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Alzheimer’s Disease (AD) is a progressive neurologic disease and the most common
form of dementia. While the causes of AD are not completely understood, genetics
plays a key role in the etiology of AD, and thus finding genetic factors holds the
potential to uncover novel AD mechanisms. For this study, we focus on copy number
variation (CNV) detection and burden analysis. Leveraging whole-genome sequence
(WGS) data released by Alzheimer’s Disease Sequencing Project (ADSP), we
developed a scalable bioinformatics pipeline to identify CNVs. This pipeline was
applied to 1,737 AD cases and 2,063 cognitively normal controls. As a result, we
observed 237,306 and 42,767 deletions and duplications, respectively, with an
average of 2,255 deletions and 1,820 duplications per subject. The burden tests
show that Non-Hispanic-White cases on average have 16 more duplications than
controls do (p-value 2e-6), and Hispanic cases have larger deletions than controls do
(p-value 6.8e-5).

Keywords: copy number variation—CNV, Alzheiemer’s disease, whole-genome sequence (WGS), CNV association
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INTRODUCTION

Alzheimer’s disorder (AD) is a devastating neurodegenerative disease and is the most common cause
of dementia. Approximately 6.2 million Americans are living with AD in 2021, and it is projected to
reach 12.7 million in 2050, which makes AD one of the most pressing public health issues
(Alzheimer’s Association, 2020). Presently, there is no known effective prevention or disease
modifying therapies, and the landscape of AD drug trials is gloomy. One possible reason is that
AD is a heterogeneous disorder, but trials are designed treating it as a monolithic disease. Although
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lifestyle and environmental risk factors clearly affect AD, the
primacy of genetic influences suggests that categorization by
genetic basis should be prioritized in developing effective
interventions.

AD heritability estimates range from 49–79%; however, <50%
of this heritability can be explained by genome-wide association
studies (GWAS) on single nucleotide variants (SNVs) (Ridge
et al., 2013; Sims et al., 20202020). Taking copy number variation
(CNV) into consideration may partially mitigate the problem of
missing heritability and play an important role in human disease
susceptibility (Cooper et al., 2011; Chung et al., 2014; McCarroll
and Altshuler, 2007; Kakinuma and Sato, 2008; Cooper et al.,
2011; Chung et al., 2014; McCarroll and Altshuler, 2007;
Kakinuma and Sato, 2008). For neuropsychiatric disorders,
such as intellectual ability, Autism Spectrum disorders,
Schizophrenia, and Bipolar disorder, CNVs have given rise to
a new understanding of disease etiology (Kakinuma and Sato,
2008; Malhotra and Sebat, 2012; Sullivan et al., 2012). Recently,
multiple studies have highlighted the roles of CNVs in AD as well
(Szigeti et al., 2013; Szigeti et al., 2014; Saykin et al., 2011; Heinzen
et al., 2010; Lew et al., 2018; Zheng et al., 2015; Zhang, 2020;
Heinzen et al., 2010; Saykin et al., 2011; Szigeti et al., 2013; Szigeti
et al., 2014; Zheng et al., 2015; Lew et al., 2018; Zhang, 2020). For
example, an intragenic CNV is found in the CR1 gene (Brouwers
et al., 2012), and people with Down syndrome have a higher
chance to develop neuropathology, consistent with the
observation that AD may be caused by duplications in the
APP gene in chromosome 21 (Goate, 2006; Lanoiselée et al.,
2017). However, there is no comprehensive genome-wide CNV
study using whole-genome sequence (WGS) to enhance the
knowledge of AD etiology and risk.

Most of the previous CNV GWAS of AD were performed
using genotyping array data. Although these arrays can quickly
and cost efficiently genotype large numbers of samples, there are
serious technological limitations in that only large CNVs
spanning multiple pre-determined probes can be reliably
detected. However, WGS data allows an unbiased investigation
of CNVs of all types (i.e., small and large; common and rare;
within coding and non-coding regions) and provides a unique
opportunity to comprehensively study CNVs in diseases. To
accelerate AD genetic discovery, the Alzheimer’s Disease
Sequencing Project (ADSP) (Beecham et al., 2017), a strategic
program funded by the National Institute on Aging (NIA), is
committed to sequence AD cases, and cognitively normal elder
controls from multi-ethnic populations, providing a valuable
resource for genome-wide identification of CNVs.

