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Immunotherapy has been a milestone for muscle-invasive bladder cancer (MIBC), but only
a small portion of patients can benefit from it. Therefore, it is crucial to develop a robust
individualized immune-related signature of MIBC to identify patients potentially benefiting
from immunotherapy. The current study identified patients from the Cancer Genome Atlas
(TCGA) and immune genes from the ImmPort database, and used improved data analytical
methods to build up a 45 immune-related gene pair signature, which could classify patients
into high-risk and low-risk groups. The signature was then independently validated by a
Gene Expression Omnibus (GEO) dataset and IMvigor210 data. The subsequent analysis
confirmed the worse survival outcomes of the high-risk group in both training (o < 0.001)
and validation cohorts (p = 0.018). A signature-based risk score was proven to be an
independent risk factor of overall survival (o < 0.001) and could predict superior clinical net
benefit compared to other clinical factors. The CIBERSORT algorithm revealed the low-risk
group had increased CD8* T cells plus memory-activated CD4* T-cell infiltration. The low-
risk group also had higher expression of PDCD1 (PD-1), CD40, and CD27, and lower
expression of CD276 (B7-H3) and PDCD1LG2 (PD-L2). Importantly, IMvigor210 data
indicated that the low-risk group had higher percentage of “inflamed” phenotype plus less
“desert” phenotype, and the survival outcomes were significantly better for low-risk
patients after immunotherapy (o = 0.014). In conclusion, we proposed a novel and
promising prognostic immune-related gene pair (IRGP) signature of MIBC, which could
provide us a panoramic view of the tumor immune microenvironment of MIBC and
independently identify MIBC patients who might benefit from immunotherapy.

Keywords: muscle-invasive bladder cancer, immune-related gene pair signature, tumor microenvironment,
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INTRODUCTION

With over 43,000 patients diagnosed every year worldwide, bladder
cancer (BC) accounts for 170,000 deaths annually, causing a heavy
public health and socioeconomic burden (Patel et al., 2020). As the
advanced stage of BC, muscle-invasive bladder cancer (MIBC)
makes up to 20-30% of BC and is even more lethal (Chamie
et al, 2013). Radical cystectomy and pre- or postoperative
adjuvant chemotherapy are usually given to MIBC patients, but
the survivorship and cancer-specific mortality are still poorer than in
patients with TaT1 and carcinoma in situ (Burger et al, 2013).
Therefore, different biomarkers have been studied in molecular
classification to predict whether disease progression and
prognosis of MIBC have been previously reported. For instance,
epidermal growth factor receptor 3 (EGFR3) was reported to be
overexpressed in basal MIBC and was chemosensitivity-related
(Choi et al,, 2014a; Choi et al., 2014b). Another research revealed
that ERCC2 mutations were mostly enriched in primary vs
secondary MIBC and resulted in increased cisplatin sensitivity
(Pietzak et al., 2019). A recent consensus summarized different
molecular classification systems of MIBC and defined it into six
molecular subtypes (Kamoun et al,, 2020). However, as the EAU
guideline concluded, molecular classification and biomarkers of
MIBC are still evolving and have not been validated in routine
clinical practice yet (EAU Guidelines, 2020).

In the era of immunotherapy, tumor microenvironment has
been a research hotspot for years, and immune cells were reported
to be a critical component of it. In fact, immune cells have longed
to play a critical role in tumor development and progression
(Miao etal., 2019; Walsh et al., 2019; Mohsenzadegan et al., 2020).
Therefore, a robust individualized immune signature predicting
prognosis is necessary to identify patients who might benefit from
immunotherapy. Although several studies have tried to construct
prognostic signatures of MIBC, those signatures were not
particularly designed to be immune-related gene. Moreover,
the limitations of traditional approaches processing RNA-seq
or microarray data such as biological heterogeneity and technical
biases could not be ignored in those signatures. Hence, the
current study aims to wutilize an improved technique
established by Li et al. (Li et al, 2017) to construct a robust
individualized immune-related gene pair (IRGP) signature that
can predict the prognosis of MIBC.

