
An Epigenetic Aging Clock for Cattle
Using Portable Sequencing
Technology
Ben J. Hayes1†, Loan T. Nguyen1†, Mehrnush Forutan1, Bailey N. Engle1, Harrison J. Lamb1,
James P. Copley1, Imtiaz A. S. Randhawa2 and Elizabeth M. Ross1*

1Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD,
Australia, 2School of Veterinary Science, University of Queensland, Gatton, QLD, Australia

Extensively grazed cattle are often mustered only once a year. Therefore, birthdates are
typically unknown or inaccurate. Birthdates would be useful for deriving important traits
(growth rate; calving interval), breed registrations, and making management decisions.
Epigenetic clocks use methylation of DNA to predict an individual’s age. An epigenetic
clock for cattle could provide a solution to the challenges of industry birthdate recording.
Here we derived the first epigenetic clock for tropically adapted cattle using portable
sequencing devices from tail hair, a tissue which is widely used in industry for genotyping.
Cattle (n � 66) with ages ranging from 0.35 to 15.7 years were sequenced using Oxford
Nanopore Technologies MinION and methylation was called at CpG sites across the
genome. Sites were then filtered and used to calculate a covariance relationship matrix
based on methylation state. Best linear unbiased prediction was used with 10-fold cross
validation to predict age. A second methylation relationship matrix was also calculated that
contained sites associated with genes used in the dog and human epigenetic clocks. The
correlation between predicted age and actual age was 0.71 for all sites and 0.60 for dog
and human gene epigenetic clock sites. The mean absolute deviation was 1.4 years for
animals aged less than 3 years of age, and 1.5 years for animals aged 3–10 years. This is
the first reported epigenetic clock using industry relevant samples in cattle.
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INTRODUCTION

Despite the success of genomic prediction in cattle, which has driven high rates of genetic gain in
some livestock industries, there are still some challenges with implementation of genomic selection,
especially in extensive beef cattle operations. Accurate recording of age of animals can be a significant
challenge, particularly in extensive environments where animals may only be mustered once a year.
This has adverse implications for both herd management and the estimation of genomic breeding
values for economically important traits reliant on accurate age records, such as growth rate and age
at puberty, reducing industry adoption of genetic and genomic evaluations.
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Recent studies in humans have shown that aging is related to
the alteration of DNA methylation in genome specific locations,
and these epigenetic modifications can be used to estimate the
individual’s age (Horvath, 2013; Weidner et al., 2014; Xu et al.,
2015). Epigenetic clocks using methylation markers have
reported accurate age prediction in humans and mice
(Horvath, 2013; Horvath and Raj, 2018). Additionally, a DNA
methylation clock has been constructed for dogs (n � 46) and
wolves (n � 62) using blood samples (Thompson et al., 2017). The
mean absolute deviation (MAD) of predicted age using linear
regression models are species and sample size dependent, and
likely related to the species lifespan (Yi et al., 2014; Zbieć-
Piekarska et al., 2015; Stubbs et al., 2017; Li et al., 2018).
While human methylomic studies mostly use methylation
arrays for identifying CpGs sites, other epigenetic clocks in
animals (dogs, wolves and chicken) have used bisulfite-treated
sequencing approaches.

In cattle, epigenetic clocks have been constructed to estimate
the biological age of oocytes using the HorvathMammalian40K
array which contains 37,000 mammalian CpGs sites
(Kordowitzki et al., 2021). Still, there is a lack of industry
relevant methods available that could be efficiently and cost-
effectively used in commercial applications that do not
compromise animal health or wellbeing. Critically, epigenetic
clocks based on samples that can be easily obtained in industry
have not been developed.

Here we aimed to derive the first epigenetic clock for indicine
cattle and their crosses using portable long-read sequencing. We
used 66 samples from Brahman, Tropical Composite, and
Droughtmaster breeds of cattle with a wide range of ages,
spanning a few weeks to 15.7 years. To the best of our
knowledge, this is the first cattle specific epigenetic clock using
Oxford Nanopore Technology (ONT; Oxford, United Kingdom)
sequencing platforms from an industry focused sample.

METHODS

Animal ethics approval was obtained from the University of
Queensland ethics board (Animal Ethics Approval Number
QAAFI/269/17).