This study utilizes the ADSP Umbrella R1 dataset (ng00067)
released through the National Institute on Aging Genetics of
Alzheimer’s Disease Data Storage Site (NIAGADS) Data Sharing
Service (Kuzma et al., 2016). After quality and relatedness checks,
we had 1,737 AD cases and 2,063 cognitively normal elder
controls for this study. We employed three CNV calling
algorithms, CNVnator (Abyzov et al., 2011), JAX-CNV (Lee
et al., 2021), and Smoove (GitHub—brentp/smoove, 2021;
Layer et al., 2014) that on average detected 2,378, 25, and
4,584 CNVs, respectively, for each sample. GraphTyper2
(Eggertsson et al., 2019) was then applied for joint genotyping

to generate a single VCF for all 3,800 samples in the study, which
increased the number of CNVs to 280,073 average/sample;
however, most of those CNVs either overlap or are adjacent to
each other. After merging CNVs of the same type (deletions or
duplications) and removing conflict regions with different types
of CNVs, there are on average 4,075 CNVs per sample. The CNVs
we identified tended to be more abundant and longer in AD cases
compared to cognitively normal, elder controls, though in most
cases this trend was not statistically significant.

MATERIALS AND METHODS

The analysis flow consists of two major steps; identification of
CNVs from WGS from 3,800 subjects (CNV Identification on
WGS Data), and CNV burden analysis (CNV Burden Analysis
Using PLINK).

Figure 1 shows an overview of the flow of CNV
identification on WGS data. The flow starts with alignment
CRAM files and ends at the single-sample CNV list generation.
The process began with a quality check (WGS Across-
Chromosome Coverage Check) followed by sample-level
CNV calling and project-level CNV joint genotyping
(Sample-Level CNV Calling and Project-Level CNV Joint
Genotyping). Finally, to meet the data format requirements
of CNV burden analysis, the genotyped VCF was further split
as a list in BED format per sample for region consolidation (for
same-type CNVs overlapping) and removal (for different-type
CNVs overlapping). Then, all BED files were merged and
converted in PLINK format as the input of burden analysis
(CNV List Assembling for PLINK Burden Analysis). The
detailed scripts are given in supplementary material.

CNV Identification on WGS Data
WGS Across-Chromosome Coverage Check
The quality of CNV calling onWGS data is sensitive to alignment
coverages across all chromosomes of a sample. Uneven coverages
of chromosomes may cause false positive CNVs. Thus, before
calling CNVs, it is necessary to perform a quality check of
alignment coverages. Samples with uneven coverage were
removed from analysis.

We developed a method (implemented as part of JAX-CNV)
to first estimate the coverage of each chromosome of a sample.
The method seeks 20 repetitive-free regions in each chromosome,
and then calculates an average coverage of these regions to
present the coverage of the chromosome. A repetitive-free
region is defined as a 20k bp long region with each 25-mer
(k-mer) inside the region having a unique position in the entire
reference genome.

Once coverage of each chromosome was obtained, we were
able to identify outlier chromosomes with unexpected high or low
coverages. For example, outliers could indicate trisomy,
monosomy, and other gross chromosome number anomalies.
An overall average coverage of a sample was then computed by
using the coverages of all chromosomes excluding outliers. A
standard deviation of chromosomes coverages was employed as
the metric to identify problematic samples that were removed

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7523902

Lee et al. CNV Detection in Alzheimer’s Disease

https://www.sciencedirect.com/topics/neuroscience/pervasive-developmental-disorders
https://www.sciencedirect.com/topics/neuroscience/dementia-praecox
https://www.sciencedirect.com/topics/neuroscience/bipolar-disorder
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


from downstream analyses. This method is fast and takes
approximately 5 minutes for a 30X sequence sample.

