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Sumoylation is an important enhancer of responses to DNA replication stress and the
SUMO-targeted ubiquitin E3 ligase RNF4 regulates these responses by ubiquitylation of
sumoylated DNA damage response factors. The specific targets and functional
consequences of RNF4 regulation in response to replication stress, however, have not
been fully characterized. Here we demonstrated that RNF4 is required for the restart of
DNA replication following prolonged hydroxyurea (HU)-induced replication stress.
Contrary to its role in repair of c-irradiation-induced DNA double-strand breaks (DSBs),
our analysis revealed that RNF4 does not significantly impact recognition or repair of
replication stress-associated DSBs. Rather, using DNA fiber assays, we found that the
firing of new DNA replication origins, which is required for replication restart following
prolonged stress, was inhibited in cells depleted of RNF4. We also provided evidence that
RNF4 recognizes and ubiquitylates sumoylated Bloom syndrome DNA helicase BLM and
thereby promotes its proteosome-mediated turnover at damaged DNA replication forks.
Consistent with it being a functionally important RNF4 substrate, co-depletion of BLM
rescued defects in the firing of new replication origins observed in cells depleted of RNF4
alone. We concluded that RNF4 acts to remove sumoylated BLM from collapsed DNA
replication forks, which is required to facilitate normal resumption of DNA synthesis after
prolonged replication fork stalling and collapse.
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INTRODUCTION

Accurate DNA replication is essential to maintenance of genome integrity. When the replicative
polymerase encounters DNA damage such as chemical modifications of bases, the polymerase stalls
at the site of the DNA lesion and the CDC45-MCM2-7-GINS (CMG) helicase uncouples from the
polymerase and continues to unwind downstream duplex to expose single-stranded DNA (ssDNA)
(Cortez, 2019). ssDNA binding protein (RPA) binds to ssDNA, and the complex activates the ATR
kinase, which is required for the recruitment of factors from the homologous recombination (HR)
pathway (Dungrawala et al., 2015). These factors stabilize and protect the replication fork from
nascent-strand degradation (Schlacher et al., 2011). Fork protection and stabilization are dependent
on the RAD51 recombinase (Zellweger et al., 2015; Mijic et al., 2017), which is thought to engage with
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other factors, including BRCA2 and SMARCAL1, that reverse the
fork to form a structure resembling a Holliday junction and
prevent nascent strand degradation due to exonucleolytic attack
(Hashimoto et al., 2010; Kolinjivadi et al., 2017).

Nucleotide deprivation using the ribonucleotide reductase
inhibitor hydroxyurea (HU) has provided a powerful probe to
examine the mechanisms of fork stabilization and protection
because no specific DNA lesion is generated (Vesela et al., 2017).
Uncoupling occurs due to DNA polymerases stalling on the
template following a >50% decrease in purine deoxynucleotide
concentration (Skoog and Bjursell, 1974). In this context,
activation of ATR and the recruitment of HR factors, such as
RAD51 and BRCA2, are replication-specific (Petermann et al.,
2010; Zellweger et al., 2015). Early studies conducted with
radiolabeled thymidine tracer demonstrated that
ribonucleotide reductase inhibition achieved a cessation of
DNA replication and, upon removal of HU, DNA replication
resumed (Bianchi et al., 1986). Analysis of DNA replication
dynamics based on single molecule DNA fiber assay has
demonstrated that HU-stalled replication forks resume
synthesis at the sites where they stalled (Petermann et al.,
2010; Sidorova et al., 2013; Thangavel et al., 2015). However,
prolonged treatment with HU (≥16 h) leads to irreversible fork
collapse. Cells treated with HU ≥16 h have two cell populations,
namely, cells that were in S phase when drug was added to the
medium and cells that transited the cell cycle then entered and
were stalled at the beginning of S phase (Karnani and Dutta,
2011). Because collapsed forks cannot be restarted, successful
genome duplication in cells depends on the firing of dormant
origins (Woodward et al., 2006; Ge and Blow, 2010). The majority
of dormant origins fired in these cells are >100 kb away from the
collapsed forks.

Multiple proteins that are associated with replication fork
stability and HR are sumoylated (Xiao et al., 2015). Sumoylation
is in turn regulated by recruitment of SUMO-targeted ubiquitin
E3 ligases (STUbLs). STUbLs contain tandem SUMO
interaction motifs (SIMs), which bind poly-sumoylated
proteins, and RING domains that mediate ubiquitylation
(Prudden et al., 2007). The prototypical mammalian STUbL,
RNF4, was first identified as a transcriptional co-regulator of
hormone receptors (Moilanen et al., 1998). The S. cerevisiae
ortholog of mammalian RNF4, the Slx5/Slx8 heterodimer, was
discovered in a screen for genes synthetically lethal with the
BLM ortholog Sgs1 (Mullen et al., 2001). Yeast strains lacking
Slx5 or Slx8 are hypersensitive to chronic DNA replication stress
and exhibit elevated levels of gross chromosome rearrangements
and spontaneous mutations (Mullen et al., 2001; Zhang et al.,
2006; Prudden et al., 2007); Slx5 or Slx8 regulate the levels of
numerous sumoylated HR proteins (Burgess et al., 2007). In
mammalian cells, RNF4 has been found to operate in a variety of
DNA repair functions. It controls the formation of double-
strand breaks (DSB) in ATR-deficient cells undergoing
replication stress (Ragland et al., 2013). It mediates the
recruitment of BRCA1 to DSB sites through the generation
of SUMO-ubiquitin hybrid chains (Guzzo et al., 2012). It is
recruited to sites of DNA damage via sumoylated MDC1 and is
required for exonucleolytic processing of DSBs preceding HR-

mediated repair (Galanty et al., 2012; Luo et al., 2012; Yin et al.,
2012). RNF4-mediated ubiquitylation facilitates the extraction
of proteins from DNA repair sites through recruitment of the
Cdc48/p97 segregase (Nie et al., 2012), it regulates FANCI/
FANCD2 turnover at stalled forks (Gibbs-Seymour et al., 2015),
and it mediates the release of FAAP20 from sumoylated FANCA
during interstrand crosslink repair (Xie et al., 2015). Although
the function of RNF4 in DSB repair has been studied by many
laboratories, it’s role in responding to fork collapse has not been
well characterized in mammalian cells.