Sample Selection
Animals (all female) from industry were used in this study to
ensure the accuracies were reflective of what could be expected in
the field and were not biased by controlled laboratory conditions.
Samples were selected so the methylation clock could be used to
predict across a wide range of ages (Table 1; Figure 1A). Focus
was placed on young cattle, where age often differs by only a few
weeks, increasing our power to predict small differences in age
within these cohorts. Animals from several breeds commonly
raised in northern Australia, including Brahman, Droughtmaster
and Tropical Composite, were included to ensure that the derived
clock was not breed-specific (Table 1). Tail hair was selected as
the source of the genetic material as it is easily collected by cattle
producers. More information about animal age and the season of
sample collection was provided in Supplementary Table S1.

DNA Extraction and Sequencing
Genomic DNA was extracted using the Gentra Puregene Tissue
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions, with modifications. Briefly, 20–30 hair samples were
lysed in 300 µl of Cell lysis solution (Gentra® Puregene® Tissue
Kit) and 1.5 µl of Proteinase K solution (20 mg/ml) for 5 h at
55°C. RNA was then digested by addition of 1.5 µl of RNase A
Solution, following 1 h incubation at 37°C. Samples were placed
on ice for 5 min after adding 100 µl Protein Precipitation Solution
(Gentra® Puregene® Tissue Kit) and spun at 14,000 × g for 3 min.
300 µl of Isopropanol was used to precipitate DNA. Samples were
centrifuged at 14,000 × g for 3 min. DNA pellets were washed in
300 ml of 70% ethanol, air-dried for 5 min, and resuspended in
55 µl of DNA Hydration Solution (Gentra® Puregene® Tissue
Kit). DNA concentrations were measured using the Qubit
dsDNA Broad Range assay kit (Thermo Fisher Scientific). The
purity of the extracted DNA was determined with the
NanoDropND 1000 (v.3.5.2, Thermo Fisher Scientific),
assessing the 260/280 nm and 260/230 nm ratios. The size of
extracted DNA was examined using pulsed-field gel
electrophoresis (Sage science, United States) with a 0.75%
Seakem Gold agarose gel (Lonza, United States) in 0.5X Tris/
Borate/EDTA (TBE) running buffer, run for 16 h at 75 V. The gel
was stained after the electrophoresis with SYBR Safe dye (10000x)
and visualized using Quantity One analysis software (Bio-rad).

TABLE 1 | Characteristics of samples used for methylation analysis.

Herd Breed Birth
date

(Years)

Age (years) Independent
samples

Repeat
samples

Calves Total
samples

Sequencing
depth

(mean ±
SD)

Herd A Droughtmaster 2001 to 2019 0.35–15.7 27 4 0 31 18.5 ± 7.2
Herd B Brahman 2011 to 2013 5.30 1 0 0 1 4.75
Herd C Tropical

Composite
2016 and
2017

1.75–2.35 4 0 0 4 22.8 ± 4.9

Herd D Droughtmaster 2015 and
2016

2.00–3.13 4 0 0 4 11.3 ± 2.5

Herd E Brahman 2016 and
2020

0.83–3.64 5 14 7 26 20.2 ± 9.9

- - - Total 41 18 7 66 -
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FIGURE 1 | Age, methylation sites and sequencing coverage information across samples. (A) boxplots show age across herds and within-herd. (B) Scatterplot of
age, methylation sites and proportion of sites presented in the methylation matrices. (C) Sequence coverage and the total number of methylated sites called for 66
samples.
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Extracted DNA samples were prepared using a ligation kit
(SQK-LSK 109; ONT, Oxford, United Kingdom) as described in
Lamb et al. (2020). Libraries were loaded onto the minION flow-
cell (R.9.4.1; ONT, Oxford, United Kingdom) and run for up to
96 h. The flow-cell was washed at least three times using the
nuclease-flush kit (ONT, Oxford, United Kingdom) and then
reloaded with the same library solution.

Methylation Calling
Base calls were made from the raw current disruption data using
GUPPY (version 4.2.2) on the University of Queensland high
performance computing infrastructure. Long reads were mapped
to Bos taurus reference genome (ARS-UCD1.2 assembly) using
minimap2 (version 2.17) with -x map-ont option (Li, 2018; Rosen
et al., 2020). F5c (Gamaarachchi et al., 2020) was then used to
implement GPU based methylation calling. Methylation
frequency was subsequently calculated using f5c software.