METHODS

Data Preparation

A level three RNA-seq expression data along with clinical
information of TCGA-BLCA project were downloaded from
the Cancer Genome Atlas (TCGA) in the FPKM workflow
type (https://portal.gdc.cancer.gov/, accessed on May 2020).
Clinical information of bladder cancer samples was
downloaded from UCSC Xena for double-checking. The
additional microarray dataset and clinical information were
downloaded from another independent dataset GSE31684 in
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/,
GEO) for necessary external validation. The gene expression data
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of MIBC patients from GSE31684 were normalized using the
robust multi-array average (RMA) method from the “affy”
package. Patients diagnosed with muscle-invasive bladder
cancer (T stage T2-T4) were included for further analysis, and
patients without survival reports or survival less than 30 days
were excluded to reduce the potential impact from lethal
complication.

Construction of Imnmune-Related Gene Pair
Signature

Immune-related genes (IRGs) were identified from the ImmPort
database (Bhattacharya et al.,, 2014) on May 24th’ 2020 (https://
immport.niaid.nih.gov). To construct the IRGP signature, we
used a pairwise comparison, as described in a previously
published literature (Li et al, 2017), among the IRG
expression value to assign a score for each IRGP. Specifically,
the score was 1 for certain IRGP when the first IRG of this IRGP
was out-expressed than the second IRG, and the score was 0 when
the expression value of the second IRG was higher. IRGP would
be discarded if the score of this IRGP was identical across over
80% samples. Then we performed Cox regression to select
prognostic IRGPs as candidates for the subsequent risk model
construction. Lasso Cox proportional hazard regression (iteration
= 1,000) with 10-fold cross validation (R package “glmnet”) was
applied and screened IRGPs to construct the eventual prognostic
model of IRGP.

Prognostic Value of Immune-Related Gene

Pair Signature and External Validation
Patients from the training cohort (TCGA-MIBC) were divided into
either high or low IGRP risk group based on the risk score they were
assigned in the IRGP signature. The optimal cutoff value
discriminating the high- and low-risk score was determined by
the “Maxstat” algorithm (Ogluszka et al., 2019), and the accuracy of
our model was assessed by the receiver operating curve (ROC)
(Martinez-Camblor and Pardo-Ferndndez, 2018). 1-year, 3-year,
and 5-year ROC were presented. The Kaplan-Meier curve was
then used to compare the survival between the high- and low-risk
score groups. Patients from GSE31684 and IMvigor210 trial
(advanced/metastatic bladder cancer treated with immune-
checkpoint inhibitor) were also grouped accordingly, and the
survival analysis was performed to validate the IGRP signature.
Moreover, univariate and multivariate Cox regression were
performed to further validate the prognostic value of the IGRP
signature along with other clinical parameters such as age, gender, T
stage, N stage, and papillary histology. The decision curve analysis
(DCA) was also conducted to compare the clinical benefits between
the signature-based risk score and other clinical factors.

Tumor Microenvironment and Function
Analysis of IRGP Signature

CIBERSORT is a machine learning method that can quantify the
relative abundance of 22 types of infiltrating immune cells in bulk
tumor gene expression profiles (Newman et al, 2015). By
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TABLE 1 | Immune-related gene pairs in signature construction.
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IRG 1 Immune process IRG2 Immune process Coefficient HR 95% CI p Value
CTSE Antigen processing and presentation PTN Cytokines -0.19344 0.44 0.30-0.66 0.0001

CTSE Antigen processing and presentation TNFRSF14 Cytokine receptors -0.15899 0.40 0.25-0.62 0.0001

MR1 Antigen processing and presentation PTGER4 Cytokine receptors 0.255,648 1.78 1.28-2.48 0.0007
ICAM1 Antigen processing and presentation IL20RA Cytokine receptors 0.077939 1.83 1.29-2.59 0.0007
MICA Antigen processing and presentation LTBP2 Cytokines -0.18798 0.51 0.38-0.70 <0.0001
RFXANK Antigen processing and presentation IRF3 Antimicrobials 0.400,774 1.81 1.32-2.48 0.0002
CXCL16 Antimicrobials CTGF Cytokines —-0.06737 0.48 0.33-0.70 0.0001

