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Background: The application of polygenic risk scores (PRSs) in major depressive disorder
(MDD) detection is constrained by its simplicity and uncertainty. One promising way to
further extend its usability is fusion with other biomarkers. This study constructed an MDD
biomarker by combining the PRS and voice features and evaluated their ability based on
large clinical samples.

Methods: We collected genome-wide sequences and utterances edited from clinical
interview speech records from 3,580 women with recurrent MDD and 4,016 healthy
people. Then, we constructed PRS as a gene biomarker by p value-based clumping and
thresholding and extracted voice features using the i-vector method. Using logistic
regression, we compared the ability of gene or voice biomarkers with the ability of
both in combination for MDD detection. We also tested more machine learning models
to further improve the detection capability.

Results: With a p-value threshold of 0.005, the combined biomarker improved the area
under the receiver operating characteristic curve (AUC) by 9.09% compared to that of
genes only and 6.73% compared to that of voice only. Multilayer perceptron can further
heighten the AUC by 3.6% compared to logistic regression, while support vector machine
and random forests showed no better performance.

Conclusion: The addition of voice biomarkers to genes can effectively improve the ability
to detect MDD. The combination of PRS and voice biomarkers in MDD detection is
feasible. This study provides a foundation for exploring the clinical application of genetic
and voice biomarkers in the diagnosis of MDD.

Keywords: biomarkers, polygenic risk score (PRS), computer technology, major depressive disorder (MDD), voice
biomarkers, depression

1 INTRODUCTION

The deployment of bioinformatic evaluations in psychiatry would revolutionize the ability to
diagnose, treat, and prevent major depressive disorder (MDD). MDD affects nearly 1 in 10
people (Kessler et al., 2003; Demyttenaere et al., 2004) and has lately been recognized as the
world’s leading cause of disability (World Health Organization, 2017). However, only approximately
half of the population suffering from MDD is currently identified and treated (Wells et al., 1989;
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Goldberg 1995). The difficulty in identifying MDD is one of the
key barriers to the effective utilization of current medications.
Diagnosis remains based on clinical interviews and mental status
examination (Regier et al., 2013); screening instruments are
hindered by poor specificity and sensitivity, and there are no
reliable biomarkers. Furthermore, because MDD is a syndromic
diagnosis, it possibly comprises several different diseases, each
with its own set of symptoms and treatment response
(Alexopoulos et al., 1997; Kendler et al., 2001, 2006; Kendler
et al., 2013; Gustafsson et al., 2015; Masters et al., 2015; Peterson
et al., 2018).

The study of constructing MDD biomarkers has shown two
different orientations. On the one hand, researchers have been
devoted to finding the biological basis of depression (Schneider
and Prvulovic 2013), for example, genetic factors (23andMe
Research Team et al., 2019; CONVERGE Consortium, 2015;
eQTLGen et al., 2018), on which to build valid biomarkers. On
the other hand, studies have started from behavioral indices that are
easily accessible and nonintrusive, such as patient speech voice (Low
et al., 2020). The studies focus on improving diagnostic accuracy by
developing machine learning (ML) algorithms.

Researchers have spent decades looking for the genetic foundation
for developing more accurate MDD diagnosis models (Reus et al.,
2017; Mullins et al., 2019; Rantalainen et al., 2020). The results from
genome-wide association studies (GWAS) (23andMe Research Team
et al., 2019; CONVERGE Consortium, 2015; eQTLGen et al., 2018)
suggested that MDD is polygenic, which means that hundreds of
DNA variants impact its hereditary influences with very small effects.
Polygenic risk scores (PRSs) provide an estimated risk for individuals
suffering from MDD. PRS is calculated as a weighted sum of an
individual’s risk alleles, where their weights are specified by loci and
their assessed effects found by GWAS (Chatterjee et al., 2016).
Advances in biotechnology have made sequencing technologies
less expensive and the genetic screening of individuals easier.
However, the utility of PRS in MDD prediction is currently
constrained by its simplicity and uncertainty, which, to date,
captures only part of the genetic contribution to MDD risk
(Murray et al., 2021). Moreover, other non-genetic risk factors,
such as lifestyles, also play important roles in MDD. As a result,
extending the PRS models with other MDD biomarkers may be a
more practical solution to addressing this problem (Torkamani et al.,
2018).