The BLM helicase has been implicated in replication fork
stability as BLM-deficient cells exhibit multiple defects in DNA
replication, including accumulation of abnormal DNA
replication intermediates (Lonn et al., 1990), slower replication
fork velocity (Rao et al., 2007), and excessive firing of dormant
origins (Davies et al., 2007). BLM-deficient cells exhibit increased
levels of chromatid breakage and HR, in particular, elevated sister
chromatid exchanges (SCEs) (Chaganti et al., 1974). BLM
interacts directly with both RAD51 (Wu et al., 2001; Bugreev
et al., 2007; Patel et al., 2017) and RPA (Brosh et al., 2000; Doherty
et al., 2005; Xu et al., 2008; Shorrocks et al., 2021).We have shown
previously that BLM’s function in DNA replication is regulated
by sumoylation (Ouyang et al., 2009). Cells that express a
sumoylation-deficient BLM (SD-BLM) accumulate lower levels
of RAD51 at collapsed forks but higher levels of RPA (Eladad
et al., 2005; Ouyang et al., 2009; Ouyang et al., 2013). Study of an
RPA-binding-deficient BLM showed that BLM’s capacity to bind
RPA is required for its role in fork protection (Shorrocks et al.,
2021), but the mechanism is unclear because RPA can block
BLM’s DNA unwinding activity in vitro (Xue et al., 2019). Levels
of SCE are normal in both untreated SD-BLM cells (Eladad et al.,
2005) and untreated RPA-binding-deficient BLM cells
(Shorrocks et al., 2021); however, in SD-BLM cells subject to
prolonged HU treatment, SCEs are not induced but instead DSBs
accumulate, associating the failure to recruit RAD51 to collapsed
forks with failure to repair DSBs that are generated there. Our
recent work with mutations of NSMCE2, the SUMO E3 ligase
responsible for BLM sumoylation at collapsed forks, suggests that
at least some of these DSBs occur subsequent to dormant origin
firing when converging forks merge with collapsed forks (Pond
et al., 2019).

Because BLM’s functions are regulated by sumoylation, we
hypothesized that RNF4 promotes turnover of BLM at collapsed
replication forks, possibly to facilitate downstream DSB
processing events. We show here that sumoylated BLM is
indeed an RNF4 substrate, but RNF4 is not required for DSB
repair at collapsed forks. Instead, we found that deficiency in
BLM turnover at collapsed forks resulted in defects in dormant
origin firing.

MATERIALS AND METHODS

Cell Culture and Transfection
For knockdown experiments, cells were cultured to 30–50%
confluence and transfected with Lipofectamine RNAiMAX
(Invitrogen). NC1 negative control siRNA was obtained from
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IDT, Inc., RNF4 siRNA #1 (5’-GACTCACAATGACTCTGT
TGTGATT-3’) from Invitrogen, and RNF4 siRNA #2 (5’-GAA
UGGACGUCUCAUCGUUUU-3’) from Dharmacon. SENP6
siRNA (5’-AAGAAAGTGAAGGAGATACAGUU-3’) was
obtained from Qiagen, Inc. and BLM siRNA (5’- UCCCGG
GAUACUGCUCUCA-3’) was from IDT, Inc. siRNAs were
used at a final concentration of 20 nM.

Antibodies
Antibodies were obtained from the following sources: anti-
RPA/p34 (Neomarkers MS-691-P0), anti-c-H2AX (Millipore
05-636), rabbit anti-BLM (Eladad et al., 2005), rabbit anti-
RNF4 (a gift from Dr. Jorma Palvimo), rabbit anti-CHK1 (Cell
Signaling Technology 2345) at 1:400, rabbit anti-phospho-
CHK1 (ser317) (Cell Signaling Technology 2344S) at 1:400,
rat anti-HSC70 (Assay Design) at 1:45,000, anti-tubulin
(Sigma T9026), anti-SUMO2 (Zhang et al., 2008), anti-Myc
(Cell Signaling Technology 2276S), and anti-SENP6 (a gift
from Dr. Mary Dasso). AlexaFluor-labeled secondary
antibodies (A11029; A11035), were obtained from
Invitrogen. HRP-labeled secondary antibodies were anti-
mouse IgG (Cell Signaling Technology 7076S), anti-rat IgG
(Jackson Labs), and anti-rabbit IgG (GE Healthcare
NA934V). For DNA fiber assays, antibodies for detection
of 5-iodo-2′-deoxyuridine (IdU) were mouse anti-IdU (BD)
and for detection of 5-chloro-2′-deoxyuridine (CldU) were rat
anti-CldU (Abcam); the secondary antibodies were anti-
mouse Dylight 488 and anti-rat Dylight 649 (Jackson
ImmunoResearch).

Clonogenic Survival Assay
U2OS or HeLa cells were transfected with control or RNF4
siRNAs. 48 h after transfection, cells were incubated with
varying concentrations of HU for 72 h or of camptothecin
(CPT) for 3 h. Cells were trypsinized after treatment and
counted with a hemocytometer. Then, 200, 400, and 800 cells
were seeded in duplicate into six-well or 60 mm plates in
normal medium. After one to two weeks, clones with >50 cells
were scored. Clonogenic survival was calculated as the
average of number of clones over the number of cells
seeded for all scorable wells or dishes. The results were
normalized to the clonogenic survival of untreated,
negative control condition. The experiment was repeated
three times. The average of experiments and standard
deviations were calculated.

Immunofluorescence Microscopy
For analysis of RNF4 localization, U2OS cells were seeded in
35-mm glass-bottom culture dishes. For HU-induced DNA
damage, cells were incubated in the presence of 2 mM HU for
16 h. Laser-induced irradiation was performed as described
(Muniandy et al., 2009). Irradiated cells were allowed to
recover for 2 h before antibody staining. Cells were fixed
and stained as described (Zhang et al., 2008). Images were
collected using Zeiss Observer Z1 fluorescence microscope
with an Apotome VH optical sectioning grid and processed
using AxioVision Software Release 4.8.1.

For analysis of DNA repair foci numbers and focal areas,
50,000 HeLa cells were seeded on cover slips, transfected with
siRNAs, and treated with 2 mM HU for 16 h. As a positive
control for a known RNF4-dependent phenotype, we also
treated cells with 10 μM etoposide for 4 h, which is known to
generate DSBs in all cell cycle phases. Following treatment,
cells were pre-processed as described (Dimitrova and Gilbert,
2000) then fixed and stained as described (Zhang et al., 2008).
Images were collected on a Zeiss LSM 710 Meta Confocal
microscope using Zeiss LSM4.2 software. Foci numbers and
areas were acquired in ImageJ/FIJI. The DAPI image was used
to generate the nuclear regions of interest. For each
experiment an image threshold of the red and green
channels was determined using the brightest conditions
(e.g., HU-treated control), and this threshold was used for
all images acquired. Particles >2 pixels were counted in the
resulting binary images using the Analyze Particles function.
Quantification of numbers of foci was carried out using
CellProfiler (version 2.0). 30 to 70 cells were counted in
each experiment. Three experiments were performed and
the three experiments were combined and box and
whiskers plots prepared from the merged data.