CXCL10 Antimicrobials PTHLH Cytokines -0.11848 0.51 0.37-0.71 0.0001

CXCL13 Antimicrobials LTBP2 Cytokines -0.13472 0.50 0.35-0.69 <0.0001
CXCL13 Antimicrobials TNFRSF1B Cytokine receptors -0.10722 0.55 0.39-0.79 0.0010
IFNGR1 Antimicrobials CDK4 TCR signaling pathway -0.0343 0.58 0.43-0.78 0.0004
A2M Antimicrobials PPARG Antimicrobials 0.02953 2.24 1.564-3.27 <0.0001
APOBEC3G Antimicrobials CMTM8 Cytokines -0.20014 0.51 0.38-0.70 <0.0001
FABP6 Antimicrobials PDGFD Cytokines -0.04287 0.55 0.41-0.76 0.0002
TLR2 Antimicrobials PDK1 TCR signaling pathway —-0.29488 0.57 0.40-0.79 0.0010
IL1B Antimicrobials PTX3 Antimicrobials —0.10987 0.55 0.39-0.76 0.0004
APOD Antimicrobials IRF9 Antimicrobials 0.080249 1.91 1.37-2.68 0.0002
APOD Antimicrobials TNFSF13B Cytokines 0.234,724 1.91 1.33-2.74 0.0004
1ISG20L2 Antimicrobials TNFRSF14 Cytokine receptors 0.177,583 1.91 1.39-2.63 0.0001

LRP1 Antimicrobials CD40 Antimicrobials 0.089685 1.95 1.41-2.69 0.0001

LRP1 Antimicrobials PLXNB1 Chemokine receptors 0.007443 1.99 1.47-2.68 <0.0001
LRP1 Antimicrobials SDC3 Cytokine receptors 0.065861 1.95 1.43-2.65 <0.0001
VEGFA Antimicrobials LYN BCR signaling pathway -0.05791 0.58 0.43-0.79 0.0007
VEGFA Antimicrobials CYR61 Chemokines -0.2168 0.46 0.30-0.68 0.0001

BPHL Antimicrobials BLNK BCR signaling pathway 0.092328 1.79 1.833-2.42 0.0001

DCK Antimicrobials GMFB Cytokines -0.31192 0.55 0.39-0.77 0.0005
CSK Antimicrobials MAP2K1 Antimicrobials —0.23761 0.50 0.36-0.70 <0.0001
IL18 Antimicrobials EGFR Cytokine receptors -0.06673 0.58 0.38-0.74 0.0001

PLSCR1 Antimicrobials LTBP2 Cytokines —0.06836 0.58 0.42-0.80 0.0010
BIRC5 Antimicrobials EGFR Cytokine receptors -0.43192 0.49 0.36-0.66 <0.0001
GBP2 Antimicrobials NRAS BCR signaling pathway —-0.06923 0.50 0.36-0.68 <0.0001
GBP2 Antimicrobials NAMPT Cytokines -0.28197 0.48 0.35-0.67 <0.0001
OAS1 Antimicrobials PTK2 Antimicrobials -0.00763 0.49 0.35-0.68 <0.0001
OASH Antimicrobials IFITM1 BCR signaling pathway -0.21493 0.46 0.30-0.70 0.0003
OASH Antimicrobials BID Natural killer cell cytotoxicity -0.13673 0.55 0.40-0.75 0.0002
EDNRB Chemokine receptors TNFSF15 Cytokines 0.286,959 1.85 1.34-2.56 0.0002
CMTM7 Cytokines CMTM8 Cytokines -0.10406 0.47 0.34-0.65 <0.0001
JAG2 Cytokines EGFR Cytokine receptors -0.19259 0.55 0.39-0.77 0.0006
KITLG Cytokines PRF1 Natural killer cell cytotoxicity 0.03001 1.77 1.29-2.43 0.0004
LTBP2 Cytokines INSR Cytokine receptors 0.041443 1.90 1.38-2.61 0.0001

PDGFD Cytokines LCK Natural killer cell cytotoxicity 0.107,975 1.80 1.33-2.42 0.0001

APLNR Cytokine receptors ICAM2 Natural killer cell cytotoxicity 0.125,295 2.20 1.43-3.39 0.0003
EGFR Cytokine receptors MET Cytokine receptors 0.009461 1.96 1.46-2.65 <0.0001
KDR Cytokine receptors MAP3K8 TCR signaling pathway 0.018456 1.91 1.35-2.71 0.0003
FAS Natural killer cell cytotoxicity GZMB Natural Killer cell cytotoxicity 0.06645 1.76 1.30-2.39 0.0003

uploading the normalized gene expression data to the
CIBERSORT website (http://cibersort.stanford.edu/) with the
default signature matrix at 1,000 permutations, we predicted
and compared different immune cell infiltration in the high-
risk and low-risk groups. Moreover, the expression of immune-
checkpoint genes was compared between groups, and genes with
significant difference were displayed. Importantly, data from
IMvigor210 were used to calculate the percentage of three
immune phenotypes (inflamed, excluded, and desert) (Chen
and Mellman, 2017) between groups, and the risk score of
patients with different immune response was assessed.