Benefitting from the development of speech recognition
technology, voice-based diagnostic models for depression have
been validated and have achieved a high level of accuracy. Speech
biomarkers can be used not only to identify depression (Low
et al., 2020) but also to recognize the severity of depression (Shin
et al., 2021) and predict depression-related symptoms (Zhang
et al., 2020). One of the main obstacles hindering the application
of voice biomarkers is its poor generalization ability, as traditional
voice feature distribution can easily change due to different
speech content and speakers (Wang et al., 2019). To address
this issue, researchers developed the i-vector method, extracting
the factors from voice features that are independent of speaker
and channel variabilities (Dehak et al., 2011; Cummins et al.,
2014). A study recognizingMDD in 1,808 clinical samples proved
that voice i-vectors are effective and robust (Di et al., 2021).

Therefore, combining technologies in speech recognition and
integrating them into existing genetic models are likely to enable
clinical diagnosis in general populations.

To construct biomarkers for clinical disease detection,
researchers have combined PRS with known risk factors
(Hoang et al., 2021; Kapoor et al., 2021), neuroimaging,
metabolites (Badhwar et al., 2020), or body indicators
(Moldovan et al., 2021). However, to the best of our
knowledge, there are no studies combining genes and voice in
detecting MDD, which may be due to the difficulty in obtaining
multiple types of samples of the same subject simultaneously.
Evidence from clinical samples is needed to prove their ecological
validity (Zhang et al., 2020; Murray et al., 2021). The combination
and cross-validation of biological and behavioral biomarkers hold
great promise to take us one step closer to the objective clinical
diagnosis of MDD.

Here, based on a large sample of women with recurrent MDD
diagnosed clinically, we used the PRS together with voice
i-vectors to detect MDD. We examined whether their
combination could surpass a single biomarker. We constructed
models on different single nucleotide polymorphisms (SNPs) to
examine their robustness. We also tested various ML models to
find the better model.

2 MATERIALS AND METHODS

We used a fivefold cross-validation design in this study. As
shown in Figure 1, we split 80% of the samples into a training
group and the rest into a test group. Firstly, we used voice data
from the training samples to train the universal background
model (UBM), and we used this UBM to extract i-vectors for
each individual. Then, we used clumped SNP data from the
training samples to train the PRS model, through which we
calculated the PRS for each individual. Finally, we used the
PRS and voice i-vectors from the training samples to train the
ML models and used the same features from the test samples to
validate the model performance. The details of each step are
explained below.

2.1 Data Collection
The database used in this study was developed from the China,
Oxford, and Virginia Commonwealth University Experimental
Research on Genetic Epidemiology (CONVERGE). The
CONVERGE study, designed for a genome-wide association of
major depression disorders, recruited 11,670 Han Chinese
women. There were 5,303 women with recurrent MDD aged
between 30 and 60 years whose first episodes of MDD met the
DSM-IV criteria (Association 1994). A total of 5,337 controls
were recruited from patients undergoing minor surgical
procedures at general hospitals or from local community
centers. Only women were included in this study to minimize
genetic heterogeneity because approximately 45% of the genetic
liability to MDD is not shared between sexes (Kendler et al., 2007;
Sullivan et al., 2000). The subject inclusion criteria and interview
process were strictly controlled, as detailed in CONVERGE
Consortium (2015).
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The voice data of the patients were from the records during the
semi-structured interview, which included assessments of
psychopathology, demographic and personal characteristics,
and psychosocial functioning. These voice data are
characterized by a high degree of phonetic and content
variety. A detailed description of the interview protocol is in
Di et al. (2021).

2.2 Data Preprocessing
2.2.1 Genetic Data
DNA sequencing, variant calling, and the genotype likelihood
calculation and imputation processes are described in
CONVERGE Consortium, (2015). We used PLINK (Chang
et al., 2015) to select SNPs with minor allele frequency (MAF)
>0.5% and imputation quality INFO score >0.9 and clumped the
SNP set using r2 � 0.5 with 50-kb windows. A total of 359,515
SNPs passed the filter.

2.2.2 Voice Data
The utterances of participants were edited from recordings of the
conversations between doctors and patients through the
following steps. Firstly, voice segments from the participants
were selected and labeled. Then, all the segments of one
participant were combined into one utterance. Due to the
variety of interviews, not all voice samples of participants had
segments >2 s for the latter analysis. Thus, samples with both
genetic data and enough voice data were passed to subsequent
analysis, and the total number was 7,596 (3,580 cases and 4,016
controls). All utterances were downsampled to 8 kHz for
subsequent processing.