Sample-Level CNV Calling
We employed CNVnator, JAX-CNV, and Smoove for CNV
detection. CNVnator and JAX-CNV are Read-Depth-based
(RD-based) algorithms while Smoove utilizes multiple signals
of RD, Paired-End (PE), and Split-Read (SR). CNVnator is
sensitive for CNVs sizes ranging from 1 to 50 kb; however, it
may break larger CNVs into smaller pieces that introduce
difficulties for downstream analyses. We included JAX-CNV
in the analysis flow because it was developed to detect large
(>50 kb) CNVs and resolves the issue of fine pieces from
CNVnator. Smoove was recruited to strengthen small CNV
(<1 kbp) identification. These three CNV calling algorithms
are not only fast but also generating high-quality CNVs.
Moreover, the combination of them allows us to cover the
complete size spectrum of CNVs.

For each sample, we applied these three algorithms separately.
Each algorithm could generate a BED (JAX-CNV) or VCF
(CNVnator and Smoove) file to store a set of deletions/
duplications with genomics coordinates and genotypes
(homozygous or heterozygous, and copy numbers) of a
sample. If a BED file was generated, we converted it to VCF
format to facilitate the step of utilizing svimmer
(GitHub—DecodeGenetics/svimmer, 2021) for callset merging.
For variant types (deletions, duplications, inversions, and
breakends) detected by Smoove, we only kept deletions and
duplications. For each sample, we then applied svimmer to
merge the three VCFs obtained from the three algorithms.

Project-Level CNV Joint Genotyping
Joint analysis is recommended for a dataset with multiple
samples. Once variants of a sample were detected, a joint
analysis step provides the ability to leverage population-wide
information from multiple samples that allows us to refine low-
quality genotypes and detect additional variants of a sample. For
example, a joint genotyping step is suggested in the GATK best
practice for SNV and INDEL detection.

Compared to SNV/INDEL joint genotyping, CNV joint
genotyping is challenging since breakpoints of CNVs from
short-read sequence data may be imprecise. By incorporating
detected variants within the linear reference genome, the
emerging methodology, Graph Genome, provides a good
model for joint genotyping CNVs across multiple samples in a
single step. We evaluated GraphTyper2 (Eggertsson et al., 2019),
Paragraph (Chen et al., 2019), and VG (Hickey et al., 2020), and
selected GraphTyper2 in the analysis flow due to its balance of
required computational resource and quality of results.

As GraphTyper2 recommended, we employed svimmer
(GitHub—DecodeGenetics/svimmer, 2021) to merge all
sample-level VCFs and generate a single VCF that does not
contain genotypes. GraphTyper2 was then applied on this
merged VCF with all CRAM files for each 500kb region
excluding the centromeres. GraphTyper2 generated a VCF of
CNVs with genotypes of all samples. There are three models used
for joint genotyping in GraphTyper2, Aggregated, Coverage, and
Breakpoint, and we kept results from Aggregated model as
GraphTyper2 suggests. We also applied PASS flag filter in the
GraphTyper2 VCFs. Each 500kb chunk VCFs were consented
using BCFtools (Danecek et al., 2021).