Pulsed-Field Gel Electrophoresis to
Measure Double-Strand Breaks
One million HeLa or U2OS cells were seeded into 35 mm
dishes. The next day cells were transfected with negative
control or RNF4 siRNAs. 48 h after transfection of siRNAs,
the cells were treated with varying concentrations of CPT for
3 h. The cells were harvested, counted, and 250,000–3,000,000
cells were embedded in agarose plugs in agarose insert buffer
(10 mM Tris-HCl pH 7.5, 20 mM NaCl, 50 mM EDTA). Plug
preparation, cell lysis, and agarose gel electrophoresis were
carried as described (Ouyang et al., 2009; Pond and Ellis,
2019). Gels were stained with SYBR Gold (1 part in 10,000
parts water) and the UV transilluminator image was analyzed
using ImageJ Gel Analyzer. Arbitrary fluorescence units were
normalized to untreated, untransfected controls. Experiments
were repeated three times. The average of experiments and
standard deviations were calculated.

Flow Cytometric Analysis
300,000 U2OS or HeLa cells or 150,000 HCT116 cells were
seeded into 40 mm dishes and forward transfected the
following day with negative control or RNF4-specific
siRNAs. 24–30 h after transfection, the cells were treated
or not with 2 mM HU for 16 h. The cells were released
from the HU block and incubated in media containing
20 μM BrdU for 20, 30, 40, 60, or 120 min prior to harvest.
20 min of BrdU labeling was used for each time point prior to
harvest. Processing of cells for flow cytometry was carried out
using the APC BrdU Flow kit (BD Pharmingen) according to
the manufacturer’s instructions. The fixed and stained cells
were analyzed on a Beckman Coulter Cyan ADP. Data was
analyzed using Summit 4.3 software from Beckman Coulter.
After gating, percent of cells in each cell-cycle phase (G1, S,
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and G2/M) was calculated. Experiments were repeated three
or more times. The average of experiments and standard
deviations were calculated.

DNA Fiber Analysis
U2OS cells were transfected with control or RNF4 siRNAs. 48 h
after transfection, cells were exposed to 20 μM IdU for 20 min.
Cells were incubated or not with 2 mMHU for 2 or 16 h. Cells
were washed and then exposed to 100 μMCldU for 30 min. DNA
fibers were prepared and visualized as described (Davies et al.,
2007). Microscopy was carried out using a Zeiss Observer Z1
fluorescence microscope.

Analysis of BLM Sumoylation and
RNF4-Mediated Ubiquitylation
U2OS cells stably transfected with His-SUMO-1 or His-
SUMO-2 were a gift from Dr. Mary Dasso (NIH). His-
SUMO conjugates were purified as described (Jaffray and
Hay, 2006). For in vitro sumoylation and ubiquitylation
reactions, recombinant GST-tagged BLM (amino acids 1-
431), SUMO E1 (Aos1/Uba2), E2 (Ubc9), and SUMO
proteins were expressed and purified from E. coli as
previously described (Zhu et al., 2008). Recombinant
ubiquitin E1 (Uba1), E2 (UbcH5c), RNF4, and ubiquitin
were kindly provided by Dr. Cynthia Wolberger (Johns
Hopkins University). Sumoylated BLM on GST beads was
produced as previously described (Zhu et al., 2008). The GST-
BLM-SUMO beads were washed and incubated with 1 μM
ubiquitin E1, 25 μM UbcH5a and 1 mM ubiquitin with or
without 50 μM RNF4 in reaction buffer [1 mM ATP, 20 U/ml
creatine phosphokinase, 5 mM phosphocreatine, 0.6 mg/ml
inorganic pyrophosphatase in 20 mM HEPES-KOH (pH 7.3),
110 mM potassium acetate, 2 mM magnesium acetate and
1 mM DTT] at 37°C for 2 h. After five washes with 500 mM
NaCl in PBS, proteins were eluted with 2X SDS sample buffer
and analyzed by immunoblot analysis.

Analysis of BLM Stability
Cells were transfected with negative control or RNF4 siRNA
oligos on two sequential days. 24 h after the second transfection,
cells were treated with or without 100 ng/ml cycloheximide for
different times and lysed directly in sample buffer at the end of
treatment. Proteins were analyzed by immunoblot analysis.

Mitotic Index Analysis
Mitotic index was measure by seeding 50,000 transfected HeLa
or HCT116 cells onto cover slips and treating them the next
day with 2 mM HU for 16 h. Cells were released from the HU
block by replacement with fresh medium, and the cover slips
were processed for examination of mitoses at 1-h time points
9–15 h after release. For processing, cells were fixed in 4%
paraformaldehyde diluted into PBS at room temperature for
20 min, washed in PBS, permeabilized in 0.5% Triton X-100
for 10 min, washed 3 times in PBS (the middle wash containing
0.1 M glycine), and mounted in Prolong Gold with DAPI
(Invitrogen). Cells were examined at 40x magnification with

a UV filter on a Nikon Eclipse E600 controlled by NIS-
Elements BR 3.0 software. Fields were imaged and mitotic
cells were identified as cells with chromosomes undergoing
condensation or cells containing condensed chromosomes.
The percent of mitotic cells was calculated as the total
number of mitotic cells divided by the total number of cells.
A small percentage of cells (<0.2%) that exhibited nuclear
blebbing or other nuclear changes indicative of apoptosis, were
not included in this total. Experiments were repeated three
times. The average of experiments and standard deviations
were calculated z.

Sister Chromatid Exchange
165,000 HeLa cells were seeded into T25 flasks overnight and
were subsequently transfected with siRNAs on two sequential
days. On the third day, cells were incubated in medium
containing 20 μM bromodeoxyuridine (BrdU) for 42 h
(untreated samples) or cells were incubated in 20 μM BrdU for
24 h, in 20 μMBrdU and 2 mMHU for 16 h, and finally in 20 μM
BrdU for 14 h (HU-treated samples). 45 min prior to harvest,
colcemid was added to achieve a concentration of 0.15 μg/ml. For
HU-treated cultures, 3 h prior to harvest freshly prepared caffeine
was added at a concentration of 1 mM, otherwise mitoses were
not obtained in RNF4-depleted cells. The failure to obtainmitoses
in RNF4-depleted cells was specific to colcemid treatment,
because RNF4-depleted cells underwent mitosis and cell
division in the absence of colcemid. Metaphases were prepared
and stained using the fluorescence plus Geimsa method as
described (Ouyang et al., 2009). Metaphases were examined at
100x magnification under oil with a Nikon Eclipse E600
controlled by NIS-Elements BR 3.0 software. SCEs in each
metaphase and the numbers of chromosomes were counted,
and the levels of SCEs expressed as the number of exchanges
per 46 chromosomes over all scorable metaphases. Experiments
were repeated twice. The average of experiments and standard
deviations were calculated.

