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Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome
(AIDS). HIV infection affects the functions and metabolism of T cells, which may
determine the fate of patients; however, the specific pathways activated in different
T-cell subtypes (CD4" and CD8* T cells) at different stages of infection remain unclear.
We obtained transcriptome data of five individuals each with early HIV infection, chronic
progressive HIV infection, and no HIV infection. Weighted gene co-expression network
analysis was used to evaluate changes in gene expression to determine the antiviral
response. An advanced metabolic algorithm was then applied to compare the alterations
in metabolic pathways in the two T-cell subtypes at different infection stages. We identified
23 and 20 co-expressed gene modules in CD4* T and CD8" T cells, respectively. CD4*
T cells from individuals in the early HIV infection stage were enriched in genes involved in
metabolic and infection-related pathways, whereas CD8" T cells were enriched in genes
involved in cell cycle and DNA replication. Three key modules were identified in the network
common to the two cell types: NLRPT modules, RIPKT modules, and RIPK2 modules. The
specific role of NLRP1 in the regulation of HIV infection in the human body remains to be
determined. Metabolic functional analysis of the two cells showed that the significantly
altered metabolic pathways after HIV infection were valine, leucine, and isoleucine
degradation; beta-alanine metabolism; and PPAR signaling pathways. In summary, we
found the core gene expression modules and different pathways activated in CD4* and
CD8" T cells, along with changes in their metabolic pathways during HIV infection
progression. These findings can provide an overall resource for establishing
biomarkers to facilitate early diagnosis and potential guidance for new targeted
therapeutic strategies.

Keywords: HIV infection, T cell, transcriptional modules, metabolomics, weighted gene co-expression network
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INTRODUCTION

Acquired immunodeficiency syndrome (AIDS) is caused by
human immunodeficiency virus (HIV) infection (Sepkowitz,
2001), a lentivirus belonging to the subgroup of retro-RNA
viruses. HIV infection induces changes in T lymphocyte
functions, leading to alterations in the entire immune system of
the host and disruption of homeostasis. These hallmarks of HIV
infection manifest differently based on the infection period (Weiss,
1993).

As a component of the host’s immune defence system, T cells
participate in a series of immune responses against HIV infection
(Gupta and Saxena, 2021). Both CD4" and CD8" T cells participate
in the host adaptive immune response against bacterial and viral
infections. In particular, CD4" T cells can “help” the activity of other
immune cells by releasing cytokines and small protein mediators,
whereas CD8" T cells directly kill the target cells after activation in
the human body (Hoyer et al., 2014). HIV mainly infects CD4" T
lymphocytes. Clinically, HIV infection results in low blood CD4"
T-cell levels. In addition, CD4" T cells directly inhibit HIV by
promoting other T cells to resist viral infection (Johnson et al,
2015). CD8" T cells are widely distributed on the surface of
inhibitory and cytotoxic T lymphocytes, and their kinetics differ
from those of CD4" T cells during HIV infection (Xu et al.,, 2014).
However, the overall molecular mechanisms underlying the
changes and actions of CD4" and CD8" T cells after HIV
infection remain to be elucidated.

Moreover, changes in metabolism also represent a key to
understanding the immune response during pathogen
invasion. Metabolism plays a fundamental role in supporting
the growth, proliferation, and activation status of T cells (Palmer
et al., 2016; Masson et al., 2017). For example, CD8" T cells
increase oxidative phosphorylation and steadily increase the
glycolysis rate, whereas CD4" T cells reduce fatty acid
oxidation (Bantug et al., 2018). In HIV-1 infection, changes in
cell metabolism affect the susceptibility of CD4" T cells; HIV-
infected CD4" T cells exhibit elevated metabolic activity and
metabolic potential compared with those of HIV-exposed but
uninfected cells (Valle-Casuso et al.,, 2019). Detection of gene
expression changes related to metabolism could provide insight
into changes in metabolic pathway activity under HIV infection
(Lee et al.,, 2012).