FIGURE 1 | Overview of the CNV identification workflow from WGS data consisting of the four steps. 1) Alignment coverage check. 2) Sample-level CNV calling
including calling by CNVnator, JAX-CNV and Smoove, and merging the three callsets by Svimmer. Since Svimmer takes the VCF format as input, results of JAX-CNV in
the BED format were converted to the VCF format. 3) Project-level CNV re-genotyping. 4)CNV list assembling for PLINK burden analysis. The illustrated three samples in
the figure are notated by S1, S2 and S3 while 3,800 samples were processed in the study.
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CNV Burden Analysis Using PLINK
CNV List Assembling for PLINK Burden Analysis
There remains a challenge in using GraphTyper2 VCF files for
downstream burden analysis. Since multiple calling algorithms
were applied for CNV identification, CNV lengths and
breakpoints may vary. Although GraphTyper2 was applied to
mitigate this situation, we still can find CNV segments
overlapping each other that is not acceptable by downstream
association analysis tools such as PLINK (Chang et al., 2015). To
resolve overlapping segments, we first split CNVs (with PASS
genotype tags) of a sample in BED format for each sample. The
BED is in the format of chromosome, begin position, end
position, and copy number status for each CNV. The copy
number status recorded as 0, 1, 3 or 4 copies. Of note, the
copy status 4 includes copy numbers equal or larger than 4.
Then, we used BEDTools (Quinlan and Hall, 2010) to merge
overlapping or adjacent segments. Segments were merged only if
they are the same CNV type, deletions or duplications. For those
regions having different CNV types, we filtered them out since the
downstream association analysis would not take those regions
into consideration. Once the CNV consolidation and removal
were done for all samples, we then concatenated all BED files and
sorted the merged BED file by CNV positions.

PLINK format, that is commonly accepted by other
downstream association tools, is a tabular file format with
CNV coordinates, family IDs, and sample IDs. Since there are
no related samples in the dataset, we replicated sample IDs as
family IDs. We then converted the BED file into a six-column
with family ID, sample ID, chromosome, start position, end
position, and copy number status, e.g. 0, 1, 3, or 4 copies.

Rare CNV Identification
Rare CNVs were obtained using PLINK to impose a 0.01
frequency threshold (i.e., --cnv-freq-exclude-above 38 and--
cnv-overlap 0.5), which removed CNVs with >50% of its
length spanning a region with >1% × 3,800 CNVs in the
dataset. The same approach was applied on African American
(AA) (--cnv-freq-exclude-above 9), Hispanic (--cnv-freq-
exclude-above 12), and Non-Hispanic White (NHW) (--cnv-
freq-exclude-above 15) samples. Then, we applied the pilot
mask released by the 1,000 Genomes Project (The 1000
Genomes Project, 2010) on rare CNV lists. The pilot mask
was done by looking at the amount of sequence data that
aligned to any given location in the reference genome. Regions
are defined inaccessible if their depth of coverages (summed
across all samples in the 1,000 Genomes Project) were higher or
lower than the average depth. The mask results in 5.3% of bases
marked “N” (the base is an “N”), 1.4% marked “L” (coverage is
low), 0.6% marked “H” (coverage is high) and 3.7% marked “Z”
(many reads mapped here have zero quality). The remaining
89.0% of are marked “P” (regions are good and passed). All rare
CNVs need to reside in “P” regions.

CNV Burden Analysis
We examined the burdens of all and rare CNVs in AD cases and
controls using PLINK. PLINK burden analysis uses permutation
tests to compute p-values. For our analysis, we applied 500,000

permutations. For each sample, we considered four CNV burden
features: 1) number of CNV events; 2) proportion of samples with
≥1 CNV events; 3) total event length in kb; and 4) average event
length in kb. The CNV events included deletions and duplications
together (DelDup), deletions specific (Del), and duplications
specific (Dup). We reported the CNV burdens for AA,
Hispanic, and NHW separately as well as for all-combined
samples (ALL), The Bonferroni threshold for multiple testing
is p-value < 0.05/96 analyses � 0.000521, where the 96 analyses
included the combinations from 2 sets of CNV analyses (all CNVs
vs. rare CNVs), 4 burden features, 3 CNV events (DelDup, Del,
and Dup) and 4 sample groups (ALL, AA, Hispanic, and NHW).

RESULTS

Dataset—3,800 WGS Samples from
NIAGADS R1 Release of ADSP 5k
We used the ADSP WGS data released by NIAGADS in 2018.
NIAGADS not only collected and released genetics data, but also
harmonized minimal phenotypes (sex, race/ethnicity, diagnosis,
APOE genotype) from each collocating cohort. For data
harmonization, NIAGADS followed the ADSP coding scheme
based on the National Alzheimer’s Coordinating Center (NACC)
Uniform Data Set (UDS) (Beekly et al., 2007) definitions. We
used NIAGADS and did not redefine diagnosis or ethnicities in
this study.