Statistical Analyses
T-tests were performed to compare the effects of RNF4 depletion
vs control on proliferation; on focal accumulations of RAD51,
c-H2AX, BLM, and RPA; on SCEs; and, on replication dynamics
exhibited by the DNA fiber analysis. To compare flow cytometry
cell cycle profiles, the difference in the mean values for RNF4
versus NC1 were tested for percentage phase of the cell cycle (%
G1, % S, and % G2) within each cell line using two sample t-tests.
The interaction between caffeine and RNF4 (versus NC1) was
initially tested using linear regression. Since it was not statistically
significant for any conditions, it was removed from the model.
Subsequently the difference between the caffeine treatment in the
no HU and HU conditions was assessed using two sample t-tests.
To analyze recovery from replication arrest, the difference in the
percent of cells between siRNF4 and control was assessed using
linear regression models. The initial model assessed whether the
profile of the change across time differed between the two
conditions (i.e., was there interaction). If the profile was not
significantly different, the potential for a shift between the two
conditions was assessed.
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FIGURE 1 |RNF4 was not required for HR repair of replication-associated DSBs. (A)RNF4 co-localized with phosphorylated histone H2AX (c-H2AX) in U2OS cells
treated with a micro-laser, ionizing radiation (IR), or hydroxyurea (HU). DNA was detected with DAPI. Bars � 10 µm. (B) RNF4 depletion in U2OS cells by two unique
RNF4-specific siRNAs was evaluated by immunoblot analysis. Proliferation defect in RNF4-depleted U2OS cells exposed to varying concentrations of HU for 72 h. Error
bars represent standard deviations from three biological replicates. p values were determined using a Student’s t-test. (C) Line graph showing results of clonogenic
survival assays on RNF4-depleted and control-depleted HeLa cells exposed to varying concentrations of camptothecin (CPT) for 3 h. Results from three independent
assays were averaged and standard deviations shown. (D)Bar graphs showing the relative levels of DSBs in RNF4-depleted and control-depleted HeLa cells exposed to

(Continued )
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RESULTS

RNF4 Exhibited a Unique Role in Response
to Prolonged Replication Stress
Although known to have important roles in cellular response
to DNA replication stress (Ragland et al., 2013; Kumar and
Sabapathy, 2019), the exact functions of RN4 at stalled and
collapsed replication forks are not fully understood. To
explore these functions, we first used indirect
immunofluorescence confocal microscopy to investigate
RNF4 localization in U2OS cells treated with 2 mM HU for
16 h, as localization under these conditions has not previously
been reported. This analysis revealed that RNF4 co-localized
with c-H2AX, a marker for sites of collapsed replication forks
and the modicum of DSBs induced by this duration of HU
treatment (Petermann et al., 2010). As positive controls, we
confirmed previous findings that RNF4 co-localizes with
c-H2AX at DSBs generated by microlaser- and
c-irradiation (Galanty et al., 2012; Yin et al., 2012; Vyas
et al., 2013) (Figure 1A).

To further explore the functions of RNF4 in the cellular
response to DNA replication stress, we used two independent
siRNA oligos to effectively deplete expression levels by >90%
in human U2OS cells (Figure 1B). Consistent with previous
studies (Galanty et al., 2012; Yin et al., 2012; Vyas et al., 2013),
we found that RNF4 depletion enhanced sensitivity to chronic
HU-induced replication stress (Figure 1B; Supplementary
Figure S1A). We also examined the sensitivity of RNF4-
depleted HeLa and U2OS cells to CPT, a topoisomerase I
(TopI) inhibitor that stabilizes the normally transient TopI
cleavage complex. CPT treatment also induces DNA
replication stress in S phase, and the collision of replication
forks with CPT-TopI-DNA complexes induces formation of
DSBs (Vesela et al., 2017). We found that RNF4-depletion had
no effect on the sensitivity to CPT (Figure 1C; Supplementary
Figure S1B). Because CPT toxicity is linked to generation of
DSBs, we measured the number of CPT-induced DSBs in HeLa
and U2OS cells by pulsed-field gel electrophoresis. This
analysis revealed that DSB formation was also unaffected in
RNF4-depleted cells compared to control cells (Figure 1D;
Supplementary Figure S1C). These observations suggested
that RNF4 plays a unique role in the response to DNA
replication stress, and that this role involves functions at
sites of collapsed replication forks that may be independent
of DSB repair.

RNF4 functions in the repair of DSBs generated by
c-irradiation in part by facilitating the recruitment of RAD51

to sites of DNA damage (Galanty et al., 2012; Yin et al., 2012; Vyas
et al., 2013). We therefore examined whether RNF4 depletion in
HeLa cells impaired RAD51 accumulation at collapsed
replication forks and DSBs generated by prolonged HU
treatment. Unexpectedly, the numbers of RAD51 and c-H2AX
foci, as well as their focal areas, were similar in RNF4-depleted
cells with or without HU treatment compared to control-depleted
cells (Figures 1E,F; Supplementary Figure S1D), suggesting
normal responses to collapsed replication forks. In contrast,
and as expected, the number of RAD51 foci were reduced in
RNF4-depleted HeLa cells treated with etoposide, an inhibitor of
Topoisomerase II that induces DSBs directly in all phases of the
cell cycle (Vesela et al., 2017). Contrary to expectation, c-H2AX
foci were also reduced, suggesting that RNF4 depletion leads to
slower proteolytic processing of the TopII-DNA cleavage
complex or of the tyrosyl-DNA moiety left over after
proteolysis (Sciascia et al, 2020). The tyrosyl-DNA moiety is
processed by tyrosyl-DNA phosphodiesterase 2, which is a target
of sumoylation and regulated by RNF4 (Sun et al., 2020). We also
measured rates of SCE in HU-treated HeLa cells, which serves as a
readout for DSB repair through RAD51-dependent HR. In
agreement with the normal RAD51 recruitment to DSBs, the
levels of SCE were similar in RNF4-depleted compared to
control-depleted cells with or without HU treatment
(Figure 1G). These findings provided further evidence that
RNF4 plays a unique role in the response to HU-induced
replication stress that is distinct fromDSB recognition and repair.

RNF4 was Required for Normal Recovery of
DNA Synthesis After Prolonged Replication
Stress
The lack of a correlation between DSBs and HU sensitivity left
unanswered the question of how RNF4 protects cells from
prolonged DNA replication stress. To further investigate the
roles of RNF4 in DNA synthesis under normal and
replication-stress conditions, we examined the cell cycle
profiles of control and RNF4-depleted HeLa, U2OS, and
HCT116 cells by flow cytometry. For these experiments, we
included the colon cancer cell line HCT116, because it has
defects in the expression of the MRE11-RAD50-NBS1 complex
and is thus more sensitive to replication stress. In the absence of
DNA replication stress, RNF4-depleted cells exhibited
reproducible perturbations of the G1 and S cell cycle phases in
U2OS and HCT116 cells, showing a higher fraction of cells in G1
and a lower fraction in S phase compared to control-depleted cells
(Figure 2A; Supplementary Table S1A). RNF4-depleted U2OS

FIGURE 1 | varying concentrations of CPT for 3 h, as determined by pulsed field gel electrophoresis. Induced DSBs were normalized to DSBs in untransfected and
untreated cells. Results from three independent experiments were averaged and standard deviations shown. (E,F) Box and whiskers plots showing the enumerations of
focal accumulations of RAD51 and c-H2AX, detected by indirect immunofluorescence, in RNF4-depleted and control-depleted HeLa cells untreated or treated 2 mMHU
for 16 h. Results from three independent experiments were combined. As a positive control, cells were treated with 10 μM etoposide for 4 h. (G) Box and whiskers plot
showing levels of sister chromatid exchange (SCE) in RNF4-depleted and control-depleted HeLa cells untreated or treated 2 mM HU. Cells were labeled with BrdU for
one cell division, blocked in HU for 16 h, released from the HU block into medium containing BrdU, collected in metaphase with colcemid and processed for assaying
SCEs. Results from two independent experiments were combined. NT � not treated.
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cells exhibited 17% more cells in G1 and 15% less in S phase, and
for HCT116, it was 14% more in G1 and 22% less in S phase. For
HeLa cells, it was 5% more cells in G1 and 4% less in S phase, but

the results were not significant. These results show cell type-
specific sensitivities to RNF4 depletion with HeLa cells being
relatively resistant and U2OS and HCT116 cells being sensitive.