Weighted Correlation Network Analysis (WGCNA) is a
method that can be used to analyze highly correlated gene
modules in multiple samples and discover the relationship
between the modules and specific functions (Langfelder and
Horvath, 2012). It can provide panoramic information of
T cell transcriptome modules after HIV infection. We
performed WGCNA to assess changes in gene expression
profiles in human CD4" T cells and CD8" T cells during
HIV-1 infection. We then focused on acute HIV infection to
explore the possible antiviral effects of the two cell types after
their interaction with HIV-1 and to identify some key pathways
and targets involved in the infection response. Ultimately, this
study can highlight the metabolic changes occurring in T cells at
different stages of HIV infection using the metabolic algorithm.
These findings can show the panoramic transcription and
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metabolism modules and provide new insights for further
biomarker discovery. This research can facilitate the early
detection of HIV infection and ultimately the development of
new strategies for effective infection control.

MATERIALS AND METHODS

Data Collection

We first searched the GEO database GSE6740 and downloaded
the gene expression profiles from five individuals each with acute
HIV infection, chronic progressive HIV infection, and no HIV
infection. These data were reported and deposited to the GEO
database by Hyrcza et al. (2007).

WGCNA and Module Recognition

WGCNA is a widely used data-mining method in genomic
applications. We used the WGCNA software package in the R
environment (R Foundation for Statistical Computing, Vienna,
Austria) to construct a co-expression network of differentially
expressed genes between HIV-infected and non-infected
individuals. The algorithms were used to calculate the
correlations between the levels of differentially expressed genes
after the selection of an appropriate threshold (), and then a
scale-free network was constructed. We used the minimum value
of 3 greater than 0.85 as the most suitable threshold, and then
used the topological overlap matrix (TOM) (direct correlation +
indirect correlation) between genes for hierarchical clustering to
construct a clustering tree, which contained different gene
modules represented by different colours. In this process of
module identification, we set the minimum number of genes
contained in the module to 50 (Zhang and Horvath, 2005).

Metabolic Pathway Activity Analysis

The number of metabolic genes enriched in a particular pathway
was combined with the expressional values of the genes using the
following formulas:

E. = Zk:lglk (1)

1
n;
J

where Ej; indicates the average expression level of the ith gene in
the jth cell type, g;x indicates the expression level of the ith gene in
the kth sample, and #; indicates the number of samples in the jth
cell type;

— @
N ) j E;j
where N indicates the number of cell types, and r;; represents the
ratio of the average expression level of the ith gene in the jth cell
type to the average level of the gene in all cell types. A ratio greater
than 1 indicates that the gene expression level in the cell is higher
than the average expression level in all cells, and a ratio below 1

indicates the opposite pattern; and
Stj _ Zim:tl‘;}l]i X Tij (3)

g

i=1
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FIGURE 1 | Identification of the co-expressed gene modules. (A) Hierarchical clustering dendrogram of the co-expressed gene modules in CD4* T cells. (B) The
number of genes contained in 23 modules of CD4 celis. (C) Correlation coefficients of module-trait relationships in CD4™ T cells at different infection periods are indicated
by different colours. (D) Hierarchical clustering dendrogram of the co-expressed gene modules in CD8* T cells. (E) The number of genes contained in 20 modules of CD8
cells. (F) Correlation coefficients of module-trait relationships in CD8" T cells at different infection periods are indicated by different colours.
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where s;; indicates the score value of the tth pathway in the
jth cell type (the higher the score, the stronger the
significance), m, indicates the number of genes in the fth
pathway, and W; represents the weighted value of the ith
gene (the reciprocal of the tth pathway metabolic gene)
(Xiao et al., 2019).

Functional Annotation and Protein-Protein

Interaction Network

Using clusterProfiler (an R package), we performed pathway
enrichment analysis of the differentially expressed genes with
respect to Gene Ontology terms (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, using default
parameters. We then constructed a protein-protein
interaction network based on these data using the STRING
database in Cytoscape version 3.8.2. We also identified the
chromosomal localisation of all genes in the target pathway
by using the Ensembl and Genecards websites.