There are 4,749 subjects and 4,788 sequenced samples (three
subjects sequenced nine times and another three sequenced six
times) by Illumina HiSeq 2000/2,500 or X Ten at an average of
37X coverage (the range from 10.68X to 74.16X). For the six
subjects with multiple sequence sets, we picked one sequence set
per subject, and removed the other 39 sequences. For the 4,749
subjects, these were 2,192 AD cases, 2,073 controls, and others
484 with diagnosis unknowns. For this study, we focused on AD
cases and controls, and excluded samples with inconclusive
clinical statuses.

For the remaining 4,265 samples, we performed the across-
chromosome alignment coverage check (WGS Across-
Chromosome Coverage Check) since uneven coverage may
affect the quality of CNV detection. Fifteen samples were
removed since their standard deviation of chromosomes
coverages are greater than 15% of the average coverages, as
shown in Figure 2 where each line presents a sample, and
each dot presents the alignment coverage of the sample in the
chromosome on the x-axis.

Next, we removed 450 samples due to relatedness according to
pedigree information provided by NIAGADS. Finally, we had
1,737 AD cases and 2,063 controls. The ethnicities/races are AA
(n � 978), Hispanic (n � 1,247), NHW (n � 1,566), and others
(n � 9), as shown in Table 1.

CNV Callset
We first applied CNVnator, JAX-CNV and Smoove on each
CRAM file of a sample for sample-level CNV calling. CNVnator,
JAX-CNV and Smoove detected an average of 2,378 (1,967
deletions and 411 duplications), 25 (12 deletions and 13
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duplications), and 4,584 (3,876 deletions and 708 duplications)
CNVs, respectively. Compared to NHW, AA and Hispanic have
141 and 122 deletions more, but 180 and 9 fewer duplications.
Only Smoove yielded fewer duplications for AA and Hispanic, as
shown in Figure 3A.

For each sample, we employed svimmer to merge the callsets
from the three callers as a single VCF. Next, svimmer was applied
to VCFs for all 3,800 samples to generate a combined VCF which
along with all CRAM files are inputs of GraphTyper2. As
described in Project-Level CNV Joint Genotyping, we kept
Aggregated notated variants and also applied the PASS flag
filter in this aggregated callset. The result was a total of
237,306 deletions and 42,767 duplications as a project-level
VCF. The length distribution and allele frequency of the
project-level VCF are given in Figures 3B,C. Lengths of
deletions were presented by using negative values that were
shown on the left panel of Figure 3B, while lengths of
duplication were shown on the right panel of Figure 3B.

CNVConcordant Check with Other Projects
We compared our project-level callset with the 1,000 Genomes
Project Phase 3 (1KG_P3) (Sudmant et al., 2015), gnomAD
(Collins et al., 2020), and Decipher (Firth et al., 2009) that
were obtained from dbGaP (https://www.ncbi.nlm.nih.gov/
dbvar/content/human_hub/). The 1KG_P3 and gnomAD have
other types of variants (insertions, inversions, mobile element
deletion, and mobile element insertions) in the lists that were not
used in the comparison; only autosomal copy number variations

were used for the comparison. All lists were converted into the
BED format for performing cross-project concordant CNV
checks by using BEDTools.

We examined the overlap between our data and other call sets
using either a 1bp or 50% overlap. We performed each pair of
comparisons twice treating both callsets as the primary in one of
the comparisons. As demonstrated in Table 2, each pair of
comparisons is asymmetric with different concordance
percentages depending upon which callset was the primary
(primary callset is the one in the column). 79.9 and 76.3% of
our called CNVs were found in gnomAD and Decipher when
using at least 1bp overlapping criterion. However, only 39.8%
were recalled in the 1KG_P3 callset. GnomAD likewise has a low
concordance rate, with only 41%, of CNVs overlapping with the
1KG_P3 callset. Our callset and gnomAD callset have higher
similarity and more novel CNVs compared to the 1KG_P3 and
Decipher callsets.