The gene set enrichment analysis (GSEA) of Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were performed to assess the biological processes that

the IRGP signature was involved with. We downloaded the gmt
file from GSEA (https://www.gsea-msigdb.org/) and used a R
package named “fgsea” to conduct the enrichment analysis, which
identified pathways with a minimal number of 15 genes and a
maximal number of 500 genes, and repeated 10,000 times.
Enrichment outcomes with p value less than 0.05 were
identified as statistically significant.

RESULT

Construction of IRGP Signature
A total of 430 files were downloaded from the TCGA database
including 411 transitional cell papilloma and carcinoma files
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FIGURE 1 | Kaplan—-Meier curves and risk plots comparing the overall survival between high-risk and low-risk groups according to the 45-IRGP signature in the
training cohort (A) and validation cohort (B).

and 19 normal tissue files. Data from UCSC Xena had clinical
information of 454 patients. After data matching and
screening, 385 MIBC patients with sufficient clinical
information were included. A total of 2,498 IRGs were then
obtained from the ImmPort database, which were involved in a
variety of immune functions including but not limited to
antigen processing and presentation, antimicrobials,
cytokine, chemokine, natural killer cell cytotoxicity, BCR
signaling, and TCR signaling pathway (Supplementary
Table S1). 21,074 IRGPs were matched after pairwise
comparison, of which 343 IRGPs were found to be
correlated with the prognosis of MIBC (Supplementary
Table S2). Lasso Cox regression (R package “glmnet,”
iteration = 1,000) eventually selected 45 prognostic IRGPs
to build up the IRGP signature. Immune processes and Lasso
coefficients of those 45 IRGPs are presented in Table 1.

Validation of IRGP Signature

Each MIBC patient from the TCGA-BLCA project was assigned a
risk score based on the 45-IRGP signature (Supplementary Table
$3) and divided into high-risk (n = 148) or low-risk (n = 237)
groups. The survival analysis revealed that patients with the high-
risk score had worse overall survival than those with the low-risk
group (p < 0.001) (Figure 1A). To validate the IRGP signature,
patients from the GSE31684 dataset in GEO were also given risk
scores and divided into high-risk (n = 44) and low-risk (n = 34)
groups (Supplementary Table S3). Consistently, the validation
cohort confirmed that a higher risk score was correlated with
worse overall survival (p = 0.018) (Figure 1B). 1-year, 3-year, and
5-year ROCs with an AUC of 0.856, 0.867, and 0.893 are
presented, respectively, in Figure 2A. The DCA curve in
Figure 2B indicated a superior clinical net benefit of the risk
score than other clinical features. Moreover, we further
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performed Cox proportional hazard regression and found that
the risk score was an independent risk factor of overall survival
(HR 4.329, 95% CI 3.410-5.496, p < 0.001) of MIBC in the
multivariate analysis (Figure 3).

Tumor Microenvironment and Enrichment
Analysis of the IRGP Signature

Biological processes with which the IRGP signature was
associated were partially presented using GSEA analysis
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(Figure figure4A, Supplementary Table S4). The GO
enrichment analysis visualized the top 15 biological processes
the IRGP signature was involved in, such as antigen binding,
fibroblast growth factor receptor binding, extracellular matrix
receptor interaction, B-cell-mediated immunity,
immunoglobulin production, fibroblast growth factor receptor
binding, antigen receptor-mediated signaling pathway, and
immune response regulating cell surface signaling pathway
(Figure 4B). Moreover, Figure 4C showed the top 15 KEGG
pathways where the IRGP signature played a role, including
pathways in cancer, MAPK signaling pathway, focal adhesion,
and extracellular matrix receptor interaction.

