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Single-cell sequencing (scRNA-seq) has enabled researchers to study cellular
heterogeneity. Accurate cell type identification is crucial for scRNA-seq analysis to be
valid and robust. Marker genes, genes specific for one or a few cell types, can improve cell
type classification; however, their specificity varies across species, samples, and cell
subtypes. Current marker gene databases lack standardization, cell hierarchy
consideration, sample diversity, and/or the flexibility for updates as new data become
available. Most of these databases are derived from a single statistical analysis despite
many such analyses scattered in the literature to identify marker genes from scRNA-seq
data and pure cell populations. An R Shiny web tool called GeneMarkeRwas developed for
researchers to retrieve marker genes demonstrating cell type specificity across species,
methodology and sample types based on a novel algorithm. The web tool facilitates online
submission and interfaces with MySQL to ensure updatability. Furthermore, the tool
incorporates reactive programming to enable researchers to retrieve standardized
public data supporting the marker genes. GeneMarkeR currently hosts over 261,000
rows of standardized marker gene results from 25 studies across 21,012 unique genomic
entities and 99 unique cell types mapped to hierarchical ontologies.

Keywords: single-cell RNA-seq1, scRNA-seq2, marker gene3, cell type4, database5, web-interface6

INTRODUCTION

scRNA-seq enables study of disease heterogeneity, novel cell subtypes, cellular interactions, and
cellular tissue composition (Mancarci et al., 2017; Skelly et al., 2018; Aran et al., 2019; Saviano et al.,
2020). A major challenge in scRNA-seq analysis is to identify the cell type of individual cells.
Accurate cell type identification is crucial for any scRNA-seq analysis to be valid as incorrect cell type
assignment will reduce statistical robustness and may lead to incorrect biological conclusions.
Therefore, accurate and comprehensive cell type assignment is necessary for reliable biological
insights into scRNA-seq datasets.

Marker genes, genes more specific in expression for one or a few cell types over others, are important
descriptors in the identification of scRNA-seq cell type (Franzen et al., 2019; Zhang et al., 2019). Identifying
marker genes can be a tedious process, and sometimes requires manual extraction from appendices and/or
images of publications. Furthermore, marker genes may be specific to sample type, species, and/or
sequencing technology. For example, a gene that is specific for endothelial cells in mouse brain tissue
samplesmay not be endothelial cell specific outside of the brain or in human samples. Therefore, it is vital to
improve access to accurate, robust, and translatable scRNA-seq marker genes.
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The recent publication of CellMarker (Zhang et al., 2019) has
provided researchers with access to marker gene lists in mouse
and human. The program provides manually extracted lists of
marker genes from multiple sources for users to search. While
having a consolidated source of marker gene lists is helpful,
researchers must still sort through data to identify which
marker genes are robust and relevant to their analyses. For
example, identifying species-specific markers, markers
consistent across samples, and markers able to be detected in
3′-sequencing methods, would require the users to manually
identify marker genes fitting their data criteria. Therefore, the
primary focus of this manuscript is to provide a resource to
document the marker genes that were consistently identified
across species, samples, sequencing technologies, and sources.

To identify consistent marker genes for specific cell types, we
manually curated results from publications that performed large-
scale statistical analyses on pure cell populations via scRNA-seq
or Fluorescence-activated cell sorting (FACS) methodologies. We
focused on publications using expression data from mice and/or
human untreated, non-disease samples. Next, the extracted gene
information was standardized to known ontologies, cellular
hierarchy information was incorporated, and a marker gene
score algorithm to identify marker genes consistent across
sources, samples, and species was developed. Two MySQL
databases were generated to store: 1) the standardized,
manually curated statistical results and metadata and 2) the
robust marker genes, while an R Shiny reactive user-interface
is provided to access the data. The development of the publicly
accessible GeneMarkeR database and user-interface is described
in this manuscript.