CNV List for PLINK Burden Analysis
Since PLINKdoes not allow overlappingCNVswithin a sample, we 1)
split the project-level VCF and generated a list of CNVs for a sample in
BED format, and 2) consolidated CNVs or removed conflict CNVs by
the method described in Section 2.1.4. After splitting the project-level
VCF for each sample, we found increased numbers of CNVs per
sample (32,402 deletions and 9,131duplications) since GraphTyper2
uses a combination of the three CNV calling algorithms and leverages
variant knowledge from other samples. However, most of those CNVs
overlap or are adjacent to each other. Next, we consolidated

FIGURE 2 | Alignment coverages of 15 samples with uneven sequence data. Each line is a sample, and each dot presents the alignment coverage for a
chromosome.

TABLE 1 | Total column denotes the number of samples remaining after each quality filtering step.

AA Hispanic NHW Others Total

Step Case Control Unknown Case Control Unknown Case Control Unknown Case Control Unknown

ADSP 5K 472 521 44 826 746 40 910 820 393 5 4 7 4,788
Replicate Removal 467 521 44 810 733 40 910 815 393 5 4 7 4,749
Unknown Status Removal 467 521 0 810 733 0 910 815 0 5 4 0 4,265
Uneven Coverage Removal 466 521 0 808 731 0 902 813 0 5 4 0 4,250
Relatedness Removal 457 521 0 520 727 0 755 811 0 5 4 0 3,800

3,800 samples remained after all filtering steps.
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overlapping/adjacent CNVs if they are the same type or removed
overlapping CNVs if they are different types. This CNV consolidation
step significantly reduces CNVs/sample (2,966 deletions and 1,863
duplications), as shown in Figure 3A.

For rare CNV analysis, we first applied the pilot mask from the
1,000 Genomes Project that further filtered about 8.4% of CNVs and
became 2,255 deletions and 1,820 duplications for each sample
averagely. CNVs with an allele frequency <1% were retained for
analysis. The number of rare CNVs/sample ranged from 0 to 1,546
with an average of 57/sample (46 deletions and 11 duplications;
median value is 44 and standard deviation is 76.58843). Among
3,800 samples, three have zero rare CNVs while four have >1,000

rare CNVs. Those four samples are all Non-Hispanic Whites (two
cases and two controls), and three of the four samples. According to
the final review comment have higher detected numbers of CNVs
(According to the final review comment 5,809, 5,945, and 5,992)
compared to average (4075.06). The three were sequenced in the
earlier stage of the project by Illumina HiSeq 2000/2,500 with PCR
Amplified libraries.

Burdens of All and Rare CNVs
Table 3 are the PLINK burden tests. The four burden
features were considered; 1) total event numbers, 2)
Proportion of samples with ≥1 events, 3) total event

FIGURE 3 | Characteristics of the project level CNV callset. Counts shown on the y-axes of the sub figures are in the log10 scale. (A). The average deletions and
duplications detected by CNVnator, JAX-CNV, Smoove and GraphTyper2. Consolidated shows CNV counts after CNV merging and conflicts removing. (B). Length
distribution of CNVs after applying GraphTyper2 and the PASS flag filter. Lengths of deletions were presented as negative values while lengths of duplications are positive
values. (C). Allele frequency of CNVs of GraphTyper2.

TABLE 2 | CNV concordant checks with the 1,000 Genomes Project Phase 3 (1KG_P3), gnomAD, and Decipher callsets. Each column resents the percentages of CNVs in
the callset overlapping with others listed in rows.

