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Identification of intercellular signaling changes across multiple single-cell RNA-sequencing
(scRNA-seq) datasets as well as how intercellular communications affect intracellular
transcription factors (TFs) to regulate target genes is crucial in understanding how distinct
cell states respond to evolution, perturbations, and diseases. Here, we first generalized our
previously developed tool CellChat, enabling flexible comparison analysis of cell–cell
communication networks across any number of scRNA-seq datasets from interrelated
biological conditions. This greatly facilitates the ready detection of signaling changes of
cell–cell communication in response to any biological perturbations. We then investigated
how intercellular communications affect intracellular signaling response by inferring a
multiscale signaling network which bridges the intercellular communications at the
population level and the cell state–specific intracellular signaling network at the
molecular level. The latter is constructed by integrating receptor-TF interactions
collected from public databases and TF-target gene regulations inferred from a
network-regularized regression model. By applying our approaches to three scRNA-
seq datasets from skin development, spinal cord injury, and COVID-19, we demonstrated
the capability of our approaches in identifying the predominant signaling changes across
conditions and the critical signaling mechanisms regulating target gene expression.
Together, our work will facilitate the identification of both intercellular and intracellular
dysregulated signaling mechanisms responsible for biological perturbations in diverse
tissues.
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INTRODUCTION

Cell–cell communication means that one cell sends a message to another cell through a medium
to initiate cellular response of the target cell. The communication between cells plays a vital role
in the development, physicology, and pathology of muticellular organisms. In this process, cells
can communicate with and respond to neighboring or distant cells through ligand-receptor
interactions by utilizing biochemical molecules, such as cytokines and growth factors.

Edited by:
Jiajun Zhang,

Sun Yat-sen University, China

Reviewed by:
Lin Wan,

Academy of Mathematics and
Systems Science (CAS), China

Wei Vivian Li,
Rutgers, The State University of New

Jersey, United States

*Correspondence:
Suoqin Jin

sqjin@whu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 31 July 2021
Accepted: 11 October 2021

Published: 11 November 2021

Citation:
Hao M, Zou X and Jin S (2021)

Identification of Intercellular Signaling
Changes Across Conditions and Their

Influence on Intracellular Signaling
Response From Multiple Single-

Cell Datasets.
Front. Genet. 12:751158.

doi: 10.3389/fgene.2021.751158

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7511581

ORIGINAL RESEARCH
published: 11 November 2021

doi: 10.3389/fgene.2021.751158

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.751158&domain=pdf&date_stamp=2021-11-11
https://www.frontiersin.org/articles/10.3389/fgene.2021.751158/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.751158/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.751158/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.751158/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.751158/full
http://creativecommons.org/licenses/by/4.0/
mailto:sqjin@whu.edu.cn
https://doi.org/10.3389/fgene.2021.751158
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.751158


Single-cell RNA-sequencing (scRNA-seq), which measures
expression levels of a large number of genes across many
cell types at a single-cell resolution, provides a great
opportunity to study the cell–cell communication between
interacting cells and the signaling response governed by
intracellular gene regulatory networks (GRNs) (Almet,
et al., 2021; Shao, et al., 2020). Moreover, identification of
signaling changes across conditions is important for
understanding how distinct cell states respond to evolution,
perturbations, and diseases (Armingol, et al., 2021).

Although a number of computational methods have been
recently developed to infer cell–cell communication by
integrating scRNA-seq data with a prior ligand–receptor
interaction database, most of these methods only focus on
the intercellular communications in one biological condition
(Almet, et al., 2021; Armingol, et al., 2021), lacking the
capability of identifying signaling changes across
conditions. We have recently developed a computational
tool CellChat (Jin, et al., 2021) to identify dysregulated
interactions by comparing cell–cell communication
networks across conditions. However, CellChat focuses
primarily on the comparison analysis between two datasets
from two interrelated biological conditions. Other methods,
including iTalk (Wang, et al., 2019) and Connectome
(Raredon, et al., 2021), have also been developed recently
to perform comparison analysis. With the increasing number
of scNRA-seq datasets collected from multiple conditions,
time points, and disease states, easy-to-use tools that can
seamlessly identify signaling changes across any biological
conditions from multiple scRNA-seq datasets are highly
needed.

Understanding how cell–cell communication affects the gene
expression of target cells via transcription factors (TFs) is crucial
to understand how target cells respond to extracellular signals
and eventually the functional role of cell–cell communication.
However, there are only rudimentary efforts to link cell–cell
communication to downstream response via GRNs (Browaeys,
et al., 2020; Cheng, et al., 2021; Hu, et al., 2020; Sha, et al., 2020),
such as NicheNet, scMLnet, and CytoTalk. NicheNet and
scMLnet build GRNs by directly curating the interactions
among ligands, receptors, TFs, and target genes from public
databases, while CytoTalk infers GRN by calculating the
mutual information between all pairs of genes without
discriminating TFs from target genes. Constructing a
multiscale signaling network, which links data-driven
intercellular communications with intracellular TF-target
regulations, still remains challenging, preventing the better
understanding of cell type–specific response to cell–cell
communication.

To address these limitations, we first generalized our
previously developed R package CellChat to enable the
comparison analysis of any number of datasets from multiple
conditions, allowing ready identification of signaling changes
across conditions. In addition, we infer a multiscale signaling
network which integrates the ligand–receptor interactions
inferred from CellChat, the receptor-TF interactions from
public databases, and the TF- gene regulations from a

mathematical optimization model taking into account the
prior network information from public databases. Of note, we
build cell type–specific networks from the integrated network by
identifying enriched TFs and target genes based on the
differential expression analysis. Therefore, our multiscale
framework provides a clear understanding of how the
upstream of the signaling pathway in cell–cell communication
regulates the downstream target genes in a sequential way. We
apply our approaches to three scRNA-seq datasets from mouse
skin embryonic development, mouse spinal cord injury, and
human COVID-19 infection. Applications not only
demonstrate the capability of our methods but also provide
novel insights into signaling mechanisms driving phenotype
transitions.