MATERIALS AND METHODS

Data Extraction
Data curated for the database focused on publications
concentrated on performing statistical analyses to identify cell
type-specific marker genes in their samples. There were 25 unique
marker gene analyses from these publications that either: 1) used
scRNA-seq expression data, 2) used RNA-seq or microarray
expression data collected from pure cell populations, or 3)
came from collaborators sharing highly validated
(i.e., prototypical) marker genes. Additional publications were
evaluated; however, these were filtered out as the exclusive focus
was on naïve (i.e., non-treated, non-disease) mouse and human
samples. The marker genes, cell types and full statistical results
were manually extracted from figures, supplemental data, and
text of publications, or directly from the author to ensure data
integrity. In a few cases only the significant marker gene results
were available from the author, not the full statistical output.
Additional contextual data (i.e., sample type, species, gene
expression method, statistical method, relevant statistical
cutoffs) were collected from each source. For publications that
used scRNA-seq data, prototypical marker genes, marker genes
the authors used to annotate their cell types for each cell
population, were extracted. These prototypical marker genes
are generally highly validated, well-accepted genes used to

annotate cell types prior to performing novel marker gene
identification.

Ontology Standardization
To enable mouse-human comparison across the same genomic
entity (i.e., genes, miRs, lncRNAs), Mouse Genome Informatics
(MGI) and Entrez mouse-human ortholog information were used
to map genomic entity information. Genomic entities for mouse
(assembly GRCm39) and human (assembly GRCh38.p13) were
standardized using gene symbols and unique identifiers from
both Entrez and Ensembl. A unique key (GeneID) was generated
to identify each unique mouse-human ortholog pair, or when no
ortholog is described, to denote the mouse or human-specific
genomic entity. A total of 21,012 unique genomic entities were
included in the analysis. Genomic entities are referred to as genes
in the Figures and Tables for readability as genes comprise most
of the genomic entities.

The 120 distinct cell types extracted from the publications
were mapped to Cell Ontology terms using EMBL-EBI’s
Ontology Lookup Service and Ontobee. Additional cell types
were added to the network structure to ensure specific cell types
accurately mapped back to parent nodes (i.e., naïve cell and
somatic cell). Redundant terms (i.e., cell types that mapped in
multiple branches) were pruned by removing cyclic relationships
manually. Intermediate nodes that lacked branching and did not
add value to the classification were manually removed.
Intermediate nodes with branches were retained as these are
crucial to build out the tree as cell types from new datasets are
added. The cell type hierarchy of Cell Ontology was built via the
JavaScript package “visNetwork” implemented in R with an
abbreviated version shown in Figure 1A. The cell hierarchy
enables us to consider if genes were specific for higher-level
cell type terms vs. cell subtypes.

Marker Gene Score
To compare disparate marker gene statistics across publications,
each statistical endpoint from a source was normalized between 0
and 1. The midpoint (i.e., 0.5) was set as the author provided
statistical significance cut-off. For example, in Supplementary
Figure S1 the example Source 1 had two distinct statistical
endpoints: 1) log fold change enrichment score, and 2)
adjusted p-value. The log fold change enrichment score ranges
from −9 to 0 where the more negative the result, the more
significant. For log fold change enrichment score, these
authors considered results less than or equal to −2 to be
statistically significant; therefore, −2 is set at a marker gene
score of 0.5 while values between −9 and −2 are scaled
between 1 and 0.5, respectively and values between −2 and 0
are scaled between 0.5 and 0, respectively. The adjusted p-value
for Source 1 ranged from 0 to 1, with increasing significance
closer to 0. For adjusted p-value, these authors considered results
less than or equal to 0.05 to be statistically significant; therefore,
0.05 is set at a marker gene score of 0.5 while values between 0 and
0.05 are scaled between 1 and 0.5, respectively and values between
0.05 and 1 are scaled between 0.5 and 0, respectively. The
preliminary scores were averaged across the source per gene-
cell type pair to calculate a marker gene score for each unique
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gene-cell type-source combination as is shown in Supplementary
Figure S1. For example, in Supplementary Figure S1, if a unique
gene-cell type pair are reported to have a log fold change

enrichment score of −9 and an adjusted p-value of 0.05, then
the preliminary scores of 1 and 0.5, respectively, would be
averaged, resulting in a marker gene score of 0.75 for that

FIGURE 1 | GeneMarkeR user interface. (A) “Cell Type Selection” tab enables selection of cell types from a drop-down menu (not shown) and a hierarchical cell
network (abbreviated network shown here). Upon selection of cell types, the “Marker genes” tab is populated. (B) “Marker genes” tab displays marker genes and species
specificity information from GeneMarker.db filtered to the user-selected cell types. Upon selection of marker genes of interest, the “Source information” tab is populated.
(C) “Source information” tab displays source, sample and statistical data from CellSearcheR.db filtered to the user-selected marker genes. All GeneMarkeR data
can be exported to CSV.

