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Autosomal recessive non-syndromic deafness-28 (DFNB28) is characterized by
prelingual, profound sensorineural hearing loss (HL). The disease is related to variants
of the TRIOBP gene. TRIO and F-actin binding protein (TRIOBP) plays crucial roles in
modulating the assembly of the actin cytoskeleton and are responsible for the proper
structure and function of stereocilia in the inner ear. This study aimed to identify pathogenic
variants in a patient with HL. Genomic DNA obtained from a 33-year-old woman with HL
was evaluated using a disease-targeted gene panel. Using next generation sequencing
and bioinformatics analysis, we identified two novel TRIOBP c.1170delC (p.S391Pfs*488)
and c.3764C > G (p.S1255*) variants. Both parents of the patient were heterozygous
carriers of the gene. The two variants have not been reported in general population
databases or published literature. The findings of this study will broaden the spectrum of
pathogenic variants in the TRIOBP gene.
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INTRODUCTION

Hearing loss (HL) is one of the most common sensory disorders in humans, affecting 466 million
people worldwide. The prevalence of bilateral permanent HL is estimated at one in 900–2,500
newborns, with genetic causes accounting for more than half of the cases (Cynthia andWalter, 2006).
Genetic HL can be divided into syndromic and non-syndromic sensorineural HL (SNHL) (Nicolas
and Anil, 2002). Hereditary hearing impairment without any other relevant clinical features is
referred to as “non-syndromes” and is a genetically heterogeneous disorder (Thomas et al., 2003). To
date, 123 non-syndromic HL genes have been identified (http:/hereditaryhearingloss.org/).
Nevertheless, pathogenic variants in common HL genes can be identified in only one-third of
patients with SNHL (Morag et al., 2018).

Non-syndromic deafness-28 (DFNB28) is related to variants in the TRIOBP gene (OMIM:
609761) on chromosome 22q13 (Agnieszka et al., 2017). Multiple isoforms of the protein have been
discovered (Beti et al., 2020). Human and mouse TRIOBP isoforms are divided into long forms
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(TRIOBP-3, TRIOBP-5 and TRIOBP-6) and short forms
(TRIOBP-1, TRIOBP-2, and TRIOBP-4) (Jian et al., 2015; Jian
et al., 2013; Shin et al., 2010). TRIOBP-1 consists of a pleckstrin
homology (PH) domain near the N-terminal and coiled coil (CC)
domains that make up the C-terminal half of the protein.
TRIOBP-1 is widely expressed and binds to F-actin. It plays an
important role in many processes including cell cycle, adhesion,
and neuronal differentiation (Beti et al., 2020). TRIOBP-2 may
encode the N-terminal sections of TRIOBP-1 including the PH
domain and parts of the CC domain. However, this has not been
thoroughly described so far. TRIOBP-4 is a 1,144 amino acid
protein in humans, which is highly expressed in the hair cells of
the inner ear and is crucial for the bundling of actin in the
stereocilia of the inner ear, with variants in it causing severe or
profound hearing loss (Shin et al., 2010; Beti et al., 2020).
TRIOBP-5 (also called TRIOBP-3 in some earlier articles)
encode 2,193 amino acid protein. TRIOBP-5 and TRIOBP-4
are expressed in the same inner ear cell types, and can be
found in static ciliated rootlets. TRIOBP-6 is slightly longer
than TRIOBP-5, which encoding 2,365 amino acid protein.
More additional sequences than TRIOBP-5 are predicted to be
unstructured, except for a stretch of α-helix in the isoform
specific N-terminus of TRIOBP-6, and another segment near the
center of the long isoform. It is likely that the role of TRIOBP-6
in the stereocilia may be consistent with TRIOBP-5, but this
remains unclear because lack of a known murine TRIOBP-6
species (Beti et al., 2020; Jian et al., 2015; Jian et al., 2013; Shin
et al., 2010).

In the present study, we present a family with isolated,
prelingual HL with a recessive inheritance pattern, using 162
targeted genes, a mitochondrial whole gene enrichment panel and
Sanger sequencing to identify two novel TRIOBP pathogenic
variants (c.1170delC, p.S391Pfs*488 and c.3764C > G,
p.S1255*) and establish a molecular diagnosis.