RESULTS

Overview of Identifying Intercellular
Signaling Changes Across Conditions and
Their Link to Intracellular Signaling
Response From Multiple scRNA-Seq
Datasets
We first generalized our previously developed tool CellChat
together with the R package, providing a more coherent and
easy-to-use way to perform comparison analysis of cell–cell
communication across conditions from any number of
scRNA-seq datasets. Cellchat requires users to provide a
scRNA-seq dataset (gene expression data across cells) with
cell type labels as the input (Figure 1A). After receiving the
input information, CellChat infers statistically and
biologically significant cell–cell communication networks
for each dataset. Compared to the original CellChat that
was limited to the comparison analysis of only two
datasets, the updated CellChat generalizes many existing
functions, which enables systematical comparison analysis
of intercellular communications across any number of
scRNA-seq datasets. Of note, cell type compositions in
different datasets do not need to be exactly the same.
Moreover, by introducing a merged CellChat object from a
list of CellChat objects, the updated CellChat allows the
comparison analysis of cell–cell communication networks
across all input datasets in a coherent and flexible fashion.
Specifically, CellChat can identify the changes of the
dominant sender and receiver in cell groups by comparing
any two datasets using network centrality metrics such as out-
degree and in-degree. CellChat can also identify the
predominantly altered signaling pathways and
ligand–receptor pairs by comparing the inferred
communication probabilities and projecting the inferred
cell–cell communication networks onto a shared low-
dimensional space for any number of datasets. CellChat
displays the results of comparative analysis of multiple
datasets in a variety of intuitive visualization methods,
such as scatter plots, heatmaps, bar plots, and bubble plots
(Figure 1A).
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FIGURE 1 | Overview of identifying intercellular signaling changes across conditions and inferring the multiscale signaling network from multiple scRNA-seq
datasets. (A) The generalized CellChat identifies intercellular signaling changes across conditions from multiple scRNA-seq datasets. CellChat requires the users to
provide multiple datasets with cell type labels as input, where the cell types of different data sets may not be exactly the same. CellChat identifies biologically significant
signaling pathways for each dataset separately and then performs comparative analysis across multiple datasets in a systematic and quantitative manner. CellChat
identifies signaling changes across multiple datasets in terms of cell types and signaling pathways or ligand receptor pairs. Different plots are provided to allow ready
comparison analysis. (B) Multiscale signaling network is inferred to link intercellular communication to intracellular signaling, which integrates the ligand–receptor
interactions, receptor-TFs interactions, and TFs-target gene interactions.
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FIGURE 2 | Comparison analysis predicts WNT signaling as a predominant signaling change during mouse embryonic skin development. (A) The comparison of
the total number of interactions among different cell populations between E14.5, E16.5, and E18.5. Edge width is proportional to the number of interactions, which
assess how many ligand–receptor pairs contributing to the communication between two interacting cell populations. (B) Heatmap showing the differential number of
interactions between E14.5, E16.5, and E18.5. In the color bar, red (or blue) represents increased (or decreased) signaling in the second dataset compared to the
first one. (C) Identifying the specific signaling changes of IFE-B.1 and IFE-B.2 from E14.5 to E18.5. (D) The inferredWNT signaling pathway network andWnt4 - (Fzd10 +
Lrp5) signaling network at E18.5. (E) Projection and classification of signaling networks from E14.5, E16.5, and E18.5 onto a two-dimensional space based on the
network similarity. Different shapes represent signaling networks from different developmental stages. (F)Computing the pathway distance of the signaling network from
E14.5, E16.5, and E18.5 based on their Euclidean distance in the shared two-dimensional space.
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We then build a multiscale signaling network by
integrating the cell–cell communication between
interacting cells (i.e., intercellular communication) with the
downstream signaling inside target cells (i.e., intracellular
signaling). The intercellular communication is given by
CellChat while the intracellular signaling is inferred by
constructing a gene–gene network linking receptors, TFs,
and target genes. Specifically, the construction of a
multiscale signaling network includes five steps. Step 1, the
intercellular communication mediated by ligand–receptor
interactions is obtained by CellChat. Step 2, the receptor-
TF subnetwork is collected from a comprehensive database
OmniPath (Türei, et al., 2016; Türei et al., 2021). Step 3, the
TF-target gene subnetwork is inferred by integrating the TF
activity data, the gene expression data, and the prior network
information from the OmniPath database via a network-
regularized regression model (MATERIALS AND
METHODS). The TF activity is estimated based on their
target gene expression in the scRNA-seq data using the
widely used method DoRothEA (Garcia-Alonso, et al.,
2019). Step 4, the multiscale signaling network is
constructed by integrating the intercellular communication
network, the receptor-TF network, and TF-target gene
network, which links intercellular communications with
intracellular signaling response. Step 5, the cell
type–specific multiscale signaling network is finally
constructed by only retaining the cell type–enriched TFs
and target genes based on differential expression analysis
(Figure 1B).

Together, our new approaches will advance our understanding
of signaling mechanisms by identifying signaling changes that
potentially drive phenotype transitions and by constructing
multiscale signaling networks that imply how intercellular
communications affect intracellular TFs to regulate target gene
expression.

Comparison Analysis Predicts WNT
Signaling as a Predominant Signaling
Change During Mouse Embryonic Skin
Development
To demonstrate the capability of our approaches in capturing
predominant signaling changes across multiple time points, we
first applied our generalized CellChat to our previously published
mouse skin scRNA-seq datasets, which described epidermal
development at three embryonic stages: E14.5, E16.5, and
E18.5 (newborn) (Lin, et al., 2020). Unsupervised clustering
identified five interfollicular epidermis (IFE) cell states: two
basal cell states (IFE-B.1 and IFE-B.2), two transition cell
states (IFE-T.1 and IFE-T.2), differentiated cells (IFE-D), and
terminally differentiated cells (IFE-TD) (Lin, et al., 2020)
(Supplementary Figure S1A).

To study how the cell–cell communication changes across
different stages during mouse embryonic development, we first
compared the number of inferred interactions among different
cell populations among E14.5, E16.5, and E18.5 (Figures
2A,B). We observed slightly decreased cell–cell

communication at E16.5 compared to E14.5, but
significantly dynamic changes at E18.5 compared to both
E14.5 and E16.5, suggesting dramatic signaling changes
from E16.5 to E18.5 at the later embryonic stages. In
particular, both outgoing and incoming signaling associated
with IFE-B.1 and IFE-B.2 was predominantly increased at
E18.5 compared to both E14.5 and E16.5. Surprisingly, our
results showed that IFE-T.2 does not have any communication
with any cell populations, which is likely due to the very few
number of cells in IFET.2 at E18.5 (Figure 2A and
Supplementary Figure S1A).