FIGURE 2 | Marker gene classification algorithm. The algorithm classifies genes with <4 cell types as Indeterminate due to insufficient data to analyze the gene
unless the gene was examined against the same cell type in ≥4 separate analyses. Significant marker gene score (i.e., at least 0.5) for at least two-thirds of publications
considered for each gene-cell type pair. The number of significant gene-cell type pairs per a given gene is “X”. 1) If X � 0, the gene is not a marker gene for any cell type, 2)
If X � 1, the gene is a marker gene for one cell type, 3) If X ≥ 2, then the gene is a marker gene for more than one cell type. When X ≥ 2, if the gene is marker gene for
multiple cell types from the same higher-level cell type (ex: connective tissue cells), then the gene is a marker gene for the higher-level cell type. When X ≥ 2, if the gene is
marker gene for multiple cell types from at least 2 higher-level cell types (ex: connective tissue cells and T cells), then the gene is a non-marker gene due to lack of
specificity across publications.
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gene-cell type pair in Source 1. A marker gene score of 1 indicates
strong evidence that a gene is a marker gene for a given cell type
from that source, while 0 indicates little to no evidence for
supporting this relationship.

Marker Gene Score Algorithm
To classify whether a gene was specific across samples, species
and sources for a given cell type, a simple marker gene
classification algorithm was developed as shown in Figure 2.
Genes reported in fewer than 4 cell types were labelled as
Indeterminate due to insufficient data to determine specificity
across multiple cell types. As highly specific genes may not be
expressed in other cell types accounting for reporting in fewer
than 4 cell types, a subset of genes categorized as Indeterminate
had to be reclassified. Therefore, genes originally classified as
Indeterminate that were analysed in the same cell type across at
least 4 separate sources for common cell types or 2 separate
sources for rare cell types (e.g., pancreatic epsilon cell) were
reclassified and were included in the next classification steps.

Next, the number of cell types (X) with an average marker gene
score of ≥0.5 across publications were counted for each gene. If X
� 0 for an individual gene, that gene was not considered a marker
gene for any cell type (i.e., a non-marker gene). If X � 1 for an
individual gene, that gene was significant for a single cell type
across sources, so it was classified as a marker gene for that cell
type. To ensure genes were specific for a limited number of cell
types, each gene was restricted to be considered a marker gene for
a maximum of 2 cell types. To ensure this cut-off was achieved, if
X ≥ 2 for an individual gene, the number of higher-level cell types
(Y) were considered. If Y < 2 for an individual gene, then the gene
was a marker gene for the higher-level cell type. If Y ≥ 2 for an
individual gene, the gene would be considered in most cases as a
non-marker gene since it was not specific across publications. As
each gene was restricted to a maximum of 2 cell types for which it
was specific, genes exceeding this are labelled non-marker genes.

Therefore, using our algorithm cut-off X, we first check if the
gene is specific for the more granular cell subtypes. If X < 2, then
the gene is subtype specific, thus specific for that cell subtype and
for any higher-level cell types in the hierarchical tree branch.
While we count this gene as specific for 1 cell type subtype, the
specificity relationship is propagated up the branch meaning the
gene is also specific for higher level cell types in that branch. If X ≥
2, then we check if those cell subtypes fall under the same higher-
level cell type by looking at the built hierarchical ontology tree
structure. This is where the higher-level threshold of Y comes into
play. If a gene is found to be specific for multiple cell subtypes
(i.e., X ≥ 2) and those cell subtypes belong to the same higher level
cell subtype, then the gene is a marker gene for the higher-level
cell type, but NOT for the subtypes. Species specificity for a
marker gene required a 3-fold difference in median marker gene
score between species with the median exceeding 0.5 for at least
one of the species.

Database Design and Web Interface
There are two databases behind GeneMarkeR shown in Figure 3,
they are both implemented in MySQL to ensure data integrity,
standardization, and ease of data updates over time.