Patient and Methods
Patient
A 33-year-old Chinese woman visited the West China Second
University Hospital of Sichuan University (Chengdu, China) for
genetic diagnosis. The woman’s relatives informed the doctor that
the proband had bilateral prelingual deafness and now was trying

to conceive. At present, the proband has no other abnormal
clinical manifestations except hearing impairment. The
proband’s parents are healthy and have no close relative
marriage. The mother of the proband denied exposure to
teratogenic environmental factors during pregnancy. The
pedigree of this family is shown in Figure 1. The present
study was approved by the ethics committee of the West
China Second University Hospital of Sichuan University, and
written informed consent was obtained from the proband and
family members.

DNA Extraction
Peripheral blood samples were drawn from four subjects (Ⅱ3, Ⅱ4,
Ⅲ1, and Ⅲ3) after obtaining informed consent. Genomic DNA
was extracted from leukocytes of peripheral blood samples using
the QIAamp DNA Blood Mini Kit (Qiagen bioinformatics,
Hilden, Germany) according to the manufacturer’s
instructions. After the DNA was extracted from the samples,
the concentration and purity were examined using a NanoDrop
1,000 (Thermo Fisher Scientific, Inc., Wilimington,
United States).

Targeted NGS
According to the manufacturer’s protocol, we used the CM1132
and M113 Kit (MyGenostics, Inc. Beijing, China) to capture and
enrich the targeted gDNA of the proband. The CM1132 kit
targeted 162 genes (Supplementary Table S1) known to cause
deafness, while the M113 kit contained mitochondrial whole
genes and hot-spot variants that cause deafness. The double-
end sequencing program (PE150) was performed on the
NextSeq500 platform (Illumina, Inc. California, United States),
and sequence reads of 150bp were received. The reads were
mapped to the human genome reference (UCSC GRCh37/
hg19) using the Burrows-Wheeler Aligner. Variants were
called using the Genome Analysis Tool Kit. Annovar was used
to annotate the variants. Then, all the variants were filtered based
on their frequency in the 1,000 Genomes Project, ExAC, gnomad,
Esp6500. Variants with Minimum allele frequency (MAF) of
<0.05 were retained. We then applied several variant
prediction tools to predict the functional impact of candidate
variants. Finally, the pathogenicities of the variations were

FIGURE1 | Pedigree of the patient’s family; black-filled shapes represent individuals with hearing loss, and the unfilled shapes represent unaffected ones. Males are
represented by squares, females by circles.
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analyzed according to the American College of Medical Genetics
and Genomics (ACMG) guidelines (Sue et al., 2015) and Expert
Specification of the ACMG/AMP variant interpretation
guidelines for genetic HL (Andrea et al., 2018). To verify the
variations found in the TRIOBP gene, Sanger sequencing was
performed on samples obtained from the proband and her
parents. The variation sites and amplification primers were as
follows: c.1170 (forward 5′-CTCCTCTCCCCATCGAATCA-3′,
reverse 5′-GGTTCTGGAGGCTTTGGGAT-3′) and c.3764
(forward 5′-CTCCTTCTCATCCCCACCAC-3′, reverse 5′-
TGTACTCCTCCCGCTCCAA -3′). Sanger sequencing data
were analyzed using the Chromas software.

Variants Detection
There were 1,529 variants identified in the targeted regions of
the Deafness panel, while no variant related to HL was found
in the mitochondrial whole gene panel. The summary of the
next generation sequencing (NGS) was listed in
Supplementary Table S2). All the 1,529 variants were
filtered based on their frequency in the 1,000 Genomes

Project, ExAC, gnomad, Esp6500. Variants with MAF of
<0.05 were retained. We then applied several variant
prediction tools including SIFT, PolyPhen, MutationTaster,
GERP and SPIDEX to predict the functional impact of
candidate variants. Finally, we founded two variants of the
TRIOBP (c.1170delC and c.3764C > G, both in exon 7,
NM_001039141.2) in the proband. Sanger sequencing of
the proband and family members showed that the proband
was compound heterozygous, and the parents and the healthy
brother were heterozygous carriers (Figures 2A,B). The
c.1170delC (p.S391Pfs*488) resulted in a frameshift, while
the c.3764C > G (p.S1255*) variant directly introduces a stop
codon, both of the variants may lead to TRIOBP truncation.
These variants have not been reported in the general
population databases, disease databases, or published
literature. We analysed the location of the two novel
variants in TRIOBP and identified that the exon variants
were both located in the functional domains (Figure 3A).
The positions of the novel variants are highly conserved
across several species according to the University of