Testing of Conserved Age-Related Genes
The homologes of the genes that were associated with aging
in dogs and humans (Wang et al., 2020) were identified in the Bos
taurus genome annotation file. Methylation within each of those
genes was then calculated for each sample as the (Cm/C) * 100;
where Cm is the number of methylated CpG sites within the gene
on all of the overlapping reads, and C is the number of all CpG
sites (both methylated and unmethylated) within the gene. Genes
that did not have sequence coverage in more than 10 samples
were excluded from the analysis.

In order to investigate the association of each of these genes
with cattle age, we used the linear mixed model (fitted with the R
package lme4, Bates et al., 2015):

age ∼ μ +methylation + herd

Where age is the age of the animal in years, µ is the overall
mean, methylation is the percentage of methylated CpG sites
in the gene being tested, and herd is a random effect
accounting for the animals’ herd of origin. P-values for the
model were calculated using lmerTest (Kuznetsova et al.,
2017) and the coefficient of determination (marginal
pseudo-R-squared value) was calculated using MuMIn
(Bartoń, 2020; statistics based on; Nakagawa et al., 2017).
p-values were only considered as significant if the direction of
the effect was the same as those reported in Wang et al. (2020).

Age Prediction
To precinct the age of animals similarities between the genome
wide methylation patterns were used. First, a methylation score
was derived for each genome segment of each animal. For each
100 base pair window across the whole genome, each window for
each animal was called as methylated (1) or not methylated (0) if
the average frequency of methylation for the sites in the window
was greater than 0.5 or less than 0.5, respectively. This resulted in
a matrix that contained 0, 1 or NA (where no sequencing
coverage was present). The resulting matrix was then filtered
to remove sites which were not called in at least 80% of animals.
Sites that were not variable in the dataset, as indicated by a
standard deviation less than 0.5, were also removed from the

matrix. There was no correlation between the proportion of sites
presented in the matrix per sample and age (Figure 1B,
Supplementary Figure S1).

Using the methylation call matrix, methylation relationship
matrices (MRM) were constructed among the animals. Two
MRM were considered: 1) Using all sites that passed the
filtering criteria for missing values and variation (called MRM-
1); 2) Using only sites within genes reported as age predictive in
both humans and dogs (Wang et al., 2020; called MRM-2).
Importantly, all genes associated with age in humans and dogs
fromWang et al. (2020), not only the ones associated with age in
our own data, were used to generate MRM-2 to avoid artificially
inflating the prediction accuracy based on preselection of genes
within the same dataset. There were 226,600 sites and 65,137 sites
used to calculate MRM-1 and MRM-2, respectively. Each of the
relationship matrices was calculated by:MRM = XX’/(number of
sites), where X is MRM-1 or MRM-2 (a matrix of animal by
number of sites).

Methylation best linear unbiased prediction (MeBLUP) was
used to predict age from the nanopore methylation profiles.
Season was tested as a fixed effect in the model to separate the
environmental stress effects on methylation profiles from the
chronological effect (and did not improve accuracy of
prediction). However, the impact of season was not significant.
Therefore, the model was age (years) � µ + herd + animal + error,
where µ and herd were fixed effects, and animal was a random
effect assumed to be normally distributed with mean � 0 and
variance � 1. Herd was included in the model in an attempt to
separate biological ageing (stress effect on methylation etc) from
chronological ageing (the epigenetic clock component is not
affected by stress). Excluding herd from the model decreased
accuracy of age prediction substantially. The MRM was built in
GCTA (Yang et al., 2011) and the model was fitted with variance
components estimated in ASREML (Gilmour et al., 2015). Errors
were assumed normally distributed.

To assess the accuracy of predicting age from the methylation
profile, we used a cross validation strategy. Sets of 5 randomly
chosen individuals had their phenotypes (ages) removed from the
analysis, but they were still included in the MRM. This resulted in
age effects being predicted for these animals. These age effects
were then correlated with the actual age for these animals. The
cross-validation procedure was repeated 10 times until all animals
had been dropped from the analysis but included in the
validation. The resulting correlation of predicted age and
actual age was taken as the accuracy of prediction of age.

We also used a BayesR prediction method (Erbe et al., 2012)
with Random Forest to impute missing genotypes (using the
MissForest package in R (https://cran.r-project.org/web/
packages/missForest/missForest.pdf), however this resulted in
slightly worse accuracy of prediction compared with the MRM
method (results not shown).