CellSearcheR.db consists of over 261,000 rows of data
extracted across 15 publications and 2 datasets from
collaborators comprising a total of 25 unique marker gene
analyses. CellSearcheR.db was processed through the algorithm
described in Materials and Methods Marker gene score to create
GeneMarkeR.db, which stores gene-cell type relationships for the
algorithm identified marker genes.

An R Shiny tool hosted on the IU Precision Health Initiative
server enables access and extraction of both CellSearcheR.db and
GeneMarkeR.db databases. As is shown in Figures 1A–C, the R
Shiny tool has reactive programming built-in, so when the user
selects cell types, this accesses GeneMarkeR.db to populate the
marker gene tab with algorithm-derived marker genes for their
cell types of interest. User selection of genes of interest on the
marker gene tab reactively retrieves the standardized, raw
CellSearcheR.db marker gene score and statistical data for
each of those genes.

A link (https://redcap.uits.iu.edu/surveys/?s�XEAFCX4LC7)
is provided on the web interface to a user submission form where
researchers can submit their marker gene analysis data. The
online form provides the results in a standardized CSV output
to enable easy standardization and addition to CellSearcheR.db.
In addition, marker gene analyses from new publications can also
be manually extracted and standardized to update CellSearcheR.
db with new data. The marker gene score algorithm is then used
to process all the data in CellSearcheR.db to update the results in
GeneMarkeR.db. Therefore, the process ensures updatability of
the databases and web interface over time from user submission
and manual extraction from new publications.

RESULTS

In total, 25 unique marker gene analyses of 9 distinct specimen
types (blood, bone marrow, brain, heart, kidney, lung, pancreas,
and tonsil) and additional cross-specimen sample types were
identified that met the criteria specified in the Materials and
Method section. The 261,000 rows of standardized marker gene
statistical data extracted from the 25 analyses were stored in the
CellSearcheR.db. As is shown in Figure 3, the CellSeatcheR.db
data are analyzed in the marker gene classification algorithm
detailed in Figure 2 to identify the marker genes that are then
stored in GeneMarkeR.db. The information housed in each
database is shown in Figure 3 and the data from both MySQL
databases are used to generate the GeneMarkeR Tool R Shiny
interface.

The 3,936 genomic entities that could not be automatically or
manuallymapped to a current gene annotationwere excluded, leaving
21,012 genomic entities for the analysis. There were over 120 distinct
cell types (including higher level cell types) with 221,441 unique gene-
cell type combinations considered in the marker gene analysis. The
final analysis of standardized marker gene results identified 2,464
genes as specific for one or two cell types with 2,746 total marker gene
pairs as 281 genes were specific for two cell types. 7,283 genes were
classified as non-marker genes, 10,465were classified as indeterminate
due to sparse data and the remainder were a mix of non-marker gene
and indeterminate. The number of genes identified as a marker gene
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analyzed at that cell type (dark blue) out of all genes analyzed at that
cell type (length of bar) is shown in Figure 4A. There were 68 cell
types with marker genes identified out of the 120 cell types extracted
from the 25 unique marker gene analyses. Out of the 2,746 marker
genes, 80% of those were classified as a specific cell type and 20%were
classified as a higher-level cell type. Filtering to the marker genes from
Figure 4A (dark blue) we get Figure 4B where marker genes are
categorized based on whether the gene is specific for that cell type
(light blue) or a higher-level cell type (purple). For example, therewere
5,000 genes analyzed against fibroblasts with approximately 500 being
identified as marker genes for fibroblasts and 400 being identified as
marker genes for a higher-level cell type (i.e., connective tissue cell).

In CellMarker there are an average of 2.2 sources supporting
marker genes in normal tissue samples with 55% of marker genes
supported by a single source. In the GeneMarkeR.db database
there are 4.5 sources on average supporting a gene being a marker
gene for a certain cell type in our database with only 4 (0.1%)
marker genes supported by a single source. These 4 cases were
due to the gene being a higher-level marker gene in the cell
ontology and the individual publications having at least 4 distinct
cell types to support that re-classification.

