
Identification of Hub Genes and
Potential ceRNA Networks of Diabetic
Nephropathy by Weighted Gene
Co-Expression Network Analysis
Guoqing Li1†, Jun Zhang1†, Dechen Liu1, Qiong Wei1, Hui Wang1, Yingqi Lv1, Zheng Ye1,
Gaifang Liu2* and Ling Li1,3*

1Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China,
2Department of Gastroenterology, Hebei General Hospital, Hebei, China, 3Institute of Glucose and Lipid Metabolism, Southeast
University, Nanjing, China

Diabetic nephropathy (DN) is one of the most common microvascular complications in
diabetic patients, and is the main cause of end-stage renal disease. The exact molecular
mechanism of DN is not fully understood. The aim of this study was to identify novel
biomarkers andmechanisms for DN disease progression by weighted gene co-expression
network analysis (WGCNA). From the GSE142153 dataset based on the peripheral blood
monouclear cells (PBMC) of DN, we identified 234 genes through WGCNA and differential
expression analysis. Gene Ontology (GO) annotations mainly included inflammatory
response, leukocyte cell-cell adhesion, and positive regulation of proteolysis. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways mostly included IL-17
signaling pathway, MAPK signaling pathway, and PPAR signaling pathway in DN. A
total of four hub genes (IL6, CXCL8, MMP9 and ATF3) were identified by cytoscape, and
the relative expression levels of hub genes were also confirmed by RT-qPCR. ROC curve
analysis determined that the expression of the four genes could distinguish DN from
controls (the area under the curve is all greater than 0.8), and Pearson correlation
coefficient analysis suggested that the expression of the four genes was related to
estimated glomerular filtration rate (eGFR) of DN. Finally, through database prediction
and literature screening, we constructed lncRNA-miRNA-mRNA network. We propose
that NEAT1/XIST/KCNQ1T1-let-7b-5p-IL6, NEAT1/XIST-miR-93-5p-CXCL8 and NEAT1/
XIST/KCNQ1T1-miR-27a-3p/miR-16-5p-ATF3 might be potential RNA regulatory
pathways to regulate the disease progression of early DN. In conclusion, we identified
four hub genes, namely, IL6, CXCL8, MMP9, and ATF3, as markers for early diagnosis of
DN, and provided insight into the mechanisms of disease development in DN at the
transcriptome level.
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INTRODUCTION

Diabetic nephropathy (DN) is the main microvascular
complication of diabetes mellitus, occurring in approximately
30–40% of patients with type 1 or type 2 diabetes, and often leads
to end-stage renal disease (Alicic et al., 2017; Wang et al., 2019).
Its clinical manifestations are characterized by increasing urinary
albumin and serum creatine (SCR) along with decreasing
estimated glomerular filtration rate (eGFR) (Zeng et al., 2019).
The pathogenesis factors of DN reported in earlier studies include
advanced glycosylation products, protein kinase activity,
abnormal lipid metabolism and hemodynamic changes. In
recent years, with the development of molecular biology, many
pathways have been found to be involved in the development of
DN, such as TNF signaling pathway, MAPK signaling pathway,
and AGE-RAGE signaling pathway (Omote et al., 2014; Wang
et al., 2019). In addition, epigenetics also plays an important role
in DN development, including the post-transcriptional regulation
of target genes by miRNAs and lncRNAs(Han et al., 2017).
However, the underlying mechanism of DN progression is not
fully understood due to the complex pathogenesis of DN.

With the remarkable evolution of bioinformatics, numerous
microarray data can be used to identify hub genes, interaction
networks and pathways of DN, to improve diagnosis and
treatment. Weighted gene co-expression network analysis
(WGCNA) is another commonly used bioinformatics analysis
method in addition to differential gene expression, which can
effectively explore the relationship between gene expression and
clinical traits (Langfelder and Horvath, 2008). In addition,
competitive endogenous RNA (ceRNA) networks may reveal new
mechanisms that promote disease development in transcriptional
regulatory networks (Salmena et al., 2011). Therefore, the
combination of bioinformatics and epigenetics can effectively
discover the hub genes and regulatory pathways related to diseases.