FIGURE 2 | Sanger sequencing confirmation of the variants in TRIOBP identified in this study. (A) Sequences of the heterozygous frameshift variant c.1170delC
(p.S391Pfs*488) and the corresponding wild-type sequence; (B) Sequences of the heterozygous Nonsense mutation c.3764C > G (p.S1255*) and the corresponding
wild-type sequence.
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FIGURE 3 | (A) Variation spectrum and domain structure of the TRIOBP gene (NM_001039141.2). The variations identified in the proband in this study are
represented in box. (B) Conserved amino acid sequences of TRIOBP (amino acid 391 and 1,255) and the predicted truncated TRIOBP caused by the variants identified
in this proband.
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TABLE 1 | Disease causing mutations in the TRIOBP gene (NM_001039141.2) according to The Human Gene Mutation database (HGMD).

No Nucleotide change Protein change Genomic
location (exon)

Mutation
type

Phenotype Ethnicity Reference

1 c.131C > G p.S44* 4 Nonsense
mutation

Sensorineural hearing loss Chinese Yongyi et al.
(2020)

2 c.154G > A p.D52N 4 Missense
mutation

Deafness Japanese Maiko et al.
(2013)

3 c.572delC p.(Pro191Argfs*50) 6 Frameshift
mutation

Deafness, non-syndromic,
autosomal recessive

South Africa Denise et al.
(2016)

4 c.803_806 p.(Gln268Leufs*610) 7 Frameshift
mutation

Sensorineural hearing loss,
postlingual

Polish Agnieszka et al.
(2017)delAGGC

5 c.889C > T p.Q297* 7 Nonsense
mutation

Deafness, non-syndromic Indian Saima et al.
(2006)

6 c.1039C > T p.R347* 7 Nonsense
mutation

Deafness, non-syndromic Palestinian Hashem et al.
(2006)

7 c.1342C > T p.R448* 7 Nonsense
mutation

Sensorineural hearing loss Chinese Yongyi et al.
(2020)

8 c.1741C > T p.Q581* 7 Nonsense
mutation

Deafness, non-syndromic Palestinian Hashem et al.
(2006)

9 c.2202_2203delTC p.(Arg735Glnfs*25) 7 Frameshift
mutation

Hearing loss unknown Amal et al.
(2020)

10 c.2320C > T p.R774* 7 Nonsense
mutation

Deafness autosomal
recessive 28

unknown Daniel et al.
(2017)

11 c.2321delG p.(Arg774Hisfs*105) 7 Frameshift
mutation

Hearing loss Chinese Yan et al. (2019)

12 c.2355_2356delAG p.(Arg785Serfs*50) 7 Frameshift
mutation

Hearing loss, non-
syndromic, autosomal
recessive

Turkish Agnieszka et al.
(2017)

13 c.2362C > T p.R788* 7 Nonsense
mutation

Deafness, non-syndromic Pakistani Saima et al.
(2006)

14 c.2521C > T p.R841* 7 Nonsense
mutation

Deafness, non-syndromic,
autosomal recessive

Turkey Denise et al.
(2016)

15 c.2581C > T p.R861* 7 Nonsense
mutation

Hearing loss, non-
syndromic, autosomal
recessive

Chinese Haiqiong et al.
(2018)

16 c.2653delC p.(Arg885Alafs*120) 7 Frameshift
mutation

Hearing impairment Dutch Celia et al.
(2017)

17 c.2758C > T p.R920* 7 Nonsense
mutation

Hearing loss, non-
syndromic, autosomal
recessive

Chinese Haiqiong et al.
(2018)

18 c.2968C > T p.R990* 7 Nonsense
mutation

Hearing loss Iran Haiqiong et al.
(2018)

19 c.2992G > A p.A998T 7 Missense
mutation

Hearing loss unknown Christina et al.
(2016)