To test whether the excess accumulation of cells in G1 in the
absence of HU was due to a checkpoint response, we measured
the phosphorylation of CHK1 (Ser317) in untreated cells and
found no evidence of more or less DNA damage checkpoint
activation compared to control-depleted U2OS cells (Figure 2B).
Consistent with a lack of DNA damage checkpoint activation,
treating HCT116 cells with the general checkpoint inhibitor
caffeine had negligible effects on cell cycle distributions
(Figure 2C; Supplementary Table S1B). Thus, the effect of
RNF4 depletion on the cell cycle in untreated cells is not
caused by activation of ATR or ATM by a DNA damage signal.

We next investigated how RNF4 depletion affects the
progression of cells through S phase by examining the kinetics
of DNA synthesis resumption following release from prolonged
HU treatment. We treated HeLa, U2OS, and HCT116 cells with
2 mM HU for 16 h and released them into normal medium
containing BrdU. Cells were then analyzed by flow cytometry
at different time points following HU release. This analysis
revealed that RNF4-depleted cells treated with HU exhibited a
delay in the incorporation of BrdU compared to control-depleted
cells (Figure 3A), with HCT116 cells exhibiting the most severe
defect. An effect of replication stress was also evidenced by a
reduction in the total percent of RNF4-depleted cells that
incorporated BrdU after HU release (6% reduction in HeLa
cells, 13% reduction in U2OS cells, and 25% reduction in
HCT116 cells at 40 min after HU release).

We also examined levels of CHK1 phosphorylation following
release from overnight HU treatment. In both control- and
RNF4-depleted cells, CHK1 phosphorylation remained
elevated at least 150 min after release (Figure 2B), suggesting
that dormant origin firing (see below) does not depend on
reduction of CHK1 phosphorylation after HU release.

As an independent measure of the effect of RNF4 on S phase
progression and exit, we treated HeLa and HCT116 cells with HU
for 16 h, released the cells into normal medium, and then
measured the mitotic index at different times after release.
RNF4-depleted HeLa cells exhibited a delay in transit to
metaphase following HU release compared to control-depleted
cells, but the results were not significant (Figure 3B). HCT116
cells exhibited a more severe delay (>2 h), and a majority of cells
appeared to fail to complete S phase. These results were consistent
with the extreme hypersensitivity of HCT116 cells to RNF4
depletion (Supplementary Figure S2A). Thus, RNF4 is
required for efficient resumption of DNA replication and
completion of S phase following prolonged HU-induced DNA
replication stress.

RNF4 was Required for Activation of
Dormant Origins After Replication Fork
Collapse
The delay in resumption of DNA synthesis after prolonged HU
treatment suggested that RNF4may be required for the activation
of dormant origins in proximity to collapsed replication forks.

FIGURE 2 | RNF4 depletion was associated with a cell cycle defect. (A)
RNF4-depleted cells exhibited increases in fraction of cells in the G1 phase
and decreases in fraction in S phase. Cell cycle distributions were determined
by incorporation of BrdU for 20 min, anti-BrdU and propidium iodide
staining, followed by flow cytometric analysis. Results of three independent
experiments were averaged and standard deviations shown. (B) RNF4-
depleted U2OS cells exhibited similar levels of CHK1 phosphorylation
(Ser317) with or without treatment with 2 mM HU for 16 h. Levels were also
measured in cells blocked in HU for 16 h then released into normal medium for
various times. (C) RNF4-depleted HCT116 cells exhibited similar cell cycle
distributions compared to control-depleted cells with or without treatment
with HU, caffeine, or both. Results of three independent experiments were
averaged and standard deviations shown.
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We therefore measured the effects of RNF4 depletion on
replication dynamics using the DNA fiber assay. To carry out
this assay, RNF4-depleted and control-depleted U2OS cells were
incubated in medium supplemented with 20 μM IdU for 20 min.
The IdU-containing medium was then replaced with medium
containing 2 mM HU for 2 or 16 h, followed by release from HU
and incubation in medium supplemented with 100 μM CldU for
30 min (Figure 4A). Cells were then processed for single molecule
stretching and immunofluorescence detection of halogenated
nucleotide incorporation. We then calculated the percentage of
DNA molecules labeled with both IdU and CldU (representing
replication fork restart), IdU only (representing irreversible fork
collapse and termination of replication), or CldU only
(representing replication from newly fired origins). In the
absence of HU, >95% of labeled DNA molecules in both
RNF4-depleted and control-depleted cells contained IdU and

CldU labels (Figure 4B), indicating that RNF4 is not required for
ongoing replication in the absence of replication stress.

In cells treated with HU for 2 hours, the increase in
collapsed replication forks in RNF4-depleted cells
compared to control-depleted cells was not significant
(Figure 4C). Following treatment with HU for 16 h, RNF4-
depleted and control-depleted cells also exhibited minimal
differences in the percentage of replication forks undergoing
restart. In contrast, however, RNF4-depleted cells exhibited a
significantly higher percentage of collapsed forks and a lower
percentage of forks starting at new origins compared to
control-depleted cells (Figure 4D). This observed defect in
new origin firing was rescued by the ectopic expression of
siRNA-resistant RNF4mRNA. These results provided further
evidence that RNF4 is required for efficient resumption of
DNA synthesis following replication stress and pointed to a

FIGURE 3 |RNF4 depletion was associated with a delay in cell cycle progression after replication stress. (A)Graphs of percent of S phase cells determined by BrdU
incorporation and flow cytometric analysis. RNF4- and control-depleted HeLa, U2OS, and HCT 116 cells were cultured in 2 mM HU for 16 h and subsequently released
into normal medium and labeled with 20 μMBrdU for 20 min at different times after release from the HU block. Results of three independent experiments were averaged
and standard deviations shown. Because error bar overlaps made the graphs difficult to view for some points, we have only shown the error bars in opposing
directions. (B)Graphs of the cumulative percent of cells entering mitosis after release fromHU block. RNF4- and control-depleted HeLa and HCT 116 cells were cultured
in 2 mM HU for 16 h and then released into normal medium. Cells entering mitosis were scored by DAPI staining. Results of three independent experiments were
averaged and standard deviations shown. Because error bar overlaps made the graphs difficult to view for some points, we have only shown the error bars in opposing
directions.
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role in the activation of dormant origins following fork
collapse.