RESULTS
WGCNA Identification of Genetic Modules

In our study, the sample characteristics were divided into three
stages as follows: Healthy, HIV acute infection, and HIV
chronic infection. Then we choose the appropriate threshold
(Supplementary Figure S1). We combined the relevant traits
and modules of the sample for joint analysis to show the
correlation between modules and traits using WGCNA’s
systems biology method. Different modules were
represented by different colours. Each module contained a
set of highly connected genes, and the genes in each module
might participate in similar pathways or have the same
biological functions. These modules ranged from large to
small according to the number of genes that they contained.

The results of co-expression network analysis are shown in
Figure 1. The number of genes in the module is shown in Figures
1B,E and Supplementary Table S1. The correlation coefficient of
each module is shown in Figures 1C,F. We identified 23 co-
expressed gene modules for CD4™ T cells (Figure 1A). In terms of
the number of genes contained in the module, MEblue was the
largest module, containing 2,786 genes, whereas MEgrey was the
smallest module, containing 13 genes. From the perspective of the
correlation coefficient after infection, the module with the largest
negative correlation coefficient was MEskyblue, with a value of
—0.65; the module with the largest positive correlation coefficient
was MEorangered4, with a value of 0.77. Each module has
different functions. For example, Leukocyte transendothelial
migration and FoxO signaling pathway are enriched in the
MEskyblue.

We confirmed 20 co-expressed gene modules in CD8" T cells
(Figure 1D). From the perspective of the number of genes
contained in the module, MEturquoise was the largest module,
containing 3,214 genes; MEgrey was the smallest module,
containing only one gene. From the perspective of the
correlation coefficient after infection, the module with the
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largest negative correlation coefficient was MEdarkgrey, with a
value of —0.6; the module with the largest positive correlation
coefficient was MEbrown, with a value of 0.8. In addition, the
coefficient of the MElightgreen ranked second, reaching 0.72.
RNA transport and Viral carcinogenesis are enriched in the
MElightgreen.

Key Module-Activated Cell Processes

By calculating the correlation between the gene modules and
the phenotype matrix, the key modules were screened out (i.e.
those exhibiting higher correlations). The “salmon” module
and the “orangered4” module were selected to represent the
genes affected during early and chronic infection in CD4"
T cells, respectively, whereas the “brown” module and the
“skyblue” module were selected to represent early and chronic
infection in CD8" T cells, respectively. We draw scatter plots
of the relationship between gene saliency and module
membership in the four modules respectively (Figure 2).
Functional annotation of the key modules showed a distinct
biological significance bias for each module (Supplementary
Table S2) for example, the “salmon” module (early infection of
CD4" T cells) was significantly enriched in inactivation of
metabolic and infection-related pathways (Figure 2A),
whereas the “orangered4” module (chronic infection of
CD4" cells) was most significantly enriched in the TGF-beta
signaling pathway and IL-17 signaling pathway, among others
(Figure 2B). By contrast, the cell cycle and DNA replication
were activated in the early infection CD8" T cells (Figure 2C),
whereas the proteasome and sphingolipid metabolism were
largely activated in CD8" T cells in the chronic infection stage
(Figure 2D).