RESULTS

We performed 66 runs of MinION sequencing using untreated
genomic DNA libraries. The resulting long sequence reads had an
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average mapping efficiency of 92.2% (SD � 2.8). The N50 size
ranged from 1.09 Kb to 9.12 Kb across samples. To the best of our
knowledge, this study also recorded the highest sequencing
output generated from a single MinION flow-cell (41.13 GB,
equivalent to 14.8-fold coverage; Table 1).

The number of methylation sites called for each of the 66
samples was variable, ranging from 2.8 to 17 M sites. At 3-fold
coverage, up to 10 million methylation sites were detected; the
highest number of methylation sites (17 M sites) were observed at
10-fold coverage. The number of observed methylation sites
increased sharply with sequence coverage, and then plateaued
at approximately 6-fold coverage (Figure 1C; Table 1).

Genes that were consistently associated with age in humans
and dogs were tested for an association with age in cattle
(Figure 2A). Of the 321 genes with sufficient data, 43 were
associated with age in cattle, significantly more than expected
by chance (p-value < 10−6). The r2 values for these genes were
mostly under 0.2, with NK6 Homeobox 1 (NKX6-1), ISL LIM
homeobox 1 (ISL1) and LIM homeobox 1 (LHX1) having r2

values of (0.27, 0.35 and 0.36), respectively. Only three genes

(MAP4K3, MCF2L and SMAD7) had a significant negative
association with age, that is, they were de-methylated as the
animals aged, while all other significantly associated genes were
more methylated as the animals aged.

BLUP was used to predict age of animals from the whole
genome methylation data, and from methylation data only near
genes associated with age in humans and dogs. The correlation of
predicted age and actual age in the validation datasets was 0.71
(moderate to high) for all methylation sites and 0.60 for the dog-
human age associated sites; Figure 2B. The MAD was 1.4 years
for animals aged less than 3 years and 1.5 years for animals aged
3–10 years. However, for animals from 10 years and older, the
MAD was 9 years. The standard error of prediction accuracy
was 0.08.

DISCUSSION

This study successfully sequenced and detected methylation sites
from unmodified DNA extracted from hairs samples of 66 cattle

FIGURE 2 | (A) Linear mixed model results for the model age ∼ gene methylation + herd (model was run separately for each gene, herd was random effect). The 43
significant (p-value < 0.05) genes that were associated with age in cattle, that were also associated with age in humans and dogs, are shown. The five most significant
genes are labelled. SeeSupplementary Table S2materials for all genes. (B) Average difference in age predicted from themethylation clock and actual age for three age
classes of animals, and two methods of selecting methylated sites for inclusion in the clock.
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using nanopore sequencing. We used the methylation data to
identify genes associated with aging in cattle, and to predict age of
animals from an industry relevant sample type.

This study achieved a prediction accuracy for age of 0.71.
Considering the diverse genetic background of the animals
sampled this accuracy is encouraging, that a usable epigenetic
clock can be developed for extensively grazed cattle with diverse
genetic backgrounds. Animals under 10 years old could be
predicted within 1.5 years of age. With the addition of more
animals into the model in the future the accuracy of the model
may increase, especially in young animals where linear
relationships between methylation and age have been reported
in other species (Wang et al., 2020). Efforts to increase the
number of methylation profiles in the reference dataset is
ongoing, with the aim of increasing the accuracy of the clock
for age prediction in cattle.

For animals above 10 years old the prediction accuracy for age
was low. This is most likely because there were very few (n � 6)
animals in the reference population that were older than 10 years.
The result could also reflect a slower rate of methylation changes
at more advanced ages (e.g., a non-linear rate of methylation; see
Wang et al., 2020). Animals older than 10 years represent a very
small class in the cattle industry and are the least likely to be
candidates for age testing.

Our cattle epigenetic clocks captured the change in DNA
methylation patterns as cattle age, similar to what has been
previously observed in humans and other species. The number
of samples used to derive our clock (n � 66) was higher than used
in dogs and wolves (46 and 62 samples respectively, Thompson
et al., 2017). Additionally, our study includedmethylation profiles
overtime within individuals (n � 18), providing extremely
valuable information (methylation changes within an
individual) that could not be obtained by cross-sectional data
from other epigenetic clocks. Our approach targeting sites
overlapping with human and dog studies resulted in
promising results, suggesting that epigenetic mechanisms are
evolutionarily conserved, consistent with the findings of Lu
et al. (2021).