20 c.3055G > A p.G1019R 7 Missense
mutation

Deafness, non-syndromic Palestinian Hashem et al.
(2006)

21 c.3089delC p.(Pro1030Leufs*183) 7 Frameshift
mutation

Deafness, non-syndromic,
autosomal recessive

United States of
America

Denise et al.
(2016)

22 c.3193A > G p.I1065V 7 Missense
mutation

Deafness, autosomal
recessive

Chinese Songfeng et al.
(2019)

23 c.3202C > T p.R1068* 7 Nonsense
mutation

Deafness, non-syndromic Pakistani Saima et al.
(2006)

24 c.3202_3203delCG p.(Asp1069Cysfs*14) 7 Frameshift
mutation

Deafness, non-syndromic Indian Saima et al.
(2006)

25 c.3232C > T p.R1078C 7 Missense
mutation

Hearing loss, non-
syndromic, autosomal
recessive

Western-
European

Manou et al.
(2016)

26 c.3232dupC p.(Arg1078Profs*6) 7 Frameshift
mutation

Deafness, non-syndromic Indian Saima et al.
(2006)

27 c.3349C > T p.R1117* 7 Nonsense
mutation

Deafness, non-syndromic Indian Saima et al.
(2006)

28 c.3460_3461delCT p.(Leu1154Alafs*29) 7 Frameshift
mutation

Hearing impairment Dutch Celia et al.
(2017)

29 c.3510_3513dupTGCA p.(Pro1172Cysfs*13) 7 Frameshift
mutation

Deafness, non-syndromic,
autosomal recessive

South Africa Denise et al.
(2016)

(Continued on following page)
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California Santa Cruz Genome Browser database (UCSC)
(Figure 3B).

DISCUSSION AND CONCLUSION

Typically, the pathogenic variants of TRIOBP lead to prelingual,
severe-to-profound hearing loss. According to the records and
descriptions of the relatives, the patient in our study had bilateral
prelingual deafness. Unfortunately, she had not received auditory
tests at that time. However, not all patients with the TRIOBP
pathogenic variants showed prelingual deafness, and there were
some differences in severity or auditory test results among
patients with different variants. According to Agnieszka et al.,
based on whole exome analysis, they identified two TRIOBP
pathogenic variants causative of nonsyndromic, peri-to
postlingual, moderate-to-severe hearing loss in three siblings
from a Polish family (Agnieszka et al., 2017). Differences in
age of onset and severity of hearing loss may be related to the
location of TRIOBP variants and their impact on different
isoforms.

DFNB28 is characterized by lingual sensorineural HL and is
related to variants in the TRIOBP. The TRIOBP gene is subject to

complicated alternative splicing. There were six splice variants
exist, of which three transcripts are most studied, referred to as
TRIOBP-1, TRIOBP-4 and TRIOBP-5. Among of them, TRIOBP-4
and/or TRIOBP-5 are required for hearing (Saima et al., 2006;
Nicholas et al., 2014; Tatsuya et al., 2019; Beti et al., 2020). The
sequences of TRIOBP-5/-4 amino acid contains two repeat motifs,
named as the R1 repeat domain (amino acid residues 357–500) and
R2 repeat domain (amino acid residues 684–896). The R1 motif is
the main actin binding region of TRIOBP-4, while the binding of
the R2 motif is nonspecific (Jian et al., 2013). TRIOBP-5 or
TRIOBP-1 has a PH and several coiled-coil domains (CCs).
There is no overlapping amino acid sequence between TRIOBP-
1 and TRIOBP-4 isoform. The pathogenic variant c.1170delC, p.
S391Pfs*488 may disrupts the TRIOBP-4 and TRIOBP-5 isoforms,
whereas the pathogenic variant c.3764C >G, p. S1255* affects only
TRIOBP-5. Both of the variants without impairing the TRIOBP-1
(Figure 3A). The c.1170delC was located in the R1 motifs, and
c.3764C > G variants was located in the low complexity The two
variants detected in this study were predicted to result in the
premature termination of translation (after amino acids 879 and
1,255, respectively). The shortened TRIOBP protein are devoid of
PH and CC, which is crucial for the actin-binding process
(Figure 3A).