BLMwas Found to be Regulated by RNF4 at
Sites of Replication Stress
BLM accumulates at stalled and collapsed forks, is sumoylated
in response to replication stress (Ouyang et al., 2009; Xiao
et al., 2015), and it has been reported to be a substrate of RNF4
in proteomic studies (Kumar et al., 2017). We therefore
hypothesized that RNF4 may regulate ubiquitin-mediated
turnover of BLM at collapsed forks, and that an
accumulation of excess BLM in the absence of RNF4 may
inhibit the normal resumption of DNA synthesis after
prolonged HU treatment.

To begin to test this hypothesis, we first investigated whether
RNF4 interacts with BLM and whether this interaction is
regulated by HU-induced replication stress. HeLa cells were
transfected with a Myc-RNF4 expression construct and Myc-
RNF4 was immunopurified from cell lysates prepared from
control and HU-treated cells. Immunoblot analysis with BLM
antibodies revealed an interaction in the absence of HU that
increased following HU treatment (Figure 5A). The predominant

form of BLM detected in the pulldown was unsumoylated BLM,
suggesting a possible direct interaction between BLM and RNF4.
Next, we tested whether sumoylated BLM is ubiquitylated by
RNF4 by performing in vitro conjugation assays using purified
recombinant proteins. Using an N-terminal fragment of GST-
tagged BLM (BLM 1-431) that is readily sumoylated in vitro (Zhu
et al., 2008), we found that sumoylated BLM was robustly
ubiquitylated in comparison to unmodified BLM (Figure 5B).

To further investigate whether sumoylation targets BLM for
ubiquitin-mediated turnover in vivo, we analyzed levels of
sumoylated BLM in U2OS cell lines that stably expressed
either a His-tagged SUMO-1 or His-tagged SUMO-2 using
nickel-NTA bead affinity pull down and immunoblot analysis.
As anticipated from previous studies (Eladad et al., 2005; Zhu
et al., 2008; Ouyang et al., 2009), BLMwas preferentially modified
by SUMO-2 at low levels under control conditions, and these
levels increased in response to HU treatment (Figure 5C).
Consistent with sumoylation functioning as a signal for
proteasome-mediated turnover, levels of sumoylated BLM
were greater in cells treated with MG132 compared to
untreated cells, and sumoylated BLM levels were further
increased in cells treated with both HU and MG132
(Figure 5C). We note that the ratio of sumoylated to

FIGURE 4 | RNF4 depletion reduced dormant origin activation following prolonged replication stress. (A) Schematic representation of the dual labeling DNA fiber
assay and possible outcomes. (B) Quantitative analysis of replication restart in control and RNF4-depleted U2OS cells in the absence of HU. Results from three
independent experiments with standard deviations are shown. (C) Quantitative analysis of replication restart in control and RNF4-depleted U2OS cells following release
from 2-h treatments with 2 mMHU. Results from three independent experiments with standard deviations are shown. (D)Quantitative analysis of replication restart
after release from 16-h treatments with 2 mMHU. Cells transfected with RNF4-specific siRNAs together with an siRNA-resistant RNF4 cDNA showed complementation.
Results from three independent experiments with standard deviations are shown.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7535359

Ellis et al. RNF4 Controls BLM in Replication Recovery

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


unsumoylated BLM was low, even under conditions of HU and
MG132 treatment (Figure 5C).

To test whether RNF4 regulates the turnover of sumoylated
BLM, we next measured sumoylated BLM levels in RNF4-
depleted cells. We also tested cells depleted for SENP6, a
chain-editing SUMO isopeptidase capable of limiting poly-
sumoylation and thereby RNF4 recognition (Mukhopadhyay
et al., 2010). In untreated cells, RNF4 depletion had minimal
effect on sumoylated BLM levels, whereas levels were significantly
increased when RNF4 was depleted in HU-treated cells
(Figure 5D). Similarly, SENP6 depletion alone had minimal
effect on sumoylated BLM levels in untreated cells, whereas
levels were increased in combination with HU treatment. In
comparison to the single knockdowns, an increase in
sumoylated BLM levels was observed in cells co-depleted of
both SENP6 and RNF4, and the highest levels of sumoylated
BLM were detected in co-depleted cells treated with HU
(Figure 5D).

Direct investigation of kinetics of sumoylated BLM turnover in
control and RNF4-depleted cells was complicated by the low ratio

of modified to unmodified BLM. In addition, studies using
inhibition of new protein synthesis with cycloheximide were
not possible because RNF4 is itself turned over within 2 h of
cycloheximide addition (Supplementary Figure S3A).

Finally, to investigate the effect of RNF4 on BLM
accumulation at sites of collapsed DNA replication forks, we
quantified the number and area of BLM foci in control and RNF4-
depleted cells by indirect immunofluorescence confocal
microscopy (Figure 5E; Supplementary Figure S3B). In the
absence of HU, we found that the number and area of BLM
foci were similar in RNF4- and control-depleted cells. In contrast,
following HU treatment for 16 h, both the number of BLM foci
and their focal areas were significantly greater in RNF4-depleted
cells compared to control-depleted cells. Because RPA is also
sumoylated and accumulates at collapsed replication forks (Dou
et al., 2010), we quantified RPA foci and focal areas in both
untreated and treated cells. Although the numbers of RPA foci
remained the same, the areas of RPA foci were significantly
greater in RNF4-depleted cells compared to control-depleted
cells following HU treatment. Altogether, these findings

FIGURE 5 | RNF4 modulated BLM levels at sites of replication stress. (A) HeLa cells were transfected with Myc-tagged RNF4 and cultured in the presence or
absence of HU. RNF4 was immunopurified from cell lysates and protein complexes were analyzed by immunoblot analysis with anti-Myc and anti-BLM antibodies. (B) A
purified GST-tagged N-terminal fragment of BLM (amino acids 1- 431) modified by SUMO-2 in vitro is ubiquitylated by RNF4 in vitrowhereas unmodified BLM is not (right
panel). Ubiquitin alone (Ub). Input levels of GST-BLM and GST-BLM-SUMO2 were determined by immunoblot analysis (two left panels). (C) Levels of SUMO-BLM
increase with 2 mMHU treatment for 12 h, treatment with MG132 for 3 hours, or treatment with HU for 12 h followed byMG132 for 3 h. Pull-downs with Ni-NTA agarose
beads were performed in U2OS cells that express a His-tagged SUMO1 or SUMO2. U2OSWCL � control U2OS whole cell lysate. (D) Levels of SUMO-BLM increase in
U2OS cells depleted of RNF4, SENP6, or both, in response to 2 mMHU for 12 h or in the absence of treatment. Ni-NTA pull-downs shown as in (C). (E) Excess BLM and
RPA proteins accumulated at collapsed forks in RNF4-depleted HeLa cells treated with 2 mMHU for 16 h compared to control-depleted cells. Left panel, enumerations
of BLM and RPA foci. Right panel, quantifications of focal areas of BLM and RPA foci. Results from three independent experiments were combined. NT, not treated.
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demonstrated that sumoylated BLM is a substrate for RNF4-
mediated ubiquitylation and proteasome-mediated turnover, and
that BLM accumulates at sites of collapsed DNA replication forks
in the absence of RNF4.