2.3 Data Analysis
2.3.1 PRS Models
We used the linear mixed model (Li and Zhu 2013) to calculate
the PRS. The model can be written as follows:

y � Xβ + g + e

Here, X is the matrix of the fixed effects, including covariates and
the genetic matrix; the vector β is the coefficient of fixed effects; g
is a random effect reflecting polygene background; and e denotes
the random residual effect.

We used the p value-based thresholding (P+T) method (Wray
et al, 2007) to construct the PRS model. Usually, a lower threshold
than genome-wide statistical significance can be applied to increase
the overall predictability, generally at the sacrifice of generalizability
(Murray et al., 2021). Different p-value thresholds (PTs) were tested,
ranging from 5 × 10−8 to 5 × 10−3 (10−3 is a conservative significance
threshold of p suggested by Euesden et al., 2015). The PRSmodel was
trained using the FaST-LMM (Lippert et al., 2011) predictor, which
efficiently reduced the computational time.

To assess how the confounders affect the model’s
predictability and generalizability, we considered the following
covariates: age, education, occupation, social class, marital status,
height, weight, and 40 genetic principal components. We
compared three different covariate use strategies. The first was
a model ignoring the covariates (no-cov), the second was trained
by and predicted on the genetic matrix along with covariates (all-
cov), and the last was a model trained by a genetic matrix along
with true covariates of the training samples, but made predictions
on test samples whose covariate values were replaced with
random numbers (random-cov).

FIGURE 1 | Fivefold cross-validation of voice–gene data. In each fold, the samples were split into a training group and a test group. Voice and genetic sequence
data of the training group were used to train the universal background model (UBM) and linear mixed model (LMM) separately. Then, i-vectors for the training and test
groups were extracted through the UBM, and the polygenic risk score (PRS) can be calculated through the LMM. The i-vectors and PRS will be concatenated as input
features for a machine learning (ML) model.
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2.3.2 Voice i-Vectors
The i-vector extraction process is shown in Figure 2. Firstly,
mel frequency cepstral coefficients (MFCCs) were extracted
with a window size of 25 ms, a window shift of 10 ms, a pre-
emphasis filter with a coefficient of 0.97, and a sinusoidal lifter
with a coefficient of 22. A filter bank with 23 filters was used,
and 12 coefficients were extracted. Then, for the given voice
features, we set the number of Gaussian mixtures as 256 to
estimate the utterance-dependent Gaussian mixture model
(GMM) parameters and adapted the UBM (Kenny et al.,
2005), which represents the feature distribution of the
acoustic space.

The i-vectors are low-dimensional representations of the voice
features based on factor analysis (Kenny et al., 2008), onto which the
acoustic space is mapped via a linear transformation while keeping
the majority of the variability inherent in the acoustic space. This
approach has been widely used in speaker verification. The i-vector
method (Dehak et al., 2011) can be expressed as follows:

M � m + Tv

wherem is the mean supervector of the UBM. For the purpose of
depression classification, it is expected that the UBM
approximately models the phonetic variability of the acoustic
space.M is the mean centered supervector of the speech utterance
derived using the zeroth- and first-order Baum–Welch statistics.
v is the i-vector, which captures variations in this structure caused
by other factors, such as depression level, speaker identity, and
channel effects (Cummins et al., 2014). We used the Kaldi speech
recognition toolkit (Povey et al., 2011) and extracted the 400
dimensions of i-vectors.

2.3.3 ML Models
We used a logistic regression (LR) classifier as a benchmark
model, for which PRS, i-vectors, and both were used as input
features. Then, we used random forest (RF), support vector
machine (SVM), and multilayer perceptron (MLP) classifiers
to test whether there was an improvement compared to the
benchmark. We report the sensitivity, specificity, and area
under the receiver operator characteristic curve (AUC) from
the fivefold cross-validation. We used scikit-learn (Pedregosa
et al., 2011) for the above process.

For the LRmodel, we also divided the test samples into the top
25%, middle 50%, and bottom 25% according to their PRS and
calculated the accuracy on each stratification to test whether the
accuracy of the biomarkers remains consistent across different
genetic risk stratifications.