At present, most studies have focused on kidney tissue, but few
have explored the effect of peripheral blood mononuclear cell
(PBMC) on the pathogenesis of DN. Here, our current study
analyzed the microarray datasets for PBMC in DN from the
Gene Expression Omnibus (GEO) database. The differential gene
expression and WGCNA were used to identify the gene-network
signature and hub genes associated with DN. Subsequently, qPCR
was used to verify the selected hub genes, and the correlation
between their expression and eGFR was explored. Finally, based
on predicted results of microRNAs (miRNAs) and long noncoding
RNAs (lncRNAs), we constructed ceRNA networks to get deep
understanding of its pathogenesis. We believe that this study will
improve our understanding of the pathogenesis of DN and provide
new insights into its treatment. The research process of this paper
was showed in Figure 1.

METHODS

Microarray Data Acquisition and Analysis
The GEO database was used to obtain microarray data from
human PBMC of DN patients. Screening criteria included the
following: 1) Homo sapiens Expression Profiling by array; 2)

PBMC of DN patients; 3) datasets contain more than five
samples. Finally, GPL6480 dataset GSE142153, which included
10 healthy control samples and 23 DN samples, was selected as
test set, and the gene matrix had been normalized
(supplementary Figure 1). Differentially expressed genes
(DEGs) in the GSE142153 microarray were screened using the
limma package in the R software (version 4.0.5) (Ritchie et al.,
2015). The cut-off conditions were set to an adj.p.Val < 0.05, and
the absolute value of log-fold change |log2FC| ≥ 0.5.

Weighted Gene Co-Expression Network
Analysis and Module Preservation
WGCNA, which constructs a scale-free network by associating
gene expression levels with clinical features, is often used for a
variety of systematic biological analyses. To ensure that the results of
network construction were reliable, we normalized the samples first
and then removed the outlier samples. The soft threshold power must
be selected according to the standard scale-free networks, and the
genes in the first quartile of variance were calculated by a power
function. Subsequently, the adjacency matrix was transformed into a
topological overlap matrix (TOM), and the corresponding
dissimilarity (1-TOM) was calculated. The dynamic tree cut
method was performed to identify the module by hierarchically
clustering genes. A deepSplit value of 2 and a minimum size cutoff
of 30 were selected as the distance measure for the resulting
dendrogram. A height cutoff of 0.25 was used as the standard to
merge highly similarmodules. Then, we used theWGCNApackage to
run themodule preservation function (Langfelder andHorvath, 2008).

Finding Module of Interest
Pearson’s correlation tests were used to assess the correlation
between clinical traits and modules and to identify the
meaningful modules. Subsequently, we defined the correlation
of the gene expression profile with module eigengenes (Mes) as a
module membership (MM), and the correlation (the absolute
value) between outer features and gene expression profiles were
defined as the gene significance (GS). Then, we performed further
analyses for the genes located in the modules of interest with the
highest MM and highest GS values.

Functional Enrichment Analysis
The genes in the module of interest were extracted and
intersected with DEGs, and the results were visualized using
Venn diagram. The Co-DEGs were used for further functional
enrichment analysis. Gene Ontology (GO) analysis was used to
identify characteristic biological attributes (Consortium, 2019).
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was performed to identify functional
attributes (Kanehisa et al., 2017). The significant enrichment
threshold was set as p-value < 0.05.