Moreover, to identify the signaling pathways contributing to
the dramatic signaling changes of IFE-B.1 and IFE-B.2, we
calculated the differential outgoing and incoming interaction
strength of each signaling pathway between E14.5 and E18.5.
For both IFE-B.1 and IFE-B.2, we observed WNT signaling as
the most predominantly increased signaling at E18.5 compared
to E14.5, as reflected by the largest differential outgoing and
incoming interaction strength compared to other signaling
pathways (Figure 2C), which was in agreement with the
previous finding. In addition to WNT signaling, we also
observed other increased signaling changes for both outgoing
and incoming signaling including BMP, MIF, GALECTIN, and
IL1, and decreased signaling including MK and PTN
(Figure 2C). Attractively, our previous study experimentally
showed that WNT-secreting stem cells play a central role in IFE
self-renewal during homeostasis, which can inhibit the
expansion of epidermal stem cells and the appearance of
abnormal stem cell states (Lin, et al., 2020), in particular
Wnt4 signaling. Indeed, we calculated the contribution of
each ligand–receptor pair to the WNT signaling pathway and
observed that Wnt4 - (Fzd10 + Lrp5) makes a relatively large
contribution (Supplementary Figure S1B). By examining the
gene expression levels of the ligandWnt4 and its receptor Fzd10
and coreceptor Lrp5, IFE-B.1 and IFE-B.2 exhibited relatively
high expression (Supplementary Figure S1C). Consistent with
these observations, the inferred cell–cell communication
networks of the WNT signaling pathway and the
ligand–receptor pair Wnt4 - (Fzd10 + Lrp5) showed that
IFE-B.1 and IFE-B.2 are the dominant signaling sources and
targets at E18.5. In addition, IFE-T.1 and IFE-TD emerge as the
signaling source and target, respectively, helping drive the
complexity of WNT signaling.

We next investigated how the cell–cell communication
architecture changes by projecting the inferred cell–cell
communication networks from the three development
stages onto a shared two-dimensional space based on
whether they have similar signaling sources and targets
(MATERIALS AND METHODS). This analysis classified
all significant signaling pathways into four groups.
Interestingly, the shared signaling pathways from two
development stages were classified into different groups,
such as WNT, BMP, and IGF (Figures 2E,F), suggesting
that these pathways changed their cell–cell communication
architecture during embryonic development.

Together, comparison analyses of the inferred cell–cell
communication networks across the three embryonic
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FIGURE 3 |Comparisonanalysis revealsmyeloid cell–mediatedsignalingmechanismsandpinpoints the key timepoint of signalingchanges in response tomousespinal cord injury. (A)
Comparison of the total number of interactions of the inferred cell–cell communication networks from uninjured, 1, 3, and 7dpi. (B)Heatmaps of the differential number of interactions between
uninjuredand1dpi aswell asuninjuredand7dpi, showing theoutgoingand incomingsignalingchangeof eachcell group in agreater detail (The topcoloredbarplot represents thesumofeach
column of values displayed in the heatmap (incoming signaling). The right colored bar plot represents the sumof each row of values (outgoing signaling). (C)Scatter plots comparing the
outgoing and incoming interaction strength in the 2Dspace amonguninjured, 1dpi, and7dpi. (D) Identifying signaling changes associatedwithmacrophagesby comparing uninjuredwith 1, 3,
and 7dpi, respectively. (E) Identification of dysfunctional signaling by comparing the communication probabilities mediated by ligand–receptor pairs from macrophages to astrocytes and
fibroblasts. (F) Circle plots displaying the inferred network of the OSM signaling pathway at uninjured, 1, 3, and 7dpi. Edge width is proportional to the inferred communication probabilities.
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development stages suggest the dramatic signaling changes at the
later stages and revealed WNT signaling as a predominant
signaling change during mouse embryonic skin development.

Comparison Analysis Reveals Myeloid
Cells-Mediated Signaling Mechanisms and
Pinpoints the Key Time Point of Signaling
Changes in Response toMouse Spinal Cord
Injury
Next, we demonstrate how our generalized CellChat can be
applied in studying temporal changes of intercellular
communications over four time points using a recently
published mouse spinal cord injury sc-RNAseq dataset
(Milich, et al., 2021). This dataset describes the wound healing
process that occurs after spinal cord injury over four time points,
including the uninjured and injured spinal cord at 1, 3, and 7 days
postinjury (dpi). 66,176 cells were classified into 15 distinct cell
groups: microglia, astrocytes, monocytes, macrophages,
neutrophils, div-myeloid cells, dendritic cells, lymphocytes,
oligodendrocytes (OLs), OPCs, neurons, fibroblasts, pericytes,
ependymal cells, and endothelial cells.

We first compared the total number of interactions (i.e., the
number of ligand–receptor pairs contributing to
communication between any two interacting cell groups)
that were inferred by CellChat over spinal cord injury. We
found that the number of cell–cell communication was
significantly increased at 1dpi after spinal cord injury, but
afterwards decreased to its basal level by 7dpi (Figure 3A),
suggesting that 1dpi was a critical time point where cell–cell
communication between different cell types was significantly
enhanced. To find out the interaction between which cell
groups was significantly changed, we computed the
differential number of interactions for both outgoing and
incoming signaling of pairwise cell groups between any
pair of two time points. We observed that the number of
interactions between cell groups at 1dpi was mostly increased
compared to the uninjured, while cell–cell communication at
3dpi and 7dpi exhibited a dynamic change with both increased
and decreased interactions (Figure 3B). Interestingly, both
outgoing signaling and incoming signaling of fibroblasts and
astrocytes were consistently enhanced at 1dpi, 3dpi, and 7dpi
compared to the uninjured, consistent with the known
important role of fibroblasts in tissue repair (Plikus, et al.,
2021) (Figure 3B and Supplementary Figure S2A).