2.3.4 Binary Logistic Regression
To check the contribution of voice and genes separately, we built
three logistic regression models using a conditional forward step.
TakingMDDas the dependent variable, voice i-vectors, PRS, and the
combination of both were entered into the model separately as
independent variables. Nagelkerke’s R2 (Nagelkerke, 1991) was
utilized as an indicator of the contributing effect of the variables.

3 RESULTS

3.1 PRS Model and Covariates
The numbers of SNPs selected using different PTs are shown in
Table 1. The SNPs and their estimated weights in previous GWAS
(CONVERGE Consortium 2015) are provided in Supplementary
Data Sheet S1. Figure 3 shows the detection ability of the PRS
models with different PTs using different covariate use strategies.
When PT � 5 × 10−8, PRS with all-cov achieved the best AUC
(0.64), while the other two were close to random guessing (0.50).
When PT> 5 × 10−8, PRS with no-cov consistently achieved better
AUC than did PRS with all-cov and random-cov, and the
performances of PRS with random-cov and all-cov were close.

3.2 Prediction Results Using Different
Biomarkers
Figure 4 shows the prediction results with different PTs using
different biomarkers. The voice biomarkers achieved an AUC of
0.79. With the decrease in PT, the AUCs for genes only and the

FIGURE 2 | Process of i-vector extraction. UBM-GMM is a universal background model adapted by a Gaussian mixture model. n � 256 means there were 256
Gaussian mixture clusters. d � 400 means the dimension of i-vectors is 400.

TABLE 1 | Number of SNPs selected on different p-value thresholds (PTs)

PT 5E−08 1E−06 1E−5 5E−5 1E−4 5E−4 1E−3 5E−3

N 3 5 11 44 79 321 580 2,350
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combined biomarkers both increased. Compared with genes only,
the combined biomarkers always performed better. Compared
with voice only, the combined biomarkers did not win until
PT > 0.0005.

3.3 Binary Logistic Regression
We examined how much gene and voice contributed to MDD
using Nagelkerke’s R2. For voice only and gene only, Nagelkerke’s
R2 values were 0.571 and 0.829, respectively. For the combined
biomarkers, Nagelkerke’s R2 was 0.902. Details of the logistic
regression models are in Supplementary Data Sheet S2.

Figure 5 shows the stratified accuracies of the different
biomarkers in predicting MDD. The voice biomarker
performed consistently in the three stratifications with
different genetic risks, all at 0.79. However, the accuracy of

genes varied considerably between the middle (0.64) and the
two ends of the population (close to 0.9). The combined
biomarker performed as well as the genes in the two ends and
as well as the voice in the middle.

3.4 Classification Results Using Different
ML Models
The classification results using LR, SVM, RF, and MLP are shown
in Table 2. Two PTs (0.001 and 0.005) are presented here, while
the results with more PTs are shown in Supplementary Data
Sheet S3. The AUCs of LR were 0.79 and 0.83 at the two PTs.
Taking LR as a benchmark, MLP achieved better results, with
AUCs of 0.81 and 0.86 at the two PTs. The performance of SVM
was close to that of LR, and that of RF was worse than that of LR.

FIGURE 3 | Polygenic risk score (PRS) model prediction results with different p-value thresholds (PTs) under different covariate use strategies. no-cov, no
covariates were considered during the training and prediction processes; all-cov, all covariates were considered during the training and prediction processes; random-
cov, the PRS model was trained with a sample genetic matrix along with covariates, but made predictions on samples whose covariates were replaced with random
numbers. AUC, Area under the receiver operating characteristic curve.
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4 DISCUSSION

This study combines the PRS and voice i-vectors to evaluate
their ability to detect MDD. PRSs were calculated at different
PTs. Using logistic regression, we compared the abilities of
single biomarkers with the combined biomarker for MDD
detection. We stratified the test group by genetic risk and
examined whether the detection ability differed between
stratifications. We also tested various ML models to find the
best model.

A good PRSmodel would have high predictability, contributed
mainly by capturing causal genetic variants instead of confounds.
The estimated genetic fixed effect may be erroneously high for a
linear mixed model if the confounding effects are not estimated.
Thus, similar to our data from the same cohort, the no-cov PRS
model always performed better than the all-cov PRS model
(Figure 3). We believe that the results from the no-cov model
are not capable of reflecting real situations because, in practical

clinical applications, the distribution of covariates for a newly
arrived patient is likely to be different from the distribution of the
patients in our training set.