Protein-Protein Interaction (PPI) Network
and Hub Genes
The PPI network was constructed based on all Co-DEGs by the
online tool STRING (https://string-db.org/). Next, we
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downloaded the interaction information and optimized the PPI
network with Cytoscape software (v3.7.2) for better visualization.
Minimal Common Oncology Data Elements (MCODE) was used
to identify significant gene clusters and obtain cluster scores (filter
criteria: degree cut-off � 2; node score cut-off � 0.2; k-core � 2;
max depth � 100). CytoHubba was used to identify significant
genes in this network as hub genes (Chin et al., 2014). We used
Global-based method, including seven algorithms, namely
Closeness (Clo), EcCentricity (EC), Radiality (Rad), BottleNeck
(BN), Stress (Str), Betweenness (BC), Edge Percolated
Component (EPC), to calculate the top 20 hub genes (Ma
et al., 2021). Finally, all the results were intersected to obtain
the final hub genes.

Quantitative Reverse Transcription
Polymerase Chain Reaction (qRT-PCR)
Peripheral blood of healthy people and DN patients was collected
from the Affiliated Zhongda Hospital of Southeast University. The
eGFR level was calculated using the modified Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation for
Asians. The patients signed the informed consent before the
study, and this study has been approved by the Ethics Committee.

The PBMC was separated from peripheral blood.
Subsequently, total RNA was extracted from PBMC using
TRIzol, and then, its concentration and purity were assessed
by nanodrop. The reverse transcription was conducted using

HiScript® II QRT SuperMix for qPCR (+gDNA wiper). Next,
based on QuantStudio 6 Flex real-time PCR system, PCR was
performed with AceQ®qPCR SYBR Green Master Mix at the
temperature of 95°C for 10 min, followed by 40 cycles with the
temperature of 95°C for 10 s, and 60°C for 30 s. The 2−ΔΔCt

method was utilized to determine the relative expression of each
selected genes between DN and controls. Sequences of primers
used in the study were showed in Supplementary Material.

Prediction of Target miRNAs
We used three online miRNA databases, namely, Targetscan,
miRDB, miRTarBase, to predict target miRNAs of hub genes and
selected miRNAs that were found in at least two databases as the
target miRNAs. The mRNA-miRNA co-expressed network based
on the relationship between mRNAs and miRNAs was
constructed by using Cytoscape.

Construction of ceRNA Networks
StarBase (version 3.0) (http://starbase.sysu.edu.cn/index.php)
was used to predict lncRNAs that interacted with the selected
miRNAs(Li J.-H. et al., 2014). The screening criteria were:
mammalian, human h19 genome, strict stringency (≥5) of CLIP-
Data, andwith or without degradome data. ThemiRNAs that were not
in the Starbasewere discarded, and the lncRNAs that existed inmost of
the predicted results of miRNAs were used as the target lncRNAs.
CeRNA networks based on the interactions amongmRNAs, miRNAs,
and lncRNAs were constructed by using Cytoscape.

FIGURE 1 | Research flow chart.
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FIGURE 2 | Construction of Co-Expression Network in GSE142153 by WGCNA. (A) Sample dendrogram and trait heatmap. (B) Scale independence (Left) and
Mean connectivity (Right). (C) The Cluster dendrogram of co-expression network modules is ordered by a hierarchical clustering of genes based on the 1-TOMmatrix.
Different colors represent different modules. (D) Network heatmap plot in the co-expression modules (The progressively saturated red colors indicated higher overlap
among the functional modules.).

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7676544

Li et al. CeRNA Regulatory Network in DN

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Statistics Analysis
The R software (v4.0.5) was used to perform statistical analyses.
Student’s t-test was used to compare the differences between the
two groups. SPSS 23 was used to analyse the data and draw the
ROC curve and Pearson Correlation Coefficent.

RESULTS

Co-Expression Networks
After the four outliers were removed, the sample cluster tree was
shown in Figure 2A, and soft-threshold power of 4 was selected
based on the scale-free fit index and mean connectivity values
(Figure 2B). Through WGCNA analysis, 19 co-expression
modules were constructed. The module with the largest number
of genes was the green one, followed by the brown module, and
the blue module (Figure 2C). Moreover, based on TOM, the
correlation heat map between genes was shown in Figure 2D.