Critical Pathways During Acute HIV

Infection

We focused on the similarities and differences in the activated
gene pathways between CD4" and CD8" T cells during early
infection. There were 20 special pathways among CD4 cells and
70 special pathways for CD8 cells. In total, 34 gene pathways
(Figure 3A) overlapped between the two cell types. Among
them, the top pathways mainly included the following:
metabolic pathways, human immunodeficiency virus 1
infection, NOD-like receptor signaling pathway, and cAMP
signaling pathway, among others. In addition to metabolic
pathways and HIV infection pathways, two pathways with
broad significance, NOD-like signaling pathways rank the
top among other pathways. So we further focused on the
NOD-like receptor (NLR) pathway. NLRs are type pattern
recognition receptors for the host, which can recognise the
pathogen-related molecular patterns of viruses to regulate
antiviral innate immune signaling pathways, thereby
regulating the innate antiviral immune response (Zheng,
2021). We first identified the chromosomal localisations for
all of the genes enriched in the NLR pathway (Figure 3B), as
well as the expression modules showing consistent direction of
change (down- or up-regulated) in the two cells in the context
of early and chronic infection (Figures 3C-F). The modules
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FIGURE 2| Co-expressed gene modules that interact with other genes in different stages of HIV infection. (A) Distribution of genes in the salmon module, GO and
KEGG pathway enrichment, and key genes in the early HIV infection stage of CD4* T cells. (B) Distribution of genes in the orange4 module, GO and KEGG pathway
enrichment, and key genes of CD4* T cells in the chronic HIV infection stage. (C) Distribution of genes in the brown module, GO and KEGG pathway enrichment, and key
genes in the early HIV infection of CD8* T cells. (D) Distribution of genes in the sky blue module, GO and KEGG pathway enrichment, and key genes in the chronic

HIV infection of CD8" T cells.
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during different infection periods. (E,F) Co-upregulated and co-downregulated gene modules in CD8* T cells during different HIV infection periods. (G-1) Protein-
protein interaction network centralised with respect to NLRP1 (G), RIPL1 (H), and RIPK2 (I).
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that were co-up-regulated in CD4 and CD8 cells after infection
included IRF9, IRF7, PLCB3, CXCL3, and TXN, among others.
The co-down-regulated modules we identified included JAKI,
PKN2, TNF, NLRPI, RIPK1, and RIPK2, among others.
Among them, three core modules were selected, including
NLR family pyrin domain containing 1 (NLRP1), receptor-
interacting serine/threonine kinase 1 (RIPK1), and RIPK2. By
constructing a protein-protein interaction network, we
identified the genes that might interact with each other in
the three modules (Figures 3G-I).

Differential activation of cell metabolism between CD4" and
CD8" T cells before and after HIV infection.

There are a total of 9,700 genes in our data set, and 1,352
genes related to metabolism are collected. These metabolic
genes come from metabolic pathways. We selected 296 genes
expressed by both as the most basic metabolic genes in this
study. Since CD4" and CD8" T cells play different roles in the
immune response, we assessed the differential activation and
characteristics of these two cell types and screened their co-

expressed metabolic genes. The cell metabolism pathways were
differentially activated before and after infection. HIV infection
also appears to disrupt the metabolic balance between these two
cell types; some metabolic pathways were activated, whereas
others remained unchanged. As shown in Figure 4, the
pathways that were significantly altered in both types of
cells in early infection included valine, leucine, and
isoleucine degradation; beta-alanine metabolism; and PPAR
signaling pathways. These three pathways also showed the
greatest change in CD4" T cells between the early infection
and chronic infection stages. Among them, the PPAR signaling
pathway also has significant changes in pathogen infections
such as ZIKV and Neisseria meningitidis. More HIV-induced
metabolic abnormalities were detected in CD8" T cells
compared with those occurring in CD4" T cells. Before and
after infection, the majority of pathways were changed in CD8"
T cells, along with some pathways such as the arachidonic acid
metabolism pathway that was unchanged. In addition to the
three most significant pathways mentioned above, the oxidative
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phosphorylation, fatty acid metabolism, and lysine degradation
pathways also exhibited relatively large changes in CD8" T cells
between the acute and chronic infection stages. Thus, changes
in these metabolic pathways may be conducive for these two
cell types to cope with HIV infection.