A comparison of PRS with the all-cov and random-cov
models can demonstrate how the covariates affect the final
prediction results in this study. When PT � 5 × 10−8, the all-
cov PRS achieved an AUC of 0.65, while the other two were
close to random guessing, which indicated that the covariates
were the main contributors to the predictor when there were
few SNPs. When PT> 5 × 10−8, the all-cov PRS showed ability
equivalent to that of the random-cov PRS, which suggested
that the covariates contributed very little to the predictor when
the SNP number increased. The covariate analysis suggests two
conclusions. Firstly, we must consider the covariates in the
training process; otherwise, the performance will be
erroneously better than that in actual situations. Secondly,
in practical clinical applications, covariate information is not
necessary.

FIGURE 4 | Prediction results with different p-value thresholds (PTs) using different biomarkers. The x-axis is the p-value threshold (PT) used in the gene model and
the combined biomarkers. Voice biomarkers are not related to PT and are indicated by a dashed horizontal line. AUC, Area under the receiver operating characteristic
curve.
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The prediction results using different biomarkers
demonstrated the ability of these biomarkers to detect MDD
(Figure 4). The AUC of voice biomarkers was 0.79, which is
consistent with our previous study on 1,808 clinical samples (Di
et al., 2021). Since our previous study investigated the meaning of
voice i-vectors, in this study, we attended to comparing its
performance with the combination of PRS. Compared with
genes only, the combined biomarkers can significantly
improve the predictive ability at all PTs. Since the voice
biomarker itself had an AUC of 0.79, only when the AUC of
gene >0.65 (PT > 0.0005) can the combined biomarker perform
better than voice only.

When only PRS was entered in the logistic model, it
accounted for 82.9% of the variance in the dependent
variable MDD (Nagelkerke’s R2). Combined with voice, the
Nagelkerke’s R2 was 90.2%, indicating that the unique
contribution of voice features was 8.7%. Furthermore, we
illustrated how genes and voice work together to improve
the predictive power by stratifying the test sample
according to genetic risks and calculating the accuracies by
stratifications. The results of the genes in identifying MDD for
both high- and low-genetic-risk populations were consistent
with the high accuracy (0.90). However, for the middle
population, the accuracy of genes was poor (0.64), due
mainly to the inability of genetic features to measure the
effect of MDD-related environmental factors. Meanwhile,
the accuracy of voice was consistent across the different
genetic risk populations, suggesting that the predictive
ability of voice was independent of genetic characteristics
and that voice capture information was independent of
genes. As a result, combining gene and voice biomarkers
can effectively improve the detection ability of MDD.

We further explored whether different ML models can
further improve the prediction of MDD. For the ML
models, we tested the results using SVM, RF, and MLP and
compared them with the results of LR. The results (Table 2
and Supplementary Data Sheet S3) showed that MLP could

indeed further improve the prediction of the model,
improving the AUC by 2.5% with PT � 0.001 and by 3.6%
with PT � 0.005.

There are several limitations in this research. To ensure
homogeneity between subjects, this study selected women with
recurrent MDD as cases, and 85% of the cases met the DSM-IV
criteria for melancholia, which is a severe subtype of MDD
(CONVERGE Consortium 2015). Thus, our samples represent
the two poles of the distribution of depression severity in natural
populations. Although our experiments effectively demonstrated
that the combination of genes and voice could further improve
their ability to identify MDD, experimental results based on a
more general population are needed before clinical application.

5 CONCLUSION

This study combines the PRS and voice i-vectors to evaluate their
ability to detect MDD. PRSs are calculated at different PTs. With
the p-value threshold at 0.005, the combined biomarker improved
the AUC by 9.09% compared to genes only and 6.73% compared
to voice only. Genetic risk stratification analysis showed that the
ability for MDD detection of voice is genetically independent.
Multilayer perceptron further improved the AUC by 3.6%
compared to logistic regression. The combination of PRS and
voice biomarkers in MDD detection is feasible. This study
provides a foundation for exploring the clinical application of
genetic and voice biomarkers in the diagnosis of MDD (Wray
et al., 2018).
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