Module-Trait Relationship Analysis
Module-trait relationship analyses showed that multiple modules
were related to DN, and it clearly indicated that the greenmodule was

most significantly associated with DN (Figure 3A). Moreover, DN
was included in the cluster tree to uniformly make the heat map of
Mes correlation. The overlap of heat maps indicated that there was
some correlation between different modules (Figure 3B). In
addition, Figure 3C showed the significance of these genes in
the green module for DN (Figure 3C).

Identification of the Co-DEGs of Green
Module
In order to identify the DEGs of the green module, the DEGs
were identified by analyzing the dataset GSE142153. Compared with
normal samples, we identified a total of 503 DEGs in the DN samples,
which comprised 295 downregulated genes and 208 upregulated genes
(Figure 4A). Next, The Co-DEGs were obtained from the intersection of
theDEGs and the greenmodule, and the resultwas showed inFigure 4B.

Functional Enrichment Analysis of the
Co-DEGs
To further explore the biological function of the Co-DEGs, GO
and KEGG pathway analyses were conducted (Figures 5A,B).

FIGURE 3 |Main findings in themodule-trait correlations analyses. (A)Module-trait relationships. Each row represents a color module and every column represents
a clinical trait (normal and diabetic nephropathy). Each cell contains the correlation coefficient and corresponding p value. (B) Cluster diagram of modules (Above) and
heatmap of trait and modules (Below). (C) The gene significance for diabetic nephropathy in the green module (One dot represents one gene in the green module.).
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The results of these analyses showed that, the genes were mainly
enriched in biological process being involved in inflammatory
response, leukocyte cell-cell adhesion, and positive regulation of
proteolysis. As for the KEGG pathway, the genes were mainly
enriched in IL-17 signaling pathway.

PPI Network Construction andGeneCluster
Identification
In order to screen out the core genes from the Co-DEGs in green
module, 234 Co-DEGs were uploaded to the STRING for further
analysis, and 130 nodes plus 330 edges were obtained. The data
file was then processed with Cytoscape as shown in Figure 6A. In

addition, the size of node represented the value of Degree, and the
color of node from dark to light indicated the Neighborhood
Connectivity of node from high to low. MCODE was used to
process the network data to identify gene clusters. There were
three gene clusters, and their scores were 12.769, 3.000 and 2.667,
respectively (Figure 6B).

Hub Gene Identification and Prediction of
Target miRNAs
We used the cytoHubba plugin to identify hub genes, four hub
genes were identified by intersecting the results from the seven
algorithms of cytohubba including Clo, EC, Rad, BN, Str, BC and

FIGURE 4 | Screening of differentially expressed genes (DEGs). (A) Volcano of the GSE142153 dataset with the cut-off criteria of |logFC| > 0.5 and adj.p < 0.05. (B)
The Venn diagram of common DEGs (Co-DEGs) in DEGs and Green module.

FIGURE 5 | Analysis results of Co-DEGs in the Gene ontology (GO) and Kyoto encyclopedia of genesand genomes pathway (KEGG). (A)Results of GO enrichment
analysis of Co-DEGs. The color represents the pvalue, and the size of the spots represents the gene number. (B) Results of KEGG pathway analysis of Co-DEGs. The
color represents the p-value, and the size of the spots represents the gene number.
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EPC (Figure 7A). These hub genes with detailed information
were showed in Table 1. Next, we used three online miRNA
databases to predict target miRNAs of hub genes. According to
the predicted results, a co-expressed network of mRNAs and
miRNAs, which comprised 228 nodes and 237 edges, was
constructed by Cytoscape (Figure 7B). These hub genes were
linked together by shared miRNAs.