In addition, we studied how the major signaling sources
and targets changed after injury. Compared to the uninjured
tissue, we found that both the outgoing and incoming
interaction strength of several myeloid cell populations,
including the macrophage, monocyte, neutrophil,
microglia, and dendritic cells, were significantly increased
at 1dpi, and the outgoing and incoming interaction
strength of fibroblasts was increased at 3dpi and then,
further enhanced at 7dpi (Figure 3C and Supplementary
Figure S2B). These results agreed well with the previous
findings: 1) At 1dpi, peripheral myeloid cells, mainly
neutrophils and monocytes, migrate to the injury site and

then enhance the innate immune response initiated by the
microglia (Milich, et al., 2019); 2) Fibrosis is initiated at 3dpi
and the number of fibroblasts reaches its peak at 7dpi (Zhu,
et al., 2015). These two findings suggest the potential role of
myeloid cells in initiating fibrosis after spinal cord injury.

To identify myeloid cell–mediated mechanisms of fibrosis,
we examined signaling changes associated with macrophages
by comparing its outgoing and incoming interaction strength
of each signaling pathway at 1, 3, and 7dpi with the uninjured
tissue. SPP1 signaling consistently exhibited the
predominantly increased outgoing and incoming
interaction strength at 1, 3, and 7dpi compared to the
uninjured (Figure 3D), suggesting the important role of
SPP1 signaling after spinal cord injury. This is consistent
with the known neuroprotective roles of SPP1 and the worse
histopathology and behavioral recovery in SPP1-knockout
mice after spinal cord injury (Milich, et al., 2021). In
addition, CCL signaling was also clearly increased at 1dpi
compared to the uninjured (Figure 3D), which agreed with
the innate immune response initiated by myeloid cells at 1dpi
(Milich, et al., 2019). Furthermore, comparing the
communication probabilities mediated by ligand–receptor
pairs from macrophages to fibroblasts and astrocytes, we
identified ligand-receptor pairs that were only enriched at
1, 3, and 7dpi, including SPP1 signaling such as Spp1 - (Itgav +
Itgb5) and Spp1 - (Itga5+Itgb1) and OSM signaling such as
Osm - (Osmr + Il6st) (Figure 3E and Supplementary Figure
S2C). Consistent with our prediction, the previous study
showed that OSM is a common mechanism by which
fibroblasts and astrocytes are preferentially activated by
monocyte/macrophage subtypes after spinal cord injury
(Milich, et al., 2021). By examining the inferred cell–cell
communication network at each time point, we found that
OSM signaling was strongly activated with more signaling
sources and a stronger interaction strength at 1dpi
(Figure 3F). Compared to the uninjured tissue, other
myeloid cells, including the monocyte, dendritic cells, and
dividing myeloid cells (div-myeloid), emerged as new
signaling sources, helping enhance the cell–cell
communication driven by the macrophage. Notably,
fibroblasts and astrocyte cells emerged as new signaling
targets after injury, suggesting the myeloid cell–mediated
signaling mechanisms of fibrosis. Taken together, our
systematical comparison analysis pinpoints 1dpi as the key
time point of signaling changes in response to spinal cord
injury and reveals myeloid cell–mediated signaling
mechanisms of fibrosis after mouse spinal cord injury.

Comparison Analysis Identifies Crucial
Signaling Changes Responsible for Disease
Severity Related to COVID-19
Due to the ongoing pandemic caused by the new coronavirus
(SARS-CoV-2), it is of great significance to investigate the
level of cell-to-cell communication in patients with different
severity of diseases related to COVID-19. We used scRNA-seq
data from 19 patients with COVID-19 and five SARS-CoV-2-
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FIGURE 4 | Comparison analysis of cell–cell communication identifies major signaling changes in patients with COVID-19 across control, moderate, and critical
cases. (A) Comparison of the number of interactions among different cell populations. (B) Differential number of interactions in the cell–cell communication network
between control, moderate, and critical in greater details. (C) Signaling changes of the major cell groups that send or receive signals. Positive values in the differential
outgoing (or incoming) interaction strength suggest the increased likelihood being sender (or receiver) in the second dataset compared to the first dataset. (D) The
comparison of the signaling pathway based on the relative information flow between pairwise datasets. (E) Identifying altered ligand–receptor pairs fromCTL to secretory
and ciliated cells by comparing their communication probabilities between control, moderate, and critical.
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negative donors with no signs of the disease. This dataset
includes five control cases, eight moderate cases, and eleven
critical cases. In the control, moderate, and critical samples,
each contains 2,982, 82,814, and 49,804 cells. We performed
downsampling of the moderate and critical samples by
randomly taking 20,000 cells from each sample without
losing any cell population. This dataset comprises 20 cell
populations, including ciliated-diff cells (differentiating
ciliated), secretory-diff cells (differentiating secretory),
ciliated cells, FOXN4+ cells, squamous cells, secretory cells,
cytotoxic T lymphocytes (CTL), natural killer T cells (NKT), B
lymphocytes (BC), plasmacytoid dendritic cells (pDC),
monocyte-derived macrophages (moMa), basal cells,
proliferating NKT cells (NKT-p), IFNG-responsive cells
(IFNRep), regulatory T cell (Treg), neutrophils (Neu),
monocyte-derived dendritic cells (moDC), nonresident
macrophages (nrMa), resident macrophages (rMa), and
ionocytes.

After applying our generalized CellChat to the control,
moderate, and critical samples separately, we calculated the
total numbers of inferred interactions and observed an
increased trend as the severity of the disease increases, with
the highest interaction number of interactions detected in
critical samples (Figure 4A). In more detail, we computed the
differential number of interactions for both outgoing and
incoming signaling of pairwise cell groups between
different severities. Overall, the number of interactions was
largely increased in moderate and critical samples compared
to control, but exhibited dynamic changes when comparing
moderate and critical (Figure 4B). Compared to control, the
number of outgoing and incoming interactions of FOXN4,
ciliated, and secretory cells in moderate and critical cases is
higher. Compared to moderate cases, the outgoing signaling
of FOXN4, ciliated, and some immune cells such as nrMa,
moMa, Neu, CTL, NKT, and NKT-P was predominantly
increased in critical cases (Figure 4B). Next, we examined
the major source and target changes in different stages of
COVID-19 by computing the differential outgoing and
incoming differential interaction strength associated with
each cell type (Figure 4C). Interestingly, compared to
control, all cell types exhibited increased signaling in either
outgoing or incoming signaling. In particular, FOXN4, CTL,
moMa, pDC, and Treg in moderate and critical
predominantly increased their outgoing and incoming
interaction strength. CTL-, nrMa-, moMa-, Neu-, and
NKT-associated signaling were further enhanced in critical
compared to moderate.