The Nanopore sequencing used here may have some
advantages over other methods used to detect methylation. At
low coverage (3-fold), the number of methylation sites called by
the ONT sequence data were 2.5 times higher than those called by
reduced representation bisulfite sequencing (which captures
around 4 million CpG dinucleotides from human samples; Gu
et al., 2011). We observed a limited impact of coverage on total
called sites, once coverage exceeded 6-fold. A study by Yuen et al.
(2021) comparing methylation called by nanopore and whole
genome bisulfite sequencing (WGBS) also noted that increasing
coverage did not improve methylation prediction by both
platforms. Other studies indicated that an average genomic
coverage of 10 can accurately detect levels of methylation and
haplotype using long-read nanopore sequencing (Gigante et al.,
2019; Akbari et al., 2021). In contrast to ONT, WGBS, a standard
platform for genome-wide identification of methylation, requires
at least 30-fold coverage to cover all CpGs in the human genome
(Stirzaker et al., 2014). This evidence, together with our results,
suggest that ONT has the potential to offer low-cost genome-wide

identification of methylation, SNPs, and structural variants with
the ability to perform experiments in the field. Nanopore
sequencing is also portable, which as discussed below opens
up opportunities not possible with other methods.

As expected, only 13% (43) of the genes identified in Wang
et al. (2020) were significantly associated with age in this study,
confirming the different DNA methylation signatures across
species and tissue types. Of note, tissue specific methylation
differences have been reported (Zhang et al., 2013; Lowe et al.,
2015; Zhou et al., 2020), which may also be a causal factor in the
low validation rate. Five of these genes were significantly
associated with age after a bonferroni correction for multiple
testing, which is considered to be a highly conservitave correction
method. In Wang et al., (2020) no correction for multiple testing
was used, which may account for the low percentage of genes
which were validated in this study. The shared genes could serve
as promising candidates for the age prediction clock across
species and for easy to obtain sample like hair.

The five most significant age associated genes were all
transcription factors. NKX6-1 (NK6 Homeobox 1), which
plays a role in β cell function and proliferation (Avrahami
et al., 2015) and has been found to have an association
between methylation status and age (Iype et al., 2004); ISL1
which is a member of the LIM/homeodomain family of
transcription factors and binds to the enhancer region of the
insulin gene; ISL1 which has been reported to have an association
between expression level and age (Tanizawa et al., 1994;
Avrahami et al., 2015). LHX1 which is a LIM domain
homeobox transcription factor, associated with embryonic
development (Costello et al., 2015); SIM1 (SIM BHLH
Transcription Factor 1); and TLX3 (T Cell Leukemia
Homeobox 3) which encodes a DNA-binding nuclear
transcription factor. Transcription factors have been
considered important in the regulation of genes which confer
various biological functions associated with maturity and ageing
(Roy, 1997). Increases in methylation of transcription factors as
the individual ages could be the mechanism through which these
genes are regulated over time.

Sequencing full genomes in-field for the purpose of age
prediction is cost prohibitive, however a future approach may
be to apply adaptive sequencing technology (Payne et al.,
2020) or Cas9 target enrichment (McDonald et al., 2021) to
enrich target regions in each sample that are efficient at
predicting age. These methods would decrease the cost of
sequencing each sample by 10- to 100-fold, making field
application of methylation-based age prediction more
economically viable for an industry setting, especially if it
is combined with genomic prediction using the same data
(Lamb et al., 2021). A single in-situ assay that can generate
multiple types of desirable information for producers, such as
animal age, genomic estimated breeding values, and
parentage testing, is the ultimate goal. This may be
achievable using ONT sequencing of samples that are
routinely collected by industry, such as tail hair or ear
punches.

This study has demonstrated that methylation patterns change
as cattle age and that ONT sequencing is a useful tool for profiling
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methylation, as well as other genomic applications. The sample
size of this dataset is small, and so the accuracy is expected to
increase and improve with larger sample sizes. The cattle
epigenetic clock from tail hair will allow extensively farmed
beef production systems to develop the necessary tools to
intensify genomic improvement and improve management
outcomes.
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