2g30360). It has
been shown that AtCIPK11 functions as a negative regulator in
drought stress response in Arabidopsis, its role in salt tolerance
needs deep exploration (Ma Y. et al., 2019). Although the
sensitivity of each gene to external environmental changes is
different, their role in the response of honeysuckle to salt stress
deserves more attention.

CONCLUSION

In the present study, a total of six LjCBL and 17 LjCIPK genes
were identified. The phylogenetic analysis divided both CBL and
CIPK genes into four subgroups and the same clade had similar
motif compositions and gene structures. Cis-Acting elements
analysis implied that both LjCBLs and LjCIPKs are involved
in stress adaptation. PPI network analysis results showed that
LjCBL4 is hypothesized to interact with LjCIPK7/9/15/16 and
SOS1/NHX1. The salt-induced expression patterns confirmed
that the expression levels of LjCBL2/4, LjCIPK1/15/16/17 were
affected by salinity. The theoretical foundation was established in
the present study for the further functional characterization of the
CBL-CIPK gene families in honeysuckle. However, extra works
are required to decipher the interaction networks between LjCBLs
and LjCIPKs, and the regulation mode of CBL-CIPK complexe’s
response to salt stress.
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