BLM Contributed to Suppression of
Dormant Origin Firing in RNF4-Depleted
Cells
To investigate whether the accumulation of BLM at collapsed
replication forks in RNF4-depleted cells contributed to defects in
replication restart, we next asked whether co-depletion of BLM
could rescue the observed defects in dormant origin firing. We
again used DNA fiber assays to analyze replication dynamics in
U2OS cells co-depleted of BLM and RNF4 (Figure 6A).
Consistent with previous findings (Davies et al., 2007), we
observed an increase in the proportion of DNA replication
restart events from new origins in BLM-depleted cells after
release from treatment with HU for 16 h compared to control-
depleted cells (Figure 6B). In addition, we again observed a
decrease in replication restart from new origins in RNF4-depleted
cells. In contrast, replication restart from new origins in cells co-
depleted of RNF4 and BLM was similar to control-depleted cells,
which demonstrated that BLM depletion rescued the defect in
dormant origin firing observed in RNF4-depleted cells. These
findings were consistent with our hypothesis that an
accumulation of excess BLM at collapsed replication forks
inhibits the normal resumption of DNA replication following
prolonged HU treatment.

DISCUSSION

The experiments presented here have implicated RNF4 function
in recovery from fork collapse. Brief exposure of RNF4-depleted
cells to HU elicited little effect on replication fork stability,
whereas RNF4-depleted cells exposed to prolonged HU
treatment—a treatment that causes widespread fork
collapse—exhibited a delay in the resumption of DNA

synthesis after removal of drug and an increase in the
percentage of cells that permanently left the cell cycle, which
was demonstrated in both flow cytometric and DNA fiber assays
(Figures 3, 4). Extending the results of earlier proteomic studies
(Kumar et al., 2017), we showed that BLM interacts with RNF4,
sumoylated BLM is ubiquitylated by RNF4 in vitro, and RNF4
depletion led to a substantial increase in SUMO-BLM in HU
treated cells (Figure 5). Moreover, depletion of RNF4 led to
excessive accumulation of BLM and RPA at collapsed forks as
evidenced by increased focal areas. The observation that the
number of RPA foci per cell remained the same whilst the
number of BLM foci per cells increased could be an effect of
better detection, as increased BLM protein accumulation at
collapsed forks may have brought more sites of collapsed forks
at which BLM localized above the detection threshold. The
generation of excess SUMO-BLM in RNF4-depleted, HU-
treated cells could explain the observed increases in BLM focal
areas due to higher-order interactions, because BLM contains
both multiple SUMO acceptors sites and a SIM and BLM can
form a multimer in vitro (Karow et al., 1999; Xu et al., 2012).
Earlier studies showed that the SUMO E2 conjugating enzyme
UBC9 and E3 ligase NSMCE2 are targets for RNF4 that enforce a
negative regulatory loop (Kumar et al., 2017). In vitro, UBC9 is
sufficient for poly-sumoylation or multi-mono-sumoylation of
BLM (Eladad et al., 2005) and we showed recently that NSMCE2
is required for sumoylation of BLM and for accumulation of BLM
at collapsed replication forks in response to HU treatment (Pond
et al., 2019). Although we cannot rule out the possibility that BLM
accumulates excessively in HU-treated, RNF4-depleted cells due
to damage at the replication fork, we favor the hypothesis that the
excessive accumulation of BLM has pathological effects on
recovery of DNA synthesis after prolonged HU exposure and
that, by controlling the levels of sumoylated BLM, RNF4
facilitates resumption of DNA synthesis after widespread fork
collapse. We previously showed that SD-BLM accumulates
excessively at stressed replication forks, suggesting this
accumulation is an upstream event. We found here that the
delay in resumption of DNA synthesis in RNF4-depleted cells was
rescued by co-depletion of the BLM protein (Figure 6).

FIGURE 6 | BLM depletion rescued effects of RNF4 depletion on DNA replication stress responses. (A) Immunoblot analysis of U2OS cell lysates following siRNA-
mediated depletion of RNF4, BLM, or BLM together with RNF4. (B)Quantitative analysis of replication restart in U2OS control, RNF4-depleted, BLM-depleted, or RNF4
and BLM co-depleted cells after release from 16-h 2 mM HU treatments. Results from three independent experiments with standard deviations are shown.
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The mechanism by which RNF4 contributes to immediate
resumption of DNA synthesis is not known. One possibility is
that the excess SUMO-BLM that accumulates at collapsed forks
in RNF4-depleted cells ties up large amounts of the unsumoylated
BLM and that BLM needs to be released and recycled in order to
achieve efficient dormant origin firing or resolution of fork
impediments that prevent rapid replisome take off at already-
fired dormant origins. We do note, however, that the ratio of
sumoylated to unsumoylated BLM is low even under conditions
that limit its turnover (RNF4 and SENP6 knockdown andMG132
treatment). These low levels are nonetheless consistent with
functionally relevant levels of sumoylation observed with other
SUMO substrates (Hay, 2005). Another possibility is that RNF4-
mediated degradation of SUMO-BLM at collapsed forks drives
the disassembly of multiple factors in repair foci that are needed
for dormant origin firing or replisome take off. Moreover, we do
not know that BLM is the only sumoylated protein whose
depletion would result in rescue. Because multiple damage-
response factors are sumoylated, it is possible that depletion of
other sumoylated proteins at sites of replication stress could also
rescue the DNA synthesis resumption defect. In particular,
interesting candidates would be proteins that contain both
SUMO acceptor sites and SIMs, such as SLX4, which could
mediate higher-order interactions and focus formation
(Bursomanno et al., 2015; Hendriks et al., 2015; Gonzalez-
Prieto et al., 2021).

Short-term treatment of BLM-deficient cells with HU induces
excessive fork collapse and dormant-origin firing relative to
normal cells (Davies et al., 2007; Patel et al., 2017). This
evidence argues that BLM itself does not play a direct role in
activating dormant origin firing, nor has it a known activity in the
firing of origins of replication in early or late periods of S phase
from in vitro studies (On et al., 2014; Kurat et al., 2017). For these
reasons, we do not favor a hypothesis that places SUMO-BLM in
an inhibitory role in firing of dormant origins.