DISCUSSION

The analysis described here focused on mouse and human as these
two species comprise most marker gene data analyses. Non-treated
and non-disease samples were evaluated to study the naïve state of cell

identity. This enables future analyses to delve into the impact that
disease and treatment may have on cell identity markers. After
extracting data from public datasets meeting these criteria, data
standardization was addressed. Due to differences in genome
annotations, sources of gene symbols, and naming conventions
across publications, not all genes could be automatically mapped.
Therefore, 15% of the gene symbols weremanuallymapped to current
genome assembly GRCm39 for mouse and GRCh38.p13 for human.
Genes that existed in earlier genome annotations but have since been
discontinued in current mouse and human reference genomes were
removed from the analysis.

The ontology standardization of cell type started withmapping cell
types from the publications to Cell Ontology. Nodes of these cell types
and their higher-level cell types were connected by building the
network backwards from the most specific cell types up to the
highest-level parent nodes (i.e., naïve cell or somatic cell). As is
described in Materials and Methods Ontology standardization, the
hierarchy was manually pruned to remove redundancy and circular
relationships, whilemaintaining intermediate cell type nodes to ensure
new cell types could be connected in the future. In a handful of cases
nodes were manually adjusted to ensure biological relevance and
consistency. The higher-level cell types were then added to the
database to improve the marker gene score algorithm.

Due to differences in statistical methods, endpoints and
significance cut-offs, the marker gene score was calculated to
enable normalization and comparison across publications. Using
the median and average marker gene score we used the marker
gene score algorithm to identify marker gene, higher-level marker

FIGURE 3 | Schema for generation of GeneMarkeR. The CellSearcheR database (CellSearcheR.db) integrates standardized cell type, gene and statistical data
from publications performing marker gene identification analyses on non-treated, non-disease mouse and human samples. Data was manually extracted, cell types
mapped to the Cell Line Ontology hierarchical ontology, genes mapped to Ensembl and Entrez identifiers and statistical data normalized to a marker gene score.
CellSearcheR.db is processed by the marker gene classification algorithm detailed in Figure 2. The GeneMarkeR database (GeneMarkeR.db) integrates the
standardized cell type, gene andmarker gene results from the algorithm output. CellSearcheR.db andGeneMarkeR.db areMySQL databases that are accessed via an R
Shiny user interface called GeneMarkeR.
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gene, non-marker gene and indeterminate calls for each cell type-gene
combination across sources. While approximately 80% of gene-cell
type pairs could be automatically annotated by following the
algorithm, genes with more than 2 higher-level cell types had to
be manually checked to determine if those higher-level cell types were
from the same branch of the hierarchical cellmap or fromapreviously
pruned branch. For example, microglial cell can be connected to
multiple branches (i.e., glial cell,macrophage, andmyeloid cell, etc. . .),
so the manual mapping would reconsider these additional
connections and higher-level cell types in context of all data for
that gene-cell type pair.

While CellMarker is a great source of marker gene annotations
from normal and disease samples, the database described in this
manuscript provides an improvement in marker gene
identification for normal mouse and human samples. An
advantage of this algorithm over previously published analyses
is the greater amount of data supporting each marker gene call.
Identifying genes that are considered as marker genes across
multiple sources in CellMarker requires users to perform their
own analysis of the data, whereas GeneMarkeR provides the user
with that information. In addition, unlike CellMarker,
GeneMarkeR considers the difference and overlap between
mouse and human enabling species-specific gene markers to
be included or excluded. Finally, due to the inclusion of
hierarchical cell ontology in GeneMarkeR, 538 genes were

more accurately reclassified as being specific for a higher-level
cell type rather than the original publication cell type, which is not
considered in CellMarker.

In conclusion, data were first manually extracted from publicly
available marker gene analyses and hierarchical ontology
standardization was applied to create CellSearcheR.db. Next,
GeneMarkeR.db was developed using a novel algorithm that
considers marker gene score to identify marker genes specific
across species, samples, and methodology. Finally, an R Shiny
user interface was developed (GeneMarkeR) that pulls from
CellSearcheR.db and GeneMarkeR.db using reactive
programming. The GeneMarkeR tool provides highly
validated, consistent marker genes and species specificity
information to enable improved scRNA-seq cell type
identification over existing databases.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are
included in the article/Supplementary Material, further
inquiries can be directed to the corresponding author.
GeneMarkeR is freely available at https://shiny.ph.iu.edu/
GeneMarkeR/ access on the web with all major browsers
supported.