Validation and Efficacy Evaluation of Hub
Genes
In dataset GSE142153, the expression of four hub genes including
IL6, CXCL8, MMP9 and ATF3 was significantly up-regulated in
the DN patients (Table 1). What’s more, the relative expression of
the above four hub genes was investigated by qPCR. As shown in
Figure 8A, the relative expression of IL6, CXCL8, MMP9 and
ATF3 was also significantly increased (all p < 0.05) in the PBMCs
of DN patients compared to controls. Further exploring the
association of hub genes and kidney function, the relative
expression of hub genes was observed to have a negative

correlation with eGFR in DN patients (Figure 8B). In
addition, ROC curve was plotted and the area under the
curve (AUC) was calculated to distinguish DN from
controls, and every AUC of the four hub genes was greater
than 0.8 in datasets GSE142153. The diagnostic value of hub
genes are follows: IL6 (AUC: 0.8391), CXCL8 (AUC: 0.8913),
MMP9 (AUC: 0.8783), ATF3 (AUC: 0.8739). In order to
further determine the threshold to distinguish DN from
control, we calculated the threshold of ROC curve of hub
gene (IL6, CXCL8, MMP9 and ATF3), and their threshold
values were −2.074, 5.272, −1.522, 1.426, respectively
(Figure 8C).

Prediction of Target lncRNAs and
Construction of ceRNA Networks
It is well known that miRNAs can induce gene silencing and
down-regulate gene expression by binding to mRNA. However,
the upstream molecules, such as lncRNAs, can affect the function
of miRNAs by binding to them, thereby upregulating gene

FIGURE 6 | PPI network of Co-DEGs and three cluster modules extracted by MCODE. (A) The interaction network between proteins coded by Co-DEGs was
comprised of 130 nodes and 330 edges. Each node represents a protein, while each edge represents one protein–protein association. The size of the node represents
the value of Degree, and the color of the node represents Neighborhood Connectivity. (B) Three cluster modules extracted by MCODE.
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expression. This interaction between RNAs is called a ceRNA
network. we used the online database Starbase 3.0 to predict the
lncRNAs that interact with the selected miRNAs. Finally, we
obtained 3 target lncRNAs of the target miRNAs of IL6; 2 target
lncRNAs of the target miRNAs of CXCL8; and 3 target lncRNAs
of the target miRNAs of ATF3. Three ceRNA networks based on
the predicted results were constructed and illustrated by
Cytoscape (Figures 9A−C). Subsequently, according to the
ceRNA hypothesis, we did an extensive literature search and
selected four reported downregulated miRNAs and three
upregulated lncRNAs in DN, for further analysis. We
proposed that NEAT1/XIST/KCNQ1T1-let-7b-5p-IL6
(Figure 9D), NEAT1/XIST-miR-93-5p-CXCL8 (Figure 9E)
and NEAT1/XIST/KCNQ1T1- miR-27a-3p/miR-16-5p-ATF3

(Figure 9F) might be potential RNA regulatory pathways to
regulate the disease progression of early DN.

DISCUSSION

DN is one of the main causes of end-stage renal disease, early
diagnosis and treatment can effectively improve the quality of life.
Studies have long suggested that metabolic and hemodynamic
changes are the underlying mechanisms of the disease. Recent
studies have shown that inflammatory processes are also involved
in the pathogenesis, but the exact mechanism remains unclear
(Matoba et al., 2019). Our study mainly explored the effect of
PBMC on the pathogenesis of DN.

FIGURE 7 | Screening of HUB genes and the co-expressed network of mRNAs and target miRNAs. (A) The Venn diagram of four hub genes identified by seven
algorithms of cytoHubba. (B) The mRNA-miRNA co-expressed network was constructed by Cytoscape including 228 nodes and 237 edges. One node represents a
mRNA or miRNA, while one edge represents one interaction of mRNA and miRNA. Yellow nodes represent the hub genes, and blue nodes represent miRNAs.

TABLE 1 | Four hub genes identified by seven algorithms of cytoHubba.