Because RNF4 depletion promotes an increase in the size and
numbers of PML bodies (Lallemand-Breitenbach et al., 2008;
Tatham et al., 2008), it was formally possible that the flux of
trafficking of damage response proteins that normally accumulate
in PML bodies due to sumoylation or SIMs could be delayed by
RNF4 depletion. In untreated RNF4-depleted cells, there is an
increase in BLM foci approximately corresponding to the increase
in PML bodies (Bohm et al., 2015). BLM’s localization to PML
bodies relies primarily on its SIM (Eladad et al., 2005; Zhu et al.,
2008); however, we did not find evidence that BLM recruitment
to sites of replication stress was less efficient, because BLM
substantially co-localized with RPA foci after HU treatment
and RPA is not a PML-associated nuclear protein.

RNF4 is important in the repair of DSBs, because RNF4-
depleted cells are hypersensitive to c-radiation and have a defect
in the recruitment of RAD51 to DSBs (Galanty et al., 2012; Yin
et al., 2012; Vyas et al., 2013). Our investigation began with the
question concerning the hypersensitivity of RNF4-depleted cells
to HU treatment and with the hypothesis that RNF4 would be
important for the repair of replication-associated DSBs
(Figure 1). However, we did not observe a role for RNF4 in
recruitment of RAD51 to collapsed replication forks caused by

prolonged HU treatment. RNF4 depletion did not impair ATR-
or ATM-dependent checkpoint signaling in response to HU, as
indicated by normal c-H2AX levels, nor were levels of
phosphorylated CHK1 affected by RNF4 depletion with or
without HU treatment (Figure 2B). Levels of SCE were
similar in RNF4-depleted compared to control-depleted cells
with or without HU treatment (Figure 1F). To our surprise,
RNF4-depleted cells were not hypersensitive to CPT, and levels of
CPT-induced DSBs were unaffected by RNF4 depletion (Figures
1C,D), despite the role of RNF4 in degradation of topoisomerase
I-DNA cleavage complexes (Sun et al., 2020). Treatment with
CPT generates a predominance of single-ended, replication-
associated DSBs, and our evidence indicates that the repair of
these breaks is not affected by RNF4 depletion. Because excess
BLM accumulated at collapsed forks without affecting the rate of
SCEs, our results also excluded a hypothesis in which BLM or
other RNF4-regulated HR factors must be extracted from
collapsed forks in order for HR repair to proceed. These data
highlight the importance of damage context. Previous evidence
has shown that the requirements for recruitment of RAD51 to
two-ended DSBs and stalled forks are different (Chaudhuri et al.,
2016). Moreover, previous results have shown that cells held in
HU for up to 24 h do not accumulate many DSBs (Petermann
et al., 2010); instead, DSBs accumulate after release from HU
blockade (Pond et al., 2019) or after longer treatments with HU.
Some fraction of the DSBs that accumulate after release from HU
occur in late S phase, indicating that breaks occur when active
forks converge on collapsed forks. The SCE results shown here
indicate that repair of these DSBs was normal in RNF4-depleted
cells. Our results did not address the question whether RNF4 was
required for the repair of breaks generated during mitosis or at
cytokinesis, where two-ended DSBs are thought to be generated
(Spies et al., 2019).

In mouse knockout studies, RNF4 was found to be essential for
embryogenesis and Rnf4-/- mouse embryonic fibroblast lines
could not be obtained in at least one study (Hu et al., 2010;
Vyas et al., 2013). RNF4-/- chicken DT40 cells are viable, but they
have limited proliferation capacity due to chromosomal loss (Yin
et al., 2012; Hirota et al., 2014); RNF4 knock-out human cell lines
generated using CRISPR technology have been reported (Maure
et al., 2016; Sun et al., 2020), which suggests that RNF4 is not cell
essential. However, colony survival assays have consistently
shown a ∼50% reduction in RNF4-depleted cells relative to
control, indicating that RNF4 has a role in cell viability.
Similarly, BLM-deficient cells proliferate less robustly than
normal cells. These observations are consistent with the
synthetic lethality of the yeast orthologs of BLM and RNF4,
namely, SGS1 and the SLX5-SLX8 complex (Mullen et al.,
2001). We found that RNF4-depleted cells exhibited an
increase in the fraction of cells in the G1 phase and showed
evidence that this increase was not a result of a DNA damage
signal (Figure 2). Although it has been proposed that the essential
function of RNF4 is due to its role in maintaining genomic
integrity, RNF4 also plays important roles in gene
transcription (Moilanen et al., 1998), global DNA methylation
levels (Hu et al., 2010), chromatin structure (Hendriks et al.,
2015), and regulation of oncogenes (Thomas et al., 2016), and it
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could be the combination of all these roles that leads to loss of
viability in untreated cells.

The present study showed that the process of replication fork
collapse and dormant origin firing are connected through the
action of RNF4. RNF4 is required for the clearance of BLM from
collapsed forks and the failure to release BLM from collapsed
forks affected the recovery of cells from prolonged replication
stress. With the varied roles that RNF4 plays in DNA damage
responses, further investigation into its efficacy as a potential
target in cancer treatments seems warranted. As a cancer target,
the function of RNF4 in turnover of sumoylated BLM and other
HR proteins could perhaps be utilized to slow recovery in
replication stressed cells.
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Supplementary Figure S1 | (A) Bar graphs showing results of clonogenic
survival assays on RNF4-depleted and control-depleted U2OS cells exposed
to varying concentrations of HU. Results from three independent assays were
averaged and standard deviations shown. (B) Bar graphs showing results of
clonogenic survival assays on RNF4-depleted and control-depleted U2OS
cells exposed to varying concentrations of camptothecin (CPT) for three
hours. Results from three independent assays were averaged and
standard deviations shown. (C) Bar graphs showing the relative levels of
DSBs in RNF4-depleted and control-depleted HeLa cells exposed to varying
concentrations of CPT for three hours, as determined by pulsed field gel
electrophoresis. Induced DSBs were normalized to DSBs in untransfected
and untreated cells. Results from three independent experiments were
averaged and standard deviations shown. (D) Box and whiskers plot
showing the quantifications of focal areas of RAD51 focal accumulations,
in RNF4-depleted and control-depleted cells with and without treatment with
2 mM HU for 16 h. RAD51 localized to PML nuclear bodies in untreated cells,
and PML bodies have been noted to enlarge in RNF4-depleted cells. Results
from three independent experiments were combined. NT, not treated.

Supplementary Figure S2 | Proliferation defect in RNF4-depleted HCT116 cells
exposed to 2 mM HU for 16 h. Results from three independent experiments with
standard deviations are shown.

Supplementary Figure S3 | (A) BLM stability was unaffected by RNF4 depletion in
HeLa cells treated with cycloheximide. Cycloheximide was added at time zero and
treated cells examined hourly for six hours. Untreated control examined at six hours
is indicated by an asterisk. Note that RNF4 levels were reduced by more than half
after 2 h. (B) Representative indirect immunofluorescence image of BLM and RPA
foci detected in HeLa cells transfected with negative control and RNF4 siRNAs and
treated with 2 mM HU for 16 h.
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