FIGURE 4 |GeneMarkeR summary statistics. (A)Number of marker genes identified (dark blue) out of all genes analyzed per cell type (length of bar). (B)Number of
marker genes reclassified as a higher-level cell type marker (purple) and number of marker genes classified as cell type-specific marker (light blue) out of all marker genes
identified for that cell type (length of bar). Figure 2B is filtered to the marker genes, i.e., dark blue bars in figure 2A. Both figures are sorted from largest to smallest
number of genes.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7634316

Paisley and Liu GeneMarkeR: scRNA-seq Marker Gene Database

https://shiny.ph.iu.edu/GeneMarkeR/
https://shiny.ph.iu.edu/GeneMarkeR/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

ACKNOWLEDGMENTS

We thank IU Precision Health Initiative facility for hosting the R
Shiny application as well as Peter Barker for setting up the
MySQL server.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.763431/
full#supplementary-material

Supplementary Figure 1 | Marker gene score calculation for an individual source/
publication. For eachmarker gene statistic in an individual source, the statistical results
are scaled from 0 (low/no evidence marker gene) to 1 (high evidence marker gene)
using the author specified statistical significance cutoffs. All gene-cell type pairs in that
source receive a preliminary score for each endpoint. Those preliminary scores are then
averaged to calculate the marker gene score for a gene-cell type pair in an individual
source. A given gene-cell type pair will have a different marker gene score for each
publication to enable comparison of gene specificity for that cell type across sources.

REFERENCES

Aran, D., Looney, A. P., Liu, L., Wu, E., Fong, V., Hsu, A., et al. (2019). Reference-
based Analysis of Lung Single-Cell Sequencing Reveals a Transitional
Profibrotic Macrophage. Nat. Immunol. 20 (2), 163–172. doi:10.1038/
s41590-018-0276-y

Franzén, O., Gan, L.-M., and Björkegren, J. L. M. (2019). PanglaoDB: a Web Server
for Exploration of Mouse and Human Single-Cell RNA Sequencing Data.
Database 2019, baz046. doi:10.1093/database/baz046

Mancarci, B. O., Toker, L., Tripathy, S. J., Li, B., Rocco, B., Sibille, E., et al. (2017).
Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with
Applications to Interpretation of Bulk Tissue Data. eNeuro 4 (6),
0212–0217. doi:10.1523/ENEURO.0212-17.2017

Saviano, A., Henderson, N. C., and Baumert, T. F. (2020). Single-cell Genomics and
Spatial Transcriptomics: Discovery of Novel Cell States and Cellular
Interactions in Liver Physiology and Disease Biology. J. Hepatol. 73,
1219–1230. doi:10.1016/j.jhep.2020.06.004

Skelly, D. A., Squiers, G. T., McLellan, M. A., Bolisetty, M. T., Robson, P.,
Rosenthal, N. A., et al. (2018). Single-Cell Transcriptional Profiling Reveals
Cellular Diversity and Intercommunication in the Mouse Heart. Cel Rep. 22 (3),
600–610. doi:10.1016/j.celrep.2017.12.072

Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., et al. (2019).
CellMarker: a Manually Curated Resource of Cell Markers in Human

and Mouse. Nucleic Acids Res. 47 (D1), D721–D728. doi:10.1093/nar/
gky900

Conflict of Interest:Author BP was employed by company Eli Lilly and Company,
United States.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The reviewer JL declared a past co-authorship with one of the authors YL to the
handling editor.

Publisher’s Note: All claims expressed in this article are solely those of the authors and
donot necessarily represent those of their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Paisley and Liu. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7634317

Paisley and Liu GeneMarkeR: scRNA-seq Marker Gene Database

https://www.frontiersin.org/articles/10.3389/fgene.2021.763431/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.763431/full#supplementary-material
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1093/database/baz046
https://doi.org/10.1523/ENEURO.0212-17.2017
https://doi.org/10.1016/j.jhep.2020.06.004
https://doi.org/10.1016/j.celrep.2017.12.072
https://doi.org/10.1093/nar/gky900
https://doi.org/10.1093/nar/gky900
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	GeneMarkeR: A Database and User Interface for scRNA-seq Marker Genes
	Introduction
	Materials and Methods
	Data Extraction
	Ontology Standardization
	Marker Gene Score
	Marker Gene Score Algorithm
	Database Design and Web Interface

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