We further focused on the specific signaling changes of two
epithelial cell types: secretory and ciliated. Compared to
control, certain chemokine and cytokine signaling pathways
in moderate and critical were increased in their interaction
strength (Supplementary Figure S3A). For the secretory-
related signaling, CXCL, IFN-II, and IL1 increased either
outgoing or incoming signaling; for the ciliated-related
signaling, CCL, IFN-II, and IL2 increased either outgoing or
incoming signaling. In addition, we compared the information
flow (i.e., the sum of communication probabilities among all

pairs of cell populations in the inferred network) for each
signaling pathway between control, moderate, and critical
samples (Figure 4D). We found that, compared to control,
about half of the signaling pathways were highly enriched in
moderate and critical (green and blue colors in left and middle
panels in Figure 4D). These included many inflammatory
signaling pathways such as IFN- II, CCL, CXCL, IL1, and
IL2, suggesting that moderate and critical COVID-19
strongly trigger a series of inflammatory responses.
Interestingly, compared to moderate, certain inflammatory
response–related signaling were diminished in critical, such
as OSM, IL10, TWEAK, CXCL, and LIGHT, while other
inflammatory response–related signaling were enhanced in
critical, such as IL2, IL16, CCL, LIFR, and CD40, suggesting
that different inflammatory signaling likely play distinct roles
in moderate vs. critical COVID-19.

Given the predominant signaling change of the immune
cell CTL and epithelial cell secretory and ciliated, we
investigate important ligand–receptor pairs sending from
CTL cells to secretory and ciliated cells in moderate and
critical. Compared to control, we observed that IFNG-
(IFNGR1+IFNGR2) signaling was increased in both
moderate and critical and TGFb-related signaling such as
TGFB1-(ACVR1B + TGFBR2) was increased in critical
compared to moderate (Figure 4E), suggesting the
important role of IFN-II signaling in the interplay between
immune cells and epithelial cells. Taken together, our
comparison analysis revealed crucial signaling changes
related to immune and epithelial cells and highlighted the
ligand IFNG and its receptors IFNGR1 and IFNGR2 as critical
enhanced signaling from CTL to secretory and ciliated cells,
which might be responsible for disease severity related to
COVID-19.

Multiscale Signaling Network Elaborates
the Signaling Mechanisms of How SARS-
CoV-2 Receptor ACE2 is Activated in
Epithelial Lung Cells of Severe COVID-19
The binding of virus to the host receptor ACE2 greatly facilitates
the infection of the mucosa of the upper respiratory by SARS-
CoV-2. Therefore, the understanding of how ACE2 is activated in
epithelial lung cells in patients with COVID-19 is crucial for
therapeutic intervention of viral infection. To understand the role
of cell–cell communication in activating ACE2 expression in the
target cell, we constructed a multiscale signaling network by
integrating the intercellular communications with the
intracellular downstream signaling response (MATERIALS
AND METHODS).

Our comparison analysis of cell–cell communication
among control, moderate, and critical pinpoints the strong
activation of cell–cell communication from the immune CTL
cells to the epithelial secretory and ciliated cells mediated by
IFN-II signaling in the moderate and critical compared to
control (Figure 4E). By examining the inferred cell–cell
communication network of the IFN-II signaling pathway
(Figure 5A), we found that, compared to control, IFN-II
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signaling is strongly activated in moderate with a stronger
interaction strength and more signaling targets. CTL is the
dominant signaling source and FOXN4, ciliated, and ionocyte

cells emerge as new signaling targets in moderate and critical
(Figure 5A). Interestingly, the cell–cell communication
strength is slightly diminished in critical compared to

FIGURE 5 |Multiscale signaling network of CTL-to- secretory and CTL-to-ciliated reveals how intercellular communication activates the ACE2 expression via TFs in
COVID-19. (A) Circle plots depicting the inferred IFN-II cell–cell communication networks between different cell groups in control, moderate, and critical. (B) Expression
of IFN-II signaling–related genes such as IFNG, IFNGR1, and IFNGR2 in control, moderate, and critical COVID-19. (C) The inferred multiscale signaling network of CTL-
to- secretory in critical COVID-19. (D) The inferred multiscale signaling network of CTL-to- ciliated in critical COVID-19.
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moderate, possibly due to the relatively lower expression of the
IFNG’s receptors IFNGR1 and IFNGR2 in critical compared to
moderate (Figure 5B).

Furthermore, we applied our computational framework of
multiscale signaling network construction to study how CTL
activates the ACE2 expression in the secretory and ciliated
cells through the cell–cell communication. Therefore, we
integrated the cell–cell communication network of CTL-to-
secretory and CTL-to-ciliated with the downstream signaling
network in secretory and ciliated cells, respectively. The
downstream signaling network was constructed by
integrating the receptor-TFs and TFs-target gene
interactions (MATERIALS AND METHODS). Finally, we
constructed two multiscale signaling networks for CTL-to-
secretory and CTL-to-ciliated, respectively (Figures 5C,D).
For the inferred multiscale signaling network of CTL-to-
secretory, we observed many interferon, cytokines, and
growth factors–related upstream ligands, such as IFNG,
IFNB1, IFNE, IL6, IL10, IL2, IL17, OSM, IL4, IL7, VEGFA,
EREG, TGFA, and EGF, as well as their corresponding
receptors activated in secretory cells, such as IFNGR1,
IFNGR2, IL6ST, IL2RG, KDR, and EGFR. Interestingly, our
results showed that these ligand–receptor pairs activated three
TFs, including STAT1 as the major activator and E2F1 and
TP53 as the minor activators, and ACE2 can be activated by
these three TFs. These results suggested that STAT1 was the
major regulator to activate ACE2 in secretory cells, which is
consistent with the previous finding (Chua, et al., 2020) and
the known important role of the JAK-STAT signaling pathway
during viral infection. Surprisingly, the inferred multiscale
signaling network of CTL-to-ciliated showed that WNT
signaling was highly activated in ciliated cells, which
triggers the activation of three TFs including NFATC2,
HNF1A, and NANOG and further activates the
downstream target gene ACE2 expression (Figure 5D).
Interestingly, previous studies showed that HNF1A is a
master regulator of ACE2, and overexpression of HNF1A
and ACE2 indicates greater risk of death or cardiovascular
disease events (Narula, et al., 2020). In addition, NFATC2 is
the predominant NFAT family members in the peripheral
immune system and may be as a potential marker related to
lung damage (Maremanda, et al., 2020). These results suggest
the potential role of these TFs in regulating ACE2 expression
in ciliated cells and might be considered as new therapeutic
targets. Taken together, our multiscale signaling framework
helps to elaborate the signaling mechanisms of how the SARS-
CoV-2 receptor ACE2 is activated by TFs in epithelial lung
cells of severe COVID-19.