At least 1bp overlap At least 50% overlap

Ours
(280,073)

1KG_P3
(48,131)

gnomAD
(188,842)

Decipher
(54,422)

Ours
(280,073)

1KG_P3
(48,131)

gnomAD
(188,842)

Decipher
(54,422)

Ours 1 0.828 0.762 0.878 Ours 1 0.772 0.726 0.816

1KG_P3 0.398 1 0.410 0.679 1KG_P3 0.293 1 0.337 0.544

gnomAD 0.799 0.861 1 0.832 gnomAD 0.668 0.767 1 0.712

Decipher 0.763 0.662 0.500 1 DECIPHER 0.724 0.600 0.458 1
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length in kb, and 4) average event length in kb. Tests were
done for all and rare CNVs as well as considering deletions
and duplications (DelDup), deletions specific (Del) and
duplications specific (Dup). The results suggested two
significant all-CNV burden differences between cases and
controls: 1) in NHW, on average cases have 16 more
duplication events compared to controls do (p-value 2e-
6); and 2) in Hispanic, the total deletion lengths in cases is

larger than in controls on average (p-value 6.8e-5). There
are no significant differences for rare CNV burden in all
aspects examined. Of note, the p-values from PLINK burden
analysis did not account for covariates and were merely
examining if the observed burden measures of cases and
controls were significantly different in a marginal fashion.
Figure 4 shows the total event numbers per sample and the
total event length in kb per sample.

TABLE 3 | The four burden features were considered; 1) total event numbers, 2) Proportion of samples with ≥1 events, 3) total event length in kb, and 4) average event length
in kb.

Mean_Case Mean_Control p-value DelDup Del Dup

All Rare All Rare All Rare

Total event numbers All 4,073 59.29 2,249 47.67 1823 11.62
4,079 55.61 2,261 44.41 1818 11.2

0.736247 0.0709259 0.876096 0.0723559 0.021826 0.132316
AA 4,072 60.24 2,268 46.81 1803 13.43

4,106 63.23 2,295 49.7 1811 13.53
0.990162 0.743957 0.989694 0.753128 0.882104 0.578805

Hispanic 4,193 42.63 2,408 33.98 1785 8.654
4,177 59.35 2,384 48.04 1793 11.31

0.108108 1 0.016028 1 0.974318 1
NHW 3,991 45.33 2,129 34.1 1861 11.23

3,972 38.81 2,127 29.01 1845 9.8
0.158684 0.0287979 0.461645 0.0303239 2e-06* 0.0354999

Proportion of samples with ≥1 events All 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988
0.9995 0.9995 0.9995 0.9995 0.9995 0.9985

0.904246 0.905054 0.905188 0.905048 0.904122 0.581927
AA 0.9956 0.9956 0.9956 0.9956 0.9956 0.9956

1 1 1 1 1 1
1 1 1 1 1 1

Hispanic 1 1 1 1 1 0.9981
0.9986 0.9986 0.9986 0.9986 0.9986 0.9986

0.583197 0.583439 0.582637 0.582109 0.583935 0.826018
NHW 1 1 1 1 1 1

1 1 1 1 1 0.9975
1 1 1 1 1 0.269673

Total event length in kb All 1.856e+05 1,053 2.983e+04 546.2 1.558e+05 507.2
1.852e+05 941.4 2.974e+04 457.1 1.555e+05 484.8
0.017098 0.01129 0.254809 0.00759198 0.0602339 0.148482

AA 1.859e+05 1,013 3.185e+04 502.7 1.54e+05 510.8
1.857e+05 1,055 3.175e+04 477.6 1.54e+05 577.4
0.318897 0.704127 0.330257 0.291605 0.409045 0.942028

Hispanic 1.83e+05 750.3 3.183e+04 408.3 1.511e+05 342.7
1.837e+05 911.8 3.097e+04 392.5 1.527e+05 519.4
0.982962 0.989972 6.79999e-05* 0.356709 1 0.999998

NHW 1.873e+05 943.1 2.725e+04 455.1 1.601e+05 487.9
1.863e+05 713.7 2.734e+04 301.8 1.59e+05 412.9