Gene Description log2FC adj.p.Val Regulation

IL6 Interleukin 6 1.003 0.039 Up
CXCL8 C-X-C motif chemokine ligand 8 1.569 0.046 Up
MMP9 Matrix metalloproteinase 9 1.195 0.032 Up
ATF3 Activating transcription factor-3 1.347 0.037 Up

FC, fold change.
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In this study, a total of 503 differential genes were identified in
the DN and control samples. In addition, 19 co-expression
modules were obtained by WGCNA analysis. Among them,
the green module was the key module mainly involved in DN,
which contained a total of 1,493 genes, including 234 differential
genes. In addition to the green, there were brown and blue
modules involved in the DN. Thus, DN involves a complex
network of gene regulation. GO and KEGG are powerful
bioinformatics databases that are widely used in gene
classification and signaling pathway analysis (Rue-Albrecht
et al., 2016; Kanehisa et al., 2019). we applied GO analysis to
elucidate the biological functions of DEGs in the green
module. The results showed that the green module was mainly
enriched in inflammatory response, leukocyte cell-cell adhesion
and positive regulation of proteolysis. In addition, KEGG
pathways were enriched in IL-17 signaling pathway, MAPK
signaling pathway, JAK-STAT signaling pathway, HIF-1
signaling pathway and PPAR signaling pathway. Although DN
is not an inflammatory disease, the enrichment results suggest
that inflammation may be an important pathophyseological
mechanism. Indeed, inflammation is increasingly recognized as
central to the progression of atherosclerotic changes and
microvascular complications in diabetic patients (Goldfine and
Shoelson, 2017).

Through PPI network, we identified four hub genes, namely
IL6, CXCL8, MMP9 and ATF3. qPCR showed that the relative
expression of these hub genes in PBMC of DN was increased
compared with normal groups. In addition, ROC curve showed
that they were of high diagnostic value for DN. Amild decrease in
eGFR has been found in some diabetic patients with normal
albuminuria. Therefore, the eGFR is an important indicator for
the early diagnosis of DN (Kravaritou et al., 2009). We found that
these hub genes were inversely associated with eGFR, and they
may be important markers of early disease and play important
roles in progression. In addition, we constructed the mRNA-
miRNA co-expression network and ceRNA network to clarify the
pathogenesis of DN from the transcriptomic level.

IL-6 is a cytokine that is produced rapidly and briefly,
primarily in response to infection and tissue damage, and thus
contributes to host defense. However, continuous dyssynthesis of
IL-6 has a pathological role in chronic inflammation and
autoimmunity (Tanaka et al., 2014). Substantial evidence from
animal and human studies supports the involvement of the IL-6
signaling pathway in the development of DN. For example, serum
IL-6 levels are higher in DN patients than in the diabetic group
(Taslipinar et al., 2011). Besides, serum IL-6 levels are also
elevated in diabetic nephropathy mice (Liu et al., 2020).
Indeed, transgenic diabetic mice with low STAT3