Comparison CellChat With Other Cell-Cell
Communication Tools
The characteristics of CellChat and its comparison with
other tools, including iTalk, Connecctome, and NicheNet,
are summarized in Supplementary Figure S4A. Briefly,

compared to these three tools, the updated CellChat is
the only easy-to-use tool that can seamlessly identify
signaling changes across any number of scRNA-seq
datasets. NicheNet does not perform comparison analysis
across distinct datasets. These three tools do not consider
the multisubunit structure of ligand–receptor complexes and
membrane-bound stimulatory and inhibitory cofactors,
which are necessary for certain ligand–receptor binding.
Moreover, iTalk and Connectome do not infer the
intracellular signaling network.

Since our previous study has already performed
comparison analysis with iTalk (Jin et al., 2021) and
NicheNet does not explicitly infer the cell–cell
communication network, here we only compare CellChat
with Connectome in their ability of identifying signaling
changes across conditions. We aimed to identify signaling
changes responsible for disease severity related to COVID-19.
We found that CellChat produced upregulated and
downregulated signaling genes that were more differentially
expressed compared to Connectome, as reflected by a higher
avg [log2(FC)] and −log10 (p_val_adj) of genes in the
predicted ligand-receptor pairs (Supplementary Figure
S4B). This result suggests that CellChat inferred more
significant ligand–receptor interactions that were changed
across conditions. By examining the list of inferred
signaling pathways, interestingly, Connectome did not
produce the IFN-II signaling while CellChat did. This
signaling pathway has been shown to be strongly activated
in moderate and critical compared to control during COVID
infection (Chua et al. 2020). This result indicates CellChat’s
ability in predicting dysfunctional signaling pathways across
conditions.

MATERIALS AND METHODS

CellChat requires gene expression data of cells as the user inputs
and models the probability of cell–cell communication by
integrating gene expression with prior knowledge of the
interactions between signaling ligands, receptors, and their
cofactors. Upon inferring the intercellular communication
network, CellChat provides functionality for further data
exploration, analysis, and visualization (Jin, et al., 2021).
Compared to the original CellChat, here we made two
important additions. First, the updated CellChat enables
systematical comparison analysis of intercellular communication
between interacting cells across any number of scRNA-seq datasets
rather than limiting to two datasets. In this way, significant
signaling changes across multiple conditions or time points can
be presented in an intuitive way. Second, the updated CellChat is
able to infer the multiscale signaling network linking intercellular
communication with intracellular downstream signaling, which
helps to better understand how the upstream of the signaling
pathway in intercellular communication affects intracellular TFs to
regulate the target gene expression.
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Comparison Analysis of Intercellular
Communication Between Interacting Cells
Across Multiple Datasets
We generalized some functions and analysis in our previously
developed R package CellChat, which can then be used for
comparative analysis across multiple datasets. Here, we briefly
described several key functionalities in the updated CellChat R
package.

Identification of Important Signaling Sources and
Targets in the Intercellular Communication Networks
We identified the dominant signaling sources and targets by
defining the outgoing and incoming interaction strength as the
out-degree and in-degree centrality metrics in the weighted
cellular communication network, where the edge weights are
assigned by the communication probabilities computed from
CellChat (Jin, et al., 2021). The in-degree refers to the sum of
the communication probabilities of incoming signaling to a cell
group, while the out-degree is computed as the sum of
communication probabilities of the outgoing signaling from a
cell group. In this way, we can study the detailed changes in the
outgoing and incoming signaling across all significant pathways.

Identification of Altered Signaling Pathways by
Comparing the Information Flow of Each Signaling
Pathway
The information flow for each signaling pathway is defined by the
sum of communication probabilities among all pairs of cell
groups in the inferred network (that is, the total weights in
the network). We can compare the total information flow in
the cell–cell communication network of each signaling pathway
across different datasets under different conditions, leading to the
identification of changes in important signaling pathways.

Identification of Signaling Networks With Architecture
Difference Across Multiple Datasets Based on Their
Network Similarity
CellChat quantifies the similarity of multiple cellular
communication networks using structural similarity and
functional similarity and performs joint manifold learning and
classification of the inferred communication networks based on
the computed similarity to identify signaling networks with a
certain difference. Here, we focus on the functional similarity,
which is calculated by using Jaccard similarity on the basis of the
overlap of the major targets and sources in communications
defined by:

S � E(G) ∩ E(G′)
E(G) ∪ E(G′) − E(G) ∩ E(G∧′), (1)

where G and G′ are two signaling networks, and E(G) is the set
of communications in signaling network G. The higher the
functional similarity, the more similar the major senders and
receivers are, which means that the two signaling pathways or two
ligand–receptor pairs exhibit more similarity. Therefore, two cell-
cell communication networks showing less functional similarity

suggest that they change their signaling sources and targets across
different datasets, implying the difference in network
architecture.

Inference of Multiscale Signaling Network
by Integrating Intercellular Communication
with Intracellular Signaling Network
The construction of a multiscale signaling network includes the
following five steps.

Step 1: Construction of the ligand–receptor subnetwork.
A very important way of information transmission between

cells is the interaction between ligands and receptors on the cell
surface. The ligand–receptor subnetwork is obtained by applying
CellChat to the scRNA-seq data, which infers the biologically
significant cell–cell communication network mediated by
ligand–receptor interactions based on the database CellChatDB
of ligand-receptor pairs in human and mice (Jin, et al., 2021).

Step 2: Construction of the receptor-TF subnetwork.
From the public databases, we get the receptor-TF prior

network from the OmniPath database (Türei, et al., 2016;
Türei et al., 2021), “kinaseextra” and “pathwayextra” using
OmnipathR package (https://github.com/saezlab/OmnipathR).