0.000591999 0.00145 0.670983 0.00347599 0.000116 0.013062
Average event length in kb All 45.74 19.02 13.34 12.54 85.34 40.48

45.57 17.96 13.24 11.43 85.47 40.56
0.0489579 0.0469619 0.0544019 0.0573059 0.995478 0.523385

AA 45.5 16.3 14.03 10.58 85.04 36.11
45.29 16.09 13.89 9.459 85.01 38.94

0.0487079 0.384237 0.108808 0.0501099 0.362197 0.935694
Hispanic 43.67 16.67 13.26 11.59 84.68 35.79

44 15.33 13.02 9.041 85.03 39.45
0.9966 0.0739319 0.00848998 0.00603599 0.999998 0.966586

NHW 47.31 20.6 12.98 12.82 85.98 41.66
47.16 18.64 13.02 10.99 86.16 39.69

0.22001 0.0258339 0.645417 0.0592879 0.98735 0.161868

Tests were done for all and rare CNVs aswell as considering deletions and duplications (DelDup), deletions specific (Del) and duplications specific (Dup). Each cell has three values asmean
of cases, mean of controls, and p-value. Two p-values marked in bold indicate statistically significant.
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FIGURE 4 | Summary of CNV burden results for all and rare CNVs by CNV events (DelDup, Del, or Dup) and by ethnicities (ALL, AA, Hispanic, NHW). (A). Total event
numbers per sample. (B). Total rare event numbers per sample. (C). Total event length in kb per sample. (D). Total rare event length in kb per sample.
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DISCUSSION

We have composed a scalable bioinformatics pipeline to identify
CNVs usingWGS data and applied it to 1,737 AD cases and 2,063
cognitively normal controls from the ADSP. We observed
237,306 and 42,767 deletions and duplications, respectively
with an average of 2,255 deletions and 1,820 duplications per
subject. Although there were more and longer CNVs in AD case
samples than controls, burden tests performed using all CNVs or
rare CNVs (i.e., <1% in frequency) do not indicate a significant
association with AD status.

The false discovery rate of detected CNVs remains uncertain
despite the fact that CNVs were generated circumspectly and
have been cross checked with other projects including the 1KG,
gnomAD and Decipher. The callset of 1KG is smaller than ours
and gnomAD’s, and it is therefore expected that 1KG recalls only
∼40% of ours and gnomAD’s callsets, while ours and gnomAD’s
callsets capture 82.8 and 86.1% of 1KG’s CNVs respectively. We
would also like to note that 1KG processed their data several years
earlier than we and gnomAD did. Since the publishing of the 1KG
Phase3 callset, CNV-calling tools have moved towards
integration of multiple alignment signals (such as read-depth,
pair-end, and split-read signals) for calling. This concept was
well-accepted before the publishing of the gnomAD callset, and
could make 1KG’s callset less similar to ours and gnomAD’s.
While extensive experimental validation of each CNV is not
currently feasible, validation of significant deletions and
duplications may be necessary. Alternatively, our findings
could be replicated with other datasets of Alzheimer’s Disease
whole genome sequence data.

Joint genotyping provides the ability to leverage information
from multiple samples so we could refine low-quality genotypes
and detect additional variants for a sample. However, it also
brings challenges when breakpoints of CNVs from different
samples do not align well. The situation is even worse when
using multiple calling algorithms. For this study, we employed
GraphTyper2 for joint genotyping, which is a graph-genome
based method and has shown an advantage for genotyping larger
variants such as CNVs. However, GraphTyper2 does not provide
a total solution; overlapping CNVs can still be found after joint
genotyping. To address the issue, we split aggregated results to
generate a CNV list for each sample and resolved overlapping
CNV regions. A graph reference genome presents a variant, a
CNV in our application, as a branch in the graph. For the
overlapping CNV situation, the graph genome creates several
similar branches in a region. The issues could be resolved in a
more fundamental way by pruning unnecessary brunches of the
graph genome. A slim graph genome will also improve running
time and memory usage.
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