The relative abundance of 22 types of immune cells for
patients in high-risk or low-risk groups was summarized by
CIBERSOT and displayed in Figure 5A. It was indicated that
most of the immune cells were expressed at an approximate level
between two groups except that the expression of macrophages
MO was increased in the high-risk group and the expression of
CD8" T cells plus memory-activated CD4" T cells was increased
in the low-risk group (Figure 5B). Moreover, the low-risk group
had higher expression of PDCD1 (PD-1), CD40, and CD27, and
lower expression of CD276 (B7-H3) and PDCDILG2 (PD-L2)
(Figure 5C).

Implication of the IRGP Signature for

Immunotherapy
Importantly, a higher percentage of inflamed immune phenotype
along with a lower proportion of desert phenotype was observed

in the low-risk group (Figure 6A), which might imply a potential
survival benefit for the low-risk group after immunotherapy.
When treated with immune-checkpoint inhibitor, patients
showing a partial response (PR) or complete response (CR)
appeared to have a lower risk score than patients with
progressive disease (PD) or stable disease (SD), even though
statistical significance was not reached (Figure 6B). In
consistency, the survival analysis revealed a superior survival
rate for the low-risk group after immunotherapy (p = 0.016)
(Figure 6C).

DISCUSSION
For a long period of time, MIBC patients are normally
recommended to undergo radical cystectomy or

chemotherapy, but those patients are still at great chance of
experiencing a decreased postoperative life quality and high risk
of death (Patel et al., 2020). In the era of immunotherapy,
immune-checkpoint inhibitors (ICIs) such as drugs targeting
the PD-1/PD-L1 axis have demonstrated the ability to achieve
durable response in different kinds of tumors (Wei et al., 2018).
Without exception, immunotherapy has brought new insight into
the treatment for MIBC patients ineligible for radical cystectomy
or chemotherapy-insensitivity, and multiple clinical trials have
been conducted with five ICIs approved for advanced urothelial
carcinoma (UC) patients who progress despite platinum-based
chemotherapy (Massard et al.,, 2016; Apolo et al, 2017; Balar
et al., 2017; Bellmunt et al., 2017; Sharma et al., 2017). Further
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studies have also qualified the inhibitor of FGFR as an alternative ~ identify novel immune-related therapeutic targets for MIBC.
option for advanced UC (Pal et al., 2018). However, given that the ~ Herein, several previous studies have attempted to establish an
response to those drugs remains limited, it is still crucial to ~ immune-related signature of MIBC. For example, Goux et al.
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reported a molecular signature consisting of three genes (OX40L,
CD8, and TIGIT), which was significantly correlated with overall
survival and recurrence-free survival of MIBC (Le Goux et al,,
2017); Song et al. identified an MIBC prognostic signature based
on four long non-coding RNAs (LIG1, TBX1, CTSG, and
CXCL12) targeting immune-related genes. Likewise, Jiang
et al. built a prognostic model of MIBC comprised nine genes
(CCDC80, CD3D, CIITA, FN1, GBP4, GNLY, SPINKI, UBD,
and VIM) by computing the relative abundances of 24 immune
cells (Jiang et al., 2020).

Nevertheless, one common flaw of current prognostic
signatures that could not be ignored was the inherent
technique biases lying in expression profile normalization and
scaling across different platforms with RNA-Seq or microarray.
Therefore, the current study constructed a prognostic signature of
MIBC using relative ranking and pairwise comparison of gene
expression values within the same sample, thus overcoming the
need of data normalization (Li et al., 2017). Through an improved
technique, we established a 45-IRGP prognostic signature of
MIBC, which divided patients into high-risk or low-risk
groups based on the scoring. Further analyses indicated that
patients within the high-risk group had worse overall survival and
the risk score was an independent risk factor of MIBC survival.

The 45-IRGP signature we identified comprises a variety of
IRGs that are associated with biological processes such as
cytokines and cytokine receptors, antigen processing and
presentation, and antimicrobials, which play critical roles in
the inflammatory process. Robust evidence has shown a tight
connection between inflammation and tumorigenesis (Porta
et al., 2011; Liao et al., 2018), let alone that some of those
IRGs, for instance, LCK, EGFR, and CD40, have also been
reported to directly impact tumorigenesis, tumor cell
proliferation, and migration (da Cunha Santos et al., 2011;
Mata et al., 2017; Zepecki et al., 2019), making the inclusion
of those IRGs in our MIBC signature look even more reasonable.