Step 3: Construction of the TF-target gene subnetwork.
We focused on the cell type–specific signaling network and

thus first identified enriched genes and TFs in each cell group.
The nonparametric Wilcoxon rank sum test in Seurat v.3
(FindAllMarkers function) was used to perform differential
gene expression analysis (min.pct � 0.25, logfc. threshold �
0.25). Genes were considered as enriched genes with an
adjusted p-value < 0.05. To better model the relationship
between TFs and their target genes, we estimated TF activity
based on the target’s mRNA expression level from scRNA-seq
data using DoRothEA (Garcia-Alonso, et al., 2019) since TF
activity is difficult to measure directly and it may be possible
to infer changes in the TF activity level from changes in the
expression levels of the TF’s target genes. We then identified the
enriched TFs in certain cell groups using the differential
expression analysis based on the computed TF activity data.

To better infer the TF-target gene regulatory network, we
integrated TF-target gene interactions from public databases with
scRNA-seq data. We selected TF-target gene interactions with
high confidence levels A, B, and C from the OmniPath database.
Then, the inference of the TF-target gene regulatory network can
be formulated as the following mathematical optimization
problem

min
X

1
2
‖A −XB‖2F +

1
2
λ1 ‖X+N‖2F + λ2 ∑

m

i�1
‖Xi,:‖1, (2)

where X is the TF-target regulatory network we need to infer.
A is the target gene expression matrix (rows are target genes
and columns are cells. B is the TF activity matrix (rows are TFs
and columns are cells). N is the prior TF-target network from
the public database (rows are target genes and columns are
TFs). The value of each element Nij is 0 or 1, where 0 means
that there is no priori connecting edge between TFj and
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Target genei, and 1 indicates that there is a prior connecting
edge. + represents dot product. The last term constrains the
sum of the absolute value of all link’s weight coefficients,
which can reduce the complexity of the model and make the
network sparse, leading to more biologically explanatory
results. Here, we choose the two regularization parameters
λ1 and λ2 as 50 and 10, respectively.

We used the ADMM algorithm to efficiently solve this
optimization problem. We rewrite the optimization problem as:

min
X,Z

1
2
‖A −XB‖2F +

1
2
λ1 ‖Z+N‖2F + λ2 ∑ ‖

m

i�1
Zi,.‖1. (3)

Subject to X − Z � 0
The augmented Lagrangian with penalty parameter t > 0 is:

Lt(X,Z,Y) � 1
2
‖A −XB‖2F +

1
2
λ1 ‖Z+N‖2F + λ2 ∑

m

i�1

‖Zi,.‖1 + tYT(X − Z) + t

2
. (4)

We then solved this optimization problem by following the
update rules and stop criterion.

Update rules:
1) Update X:

Xk � argmin
X

Lt(X, Zk−1,Yk−1) (5)

2) Update Z:

Zk � argmin
Z

Lt(Xk, Z,Yk−1) (6)

3) Update Y:

Yk � Yk−1 + t(Xk − Zk ) (7)

Stop criterion:
dual residual: Sk � −t(Zk − Zk−1)
primal residual: Rk � Xk − Zk

iteration stops when both ||Rk||F and ||Sk||F values become
smaller than ϵpri and ϵdual, respectively,

||Rk||F< ϵpri,
||Sk||F< ϵdual,

where

ϵpri � �
n

√
ϵabs + ϵrel max{||Xk||F, ||−Zk||F},

ϵdual � ��
m

√
ϵabs + ϵrel||Yk||F.

After obtaining the solution X, we determined the weight of the
network by considering another proportionality-based association
measure “propr” (Quinn, et al., 2017), which was shown to perform
very well in inferring gene networks across multiple scRNA-seq
datasets and technologies (Skinnider, et al., 2019). We then defined
the weights in the TF-target gene network as

Xnew � ω ·Xmodel + (1 − ω) ·Xpropr. (8)

Here, we took the value of ω as 0.7. The weighted average is an
ensemble strategy that has been widely used in many other

studies. We also performed comparison analysis of networks
inferred using weighted averageXnew and usingXmodel. By using a
prior network from public databases as a reference, we computed
true positive rate (TPR), false positive rate (FPR), and the area
under the ROC curve (AUC) and showed that the network
inferred with the weighted average produces better results than
Xmodel (Supplementary Figure S5B).

Step 4: Integration of intercellular communication network
with intracellular signaling network.

We subset the receptor-TF network by only retaining
receptors in the intercellular communication network and TFs
in the TF-target gene network. Once we constructed the
intercellular communication network mediated by
ligand–receptor interactions, the receptor-TF network, and TF-
target gene network, we integrated them together to obtain a
multiscale signaling network, linking the intercellular
communication network with intracellular signaling network.

Step 5: Inference of cell type–specific multiscale signaling
network.

Finally, we build the cell type–specific multiscale signaling
network based on whether the TFs and target genes were enriched
in certain cell types based on the differential expression analysis.
Of note, we construct the downstream intracellular signaling
network for each dataset separately. To visualize the inferred
network, we only retained the top 25 edges based on the inferred
edge weights.

Robustness Analysis of Regularization
Parameters
Ourmodel is not sensitive to the regularization parameters within
certain ranges. To demonstrate this point, we conducted
robustness analysis and varied the regularization parameter
values within a certain range to explore the robustness of our
model. Specifically, we varied the regularization parameters λ1
from 30 to 70 with an increment of 10 and λ2 from 5 to 15 with an
increment of 5, respectively. We then computed the residual
value of the model using five-fold cross-validation under each
parameter combination. We observed that the residual value
exhibited a slight fluctuation (Supplementary Figure S5A),
suggesting that our inference is relatively robust.