TABLE 1 | (Continued) Disease causing mutations in the TRIOBP gene (NM_001039141.2) according to The Human Gene Mutation database (HGMD).

No Nucleotide change Protein change Genomic
location (exon)

Mutation
type

Phenotype Ethnicity Reference

30 c.3524C > A p.S1175* 7 Nonsense
mutation

Sensorineural hearing loss Chinese Yongyi et al.
(2020)

31 c.3634_3646del13 p.(Leu1212Cysfs*22) 7 Frameshift
mutation

Hearing loss, non-syndromic Pakistani Elodie et al.
(2019)

32 c.3662G > A p.R1221Q 7 Missense
mutation

Hearing loss unknown Manou et al.
(2016)

33 c.3942G > C p.E1314D 7 Missense
mutation

Hearing loss unknown Manou et al.
(2016)

34 c.3943_3944insCTCTTCGG p.(Arg1315Profs*44) 7 Frameshift
mutation

Hearing loss Chinese Yan et al. (2019)

35 c.4291G > T p.E1431* 9 Nonsense
mutation

Sensorineural hearing loss Chinese Yongyi et al.
(2020)

36 c.4436dupG p.(Thr1480Hisfs*22) 9 Frameshift
mutation

Hearing loss Chinese Yan et al. (2019)

37 c.4691G > C p.G1564A 9 Missense
mutation

Hearing loss unknown Christina et al.
(2016)

38 c.4984dupA p.(Thr1662Asnfs*48) 9 Frameshift
mutation

Hearing loss Egypt Birgit et al.
(2020)

39 c.5014G > T p.G1672* 9 Nonsense
mutation

Hearing impairment Polish/Dutch Celia et al.
(2017)

40 c.5519G > A p.R1840H 14 Missense
mutation

Deafness Japanese Maiko et al.
(2013)

41 c.5945G > A p.R1982H 16 Missense
mutation

Deafness, autosomal
recessive

Chinese Songfeng et al.
(2019)

42 c.6736G > A p.E2246K 21 Missense
mutation

Hearing loss unknown Christina et al.
(2016)

43 c.6860G > A p.R2287H 22 Missense
mutation

Deafness Japanese Maiko et al.
(2013)

44 c.7000C > T p.R2334W 23 Missense
mutation

Hearing loss, non-
syndromic, autosomal
recessive

Western-
European

Manou et al.
(2016)

45 Not yet available Not yet available Not yet available Gross
deletions

Hearing loss, non-syndromic unknown Shearer et al.
(2014)
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TRIOBP various is rare in HL patients. There are 45 disease-
related variants have been reported in the TRIOBP at present
(Hashem et al., 2006; Saima et al., 2006; Maiko et al., 2013; Shearer
et al., 2014; Christina et al., 2016; Denise et al., 2016; Manou et al.,
2016; Agnieszka et al., 2017; Celia et al., 2017; Daniel et al., 2017;
Haiqiong et al., 2018; Elodie et al., 2019; Songfeng et al., 2019; Yan
et al., 2019; Amal et al., 2020; Birgit et al., 2020; Yongyi et al., 2020),
with HL being the only phenotypic manifestation. As presented in
Table 1, although the variants cover the region from exon 4 to exon
23, most of the previously reported variations in TRIOBP are
located in exon 7. The region of exon 7 is defined as a hot point and
is more susceptible to variations owing to the accumulation of
repeated sequences (Agnieszka et al., 2017). The TRIOBP
c.1170delC (p.S391Pfs*488) and c.3764C > G (p.S1255*)
variants detected in our patient were both located in exon 7.
Both variants were classified as pathogenic according to the
criteria of ACMG and the Expert Specification of the ACMG/
AMP Variant Interpretation Guidelines for Genetic HL (Sue et al.,
2015; Andrea et al., 2018).

This report describes a Chinese patient with a hearing
impairment. Using disease-targeted gene panels, we identified
two novel compound heterozygous variants in the TRIOBP gene.
Both variants were predicted to lead to premature termination
codons, resulting in a truncated TRIOBP protein formation. The
two novel TRIOBP variants expand the spectrum of TRIOBP
variants in HL. Although TRIOBP variants are not a frequent
cause of HL, this gene should be thoroughly analyzed in patients
with prelingua HL.
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