DISCUSSION

The primary function of CD4" T cells after HIV infection is
related to DNA repair in response to DNA damage stimuli,
along with positive regulation of cellular processes and other
pathways, whereas CD8" T-cell functions after infection are
mainly related to cell mitosis, signal transduction, and
transmission (Xu et al., 2014). In addition, network-based
methods have been widely used in biological data analysis
(Peng et al., 2021a; Peng et al., 2021b). Therefore, we use
WGCNA analysis to find that CD4" T cells from individuals in
the early HIV infection stage were enriched in genes involved
in metabolic and infection-related pathways, whereas CD8"
T cells were enriched in genes involved in cell-related changes,
including the cell cycle and DNA replication. During chronic
HIV infection, CD4 cells are mainly enriched in pathways
related to immune defense, such as IL-17 signaling pathway.
CD8 cells are mainly enriched in proteasome and sphingolipid
metabolism. This finding identified many other pathways
altered in the two T-cell subtypes at different stages of HIV
infection. It also expands evidence for the field to enrich
overall understanding of HIV infection-related gene
alterations and modules. However, in chronic infection, the
two types of cells share fewer pathways. Therefore, when
screening critical pathways, we choose acute infection,
which makes it easier to find infection markers and
therapeutic targets.

In addition, few studies have focused on the systematic
characteristics of the two cells at different stages of HIV
infection or the similarities and differences between the two
cells at the same stage. We used GO annotations and
KEGG pathways to analyze the core pathways in the 2 T cell
types during early and chronic HIV infection, and then
explored key co-expression modules among them. We
identified three key down-regulation modules: NLRP1
module, RIPK1 module and RIPK2 module. The central
gene of the module represents the function of the module to
a certain extent. Among them, RIPK1 and RIPK2 are the key
mediators of cell apoptosis and death, as well as the
inflammatory pathways (Festjens et al., 2007). RIPK1 and
RIPK2 can be cleaved by HIV-1 protease, which affects
important biological processes in the body such as host
defence pathways and cell death (Wagner et al, 2015).
However, the specific role of NLRP1 in the regulation of
HIV infection in the human body remains to be
determined. NLR is a type of germline-encoded pattern
recognition receptor, which is mainly involved in the
cytosolic sensing mechanism to detect viral infections in the
body. NLRs participate in immune signaling pathways,

Characteristics of HIV-Infected Cell Modules

including inflammasomes, nuclear factor -kappa B, and type
I interferon signaling (Lupfer and Kanneganti, 2013). In terms
of viral infection, NLRs play an impor tant role in both innate
and adaptive immunity. NLRP1 was the first protein identified
to form an inflammasome and is a sensor for a variety of
pathogens, which can activate an antibacterial or antiviral
immune response (Chavarria-Smith and Vance, 2015;
Chavarria-Smith et al., 2016). RIPK family members have
also been documented to be related to NLRs. The
association of RIPK and NLRPI1 in this study further
confirms their role in HIV infection, although further
experimental studies are needed to explore their actual link.
Moreover, the core genes identified in each module, and the
specific types of genes in the modules corresponding to
different infection stages and cell types could guide new
therapeutic targets of HIV infection.

Cellular immune metabolism has become one of the hottest
research topics in immunology (Medzhitov, 2015). Previous
studies also showed that HIV infection led to upregulation of
amino acid metabolism, the tricarboxylic acid cycle, and
fatty acid metabolism in human CD4" T cells (Chan et al.,
2007; Ringrose et al., 2008; Zhang et al., 2017). In our study, we
utilised a novel algorithm to analyse differences in the
metabolic pathways of CD4" and CD8" T cells before and
after HIV infection. Our data demonstrate significant
changes in three pathways of oxidative phosphorylation,
fatty acid metabolism, and lysine degradation in
CD8+T cells after early HIV infection compared with those
assessed from individuals with chronic infection. The degree of
metabolism of CD8 cells after infection is much stronger than
that of CD4 cells. We have enriched the metabolic pathways of
the two cells that are significantly altered in the early stage of
HIV infection. These metabolic characteristics may be of
great significance and warrant further investigation into
identifying the mechanism of action of these two immune
cell types after HIV infection.

In this study, we used WGCNA technology and metabolic
algorithms to show a panoramic view of the core modules and
metabolic pathways associated with HIV infection, providing new
ideas and strategies for the development of HIV therapeutic
targets and early diagnosis.
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