Single-Cell RNA-Seq Datasets, Data
Preprocessing, and Analysis
Mouse Embryonic Skin scRNA-Seq Datasets
Interfollicular epidermis (IFE) covers the surface of the animal
body and is a keratinized stratified squamous epithelium. The
datasets (GEO accession codes: GSE154579) we used were
published from our previous study (Lin, et al., 2020),
containing three developmental stages: E14.5, E16.5, and
E18.5 (newborn). The IFE cells were classified into six cell
states: basal cells (IFE-B.1 and IFE-B.2), transition cells (IFE-
T.1 and IFE-T.2), differentiated cells (IFE-D), and terminally
differentiated cells (IFE-TD). Normalized data were used for
all the analyses.
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Mouse Spinal Cord Injury Datasets
Spinal cord injury is the most serious complication of spinal cord
injury, often leading to severe dysfunction of the limbs below the
injured segment and triggers multiple processes. The published
spinal cord injury mouse datasets were downloaded from GEO
(accession codes: GSE162610) and included a total of 66,176 cells
from the uninjured and 1, 3, and 7dpi tissue (Zhu, et al., 2015).
The original study classified these cells into 15 distinct cell groups:
microglia, astrocytes, monocytes, macrophages, neutrophils,
div−myeloid cells, dendritic cells, lymphocytes,
oligodendrocytes, OPCs, neurons, fibroblasts, pericytes,
ependymal cells, and endothelial cells. Normalized data were
used for all the analyses.

COVID-19 Datasets
The processed transcriptomic data of 135,600 cells from patients
and control patients with no signs of disease with COVID-19
were downloaded from FigShare: https://doi.org/10.6084/m9.
figshare.12436517. This dataset includes eight moderate cases,
eleven critical cases, and five control cases (According to the
World Health Organization (WHO) guidelines, the severity of the
disease is classified) (Chua, et al., 2020). In the control, moderate,
and critical samples, each contains 2,982, 82,814, and 49,804 cells.
We performed downsampling analysis on the moderate and
critical cases with a maximum of 20,000 cells to reduce
computational cost. This dataset contains 20 cell types,
including ciliated-diff cells (differentiating ciliated), secretory-
diff cells (differentiating secretory), ciliated cells, FOXN4+ cells,
squamous cells, secretory cells, cytotoxic T lymphocytes (CTL),
natural killer T cells (NKT), B lymphocytes (BC), plasmacytoid
dendritic cells (pDC), monocyte-derived macrophages (moMa),
basal cells, proliferating NKT cells (NKT-p), IFNG-responsive
cells (IFNRep), regulatory T cell (Treg), neutrophils (Neu),
monocyte-derived dendritic cells (moDC), nonresident
macrophages (nrMa), resident macrophages (rMa), and
ionocytes. To infer the intracellular signaling network in
secretory cells, ciliated cells, and CTL, we only used the top 20
marker genes and the top 50 TFs associated with each cell
population based on the differential expression analysis.
Normalized data were used for all the analyses.

DISCUSSION

In this study, we generalized our previously developed tool
CellChat to perform comparison analysis of cell–cell
communication across multiple conditions or time points and
established an optimization-based framework to construct a
multiscale signaling network linking intercellular
communication with intracellular downstream signaling
response. This comparative analysis of the interactions
between cell types across different biological conditions is
essential for a biologically meaningful understanding of the
role of cell–cell communication from scRNA-seq data. We
demonstrated the effectiveness of our proposed approaches by
studying the signaling changes across three mouse embryonic
developmental stages, four time points after mouse spinal cord

injury, and patients with different COVID-19 severities
(i.e., control, moderate, and critical cases).

We found that our predictions can recapitulate known biology
to a substantial degree. For example, the prediction of the WNT
signaling pathway as the predominant signaling change during
mouse embryonic development is in agreement with our previous
finding that WNT signaling can inhibit the expansion of
epidermal stem cells and the appearance of abnormal stem cell
states during epidermal differentiation (Lin, et al., 2020). Our
predictions also reveal many signaling changes that recapitulate
previous findings or known biology during mouse spinal cord
injury, such as the increased myeloid cell–associated interactions
at 1dpi and enhanced OSM and SPP1 signaling, suggesting the
important signaling mechanisms of fibrosis mediated by myeloid
cells during wound healing after spinal cord injury. We found
that the IFN-II signaling pathway has changed significantly in the
patients of COVID-19 and can activate the master regulator
STAT1 to regulate the downstream ACE2 expression in the
secretory cells.

Although recent studies have developed different
computational methods to investigate cell–cell communication,
our study adds important understanding of the cell–cell
communication in several aspects. On the one hand, we
provide generalized functions in the CellChat R package for
comparative analysis of any number of datasets and even for
datasets with not exactly the same cell type compositions under
different conditions. It compares the number of interactions; it
also identifies changes of major sources and targets in cell groups
and changes in signaling pathways and ligand–receptor pairs. The
advantage is that the single-cell datasets used for comparative
analysis can be any number, not just limited to the comparison
between two datasets. Furthermore, we defined signaling
similarity by computing the Jaccard similarity between the
inferred cell–cell communication networks across different
datasets. Our current strategy that combines clustering analysis
can help to identify signaling networks that show a relatively large
difference in network architecture if they are located in different
clusters and far away from each other in the low-dimensional
space. However, considering more advanced methods such as
statistical tests could likely improve such analysis. We also
identified significant changes in senders and receivers of each
signaling pathway using network centrality measures such as out-
degree and in-degree to characterize the outgoing and incoming
interaction strength. Finally, we can use various forms of graphics
as output to visualize our results, making the results more
intuitive.

On the other hand, we proposed a mathematical
optimization model that can infer the TF-target gene
network by adding priori network information as a penalty
term. Previous studies have also focused on the downstream
signaling transduction of cell communication, but these
methods like NicheNet and scMLnet primarily use prior
network information from public databases, lacking the
integration of single cell data in a coherent way. In contrary,
our work lies in the integration of mathematical optimization
models and prior network information based on a data-driven
approach. Although previous studies showed that incorporating
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such prior information as a network constraint can improve the
model performance (e.g., Zhang and Zhang, 2020),
reconstruction of the TF-target network directly from single-
cell data using a more advanced method such as scLink (Li and
Li, 2021) will be likely helpful to build a better multiscale
signaling network. Furthermore, we extracted the cell
type–specific network based on differential expression
analysis and integrated with the upstream intercellular
communication network to form a multiscale cellular
communication network. In this way, the network we build
will likely be more precise and more biologically explanatory.

As single-cell multi-omics data is becoming more common
(Argelaguet, et al., 2021; Jin, et al., 2020; Zhang and Nie, 2021),
the emergence of these data is a challenging opportunity to build a
more systematic cellular communication network. In addition,
spatial transcriptomics provide additional information on the cell
location (Longo, et al., 2021). Integrating spatial location with
scRNA-seq data will likely reduce the false positive inference of
cell–cell communication.
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