The enrichment analysis also indicated some crucial biological
functions and pathways those IRGs were involved in, for instance,
antigen binding, fibroblast growth factor (FGF) receptor binding,
extracellular matrix (ECM) receptor interaction, antigen
receptor-mediated signaling pathway, and MAPK signaling
pathway. Most of those biological function and pathways have
been well proven to play a crucial and complicated role in
tumorigenesis and tumor progression. For example, FGF
signaling can drive tumorigenesis, but can also mediate tumor
protective functions in different contexts (Turner and Grose,
2010); likewise, ECM receptor has also been claimed to potentiate
micro-metastasis of lung cancer (Stevens et al., 2017), not to
mention that antigen binding is the one of the initial steps of
adaptive immunity against tumor.

Besides, the CIBERSORT analysis indicated that the high-risk
group had a significantly increased level of infiltrated MO
macrophage, an independent predictive factor of worse
survival for pancreatic ductal adenocarcinoma reported by Xu
etal. (Xuetal., 2020). An investigation observed an enriched level
of tumor cell growth and overall survival-related EFEMP2
expression in macrophage MO (Huang et al, 2020), which
could potentially support our findings. Likewise, the current
study also found an increased level of memory-activated CD4"
T cells and CD8" T cells within the low-risk group. In fact, CD4*
memory T cells and CD8" T cells have been previously reported
to be associated with a better survival of various malignant
tumors (Oshi et al., 2020). The possible underlying mechanism
could be the association between CD4" memory T cells and
increased expression of genes prohibiting cell proliferation and
apoptosis, and genes promoting DNA repair claimed by
Sadegh-Nasseri (Song et al, 2020), while CD8" T cell
recruitment through the STING/TBKI1/IRF3 pathway also
shows antitumor efficacy (Pantelidou et al, 2019).
Furthermore, the immune-checkpoint gene expression analysis
found the low-risk group showed an upregulation of two tumor-
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necrosis factor co-stimulating factors, CD27 and CD40, both of
which are widely expressed in antigen-presenting cells or
T/B cells, and have been verified to facilitate tumor cell
elimination (Vonderheide, 2020; Wasiuk et al., 2021). Another
important immune-checkpoint gene CD276, also known as B7-
H3, has been observed to be up-regulated in the high-risk group,
which is consistent with the previous evidence that CD276 is
generally overexpressed in tumor tissues compared to normal
tissues and could lead to worse survival (Zhou and Jin, 2021).
Importantly, the external validation using IMvigor210 data
revealed the capability of our signature to identify patients who
could potentially benefited from immune-checkpoint inhibitor
treatment, by showing that the low-risk group had more inflamed
phenotype and less desert phenotype. The well-accepted immune
phenotype employed here was proposed by Mellman (Chen and
Mellman, 2017), who claimed that tumors could be classified into
three phenotypes, namely, inflamed, excluded, and desert.
Generally, inflamed phenotype is indicative of the best
immune response to immunotherapy, while desert phenotype
is predictive of the worst immune response. Consistently, our
survival curves supported that the survival rate of the low-risk
group during immunotherapy was better than that of the high-
risk group, which enhanced the conclusion of the current study.
Taken together, this study proposed a novel and promising
IRGP signature of MIBC through improved methodology and
identified MIBC patients who could potentially benefit from
immune-checkpoint inhibitor. However, limitations should be
mentioned before interpreting our findings. The first limitation
was the retrospective nature of our study, although we validated
our findings using two independent datasets. A prospective
study in the future would be preferred. Second, the current
signature was constructed with RNA-seq and microarray
expression data, which certainly required further validation
such as RT-PCR, Western blot, and clinical application.
Third, although we improved the methodology, the
intratumor and intertumoral genetic heterogeneity still
remains unavoidable, which could possibly affect the eventual
outcomes. Last but not least, there is a great imbalance between
the number of tumor samples and normal sample within the
dataset we used to construct our model, which may have a
potential side effect of the model construction process and
require more samples to be devoted in the future study.

CONCLUSION
The current study proposed a novel and promising prognostic
IRGP  signature of MIBC and revealed tumor
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