FIGURE 8 | Validation and Efficacy Evaluation of HUB genes. (A) The expression of hub genes was detected by QPCR, compared with normal samples, all hub
genes were upregulated in diabetic nephropathy samples with significance. (B) The expression of hub genes was negatively correlated with eGFR. (C) ROC curve of the
hub genes including IL6, CXCL8, MMP9 and ATF3 in GSE142153.
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transcriptional activity have lower levels of IL-6 and less
proteinuria in the glomeruli (Lu et al., 2009). Consistent with
the present study, we found that IL6 expression was up-regulated
in PBMC and JAK-STAT signaling pathway was activated. In
addition, the ROC curve showed that IL6 had high diagnostic
value (AUC � 0.839, cut-off � −2.047). Early studies have shown
that chemokines play an important role in inflammatory kidney
disease and play a key pathogenic role in the process of kidney
injury (Panzer et al., 2006; Chung and Lan, 2011). CXCL8 is a
typical CXC chemokine associated with recruitment and
activation of neutrophils. CXCL8 is involved in the
development of multiple complications, such as diabetic
retinopathy, cardiovascular disease (CVD), and infection.
More and more studies have shown that with the progression
of DN, serum CXCL8 level gradually increases (Wong et al., 2007;
Liu et al., 2018). This is consistent with our results that the
expression level of CXCL8 increased with the decrease of eGFR.
Furthermore, studies have shown that the elevated levels of
CXCL8 in the urine of patients in early DN, while CCL2
increased in late DN, suggesting that CXCL8 may play a role
in the relatively early stages of DN (Tashiro et al., 2002). Therefore,
combined with the results of the ROC curve (AUC � 0.891,
cut-off � 5.272), we hypothesize that CXCL8 may be a very
effective biomarker for the diagnosis of early DN. MMP9 is a
member of the matrix metalloproteinase family that provides
homeostasis between the synthesis and degradation of the
extracellular matrix to maintain the structural and functional
integrity of the glomerulus (Catania et al., 2007). Studies have
shown increased expression of MMP9 in the urine, serum, and
renal tissues of DN, and early upregulation of MMP9 has been
observed before the onset of microalbuminuria in diabetic

patients. In addition, serum levels of MMP9 are inversely
associated with eGFR in patients with diabetic
normoproteinuria (Derosa et al., 2007; Li S.-Y. et al., 2014).
Therefore, MMP9 may be an important biomarker
(AUC � 0.878, cut-off � −1.522) in the early stages of diabetic
nephropathy and play an important role in its progression. In our
study, we also found increased expression of ATF3 in PBMC, a
member of the ATF/CREB transcription factor family, which is
mainly involved in endoplasmic reticulum stress response,
immune response pathway and cell cycle progression. At
present, there are few studies on AFT3 in DN. An animal
model study showed that ATF3 overexpression aggravated
podocyte injury and apoptosis in vitro. On the contrary,
inhibition of ATF3 induction prevented podocyte injury and
apoptosis in vitro (Zhang et al., 2018). However, ATF3 also has
anti-apoptotic effects in renal tubular epithelial cells damaged by
renal I/R (Li et al., 2010). Our study showed that with the decrease
of eGFR, the expression of ATF3 increased. In addition, the ROC
curve showed that ATF3 had high diagnostic value (AUC � 0.874,
cut-off � 1.426). Therefore, we believe that ATF3 is a new and
effective biomarker for the diagnosis of early diabetic
nephropathy.

Furthermore, target miRNAs and the target lncRNAs of these
miRNAs were predicted for IL6, CXCL8, MMP9 and ATF3, and a
ceRNA network was constructed by Cytoscape. This network
reveals the mechanism by which hub genes are regulated at the
transcriptome level. Based on the ceRNA hypothesis, we
conducted a literature search to select down-regulated
miRNAs in DN for further analysis. Among the target
miRNAs of IL6, CXCL8, and ATF3, the following miRNAs
were down-regulated in plasma of DN: let-7b-5p, miR-93-5p,

FIGURE 9 | Three ceRNA networks of IL6, CXCL8 and ATF3 and the potential RNA regulatory pathways. (A) ceRNA network of IL6. (B) ceRNA network of CXCL8.
(C) ceRNA network of ATF3. (D) NEAT1/XIST/KCNQ1T1-let-7b-5p-IL6. (E) NEAT1/XIST-miR-93-5p-CXCL8. (F) NEAT1/XIST/KCNQ1T1-miR-27a-3p/miR-16-5p-
ATF3. Diamonds represent the hub genes, circles represent miRNAs and triangle represents lncRNAs.
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miR-27a-3p, and miR-16-5p (Pezzolesi et al., 2015; Assmann
et al., 2019; Hong et al., 2021; Wang et al., 2021). In addition,
lncRNA XIST, lncRNA NEAT1, and lncRNA KCNQIOT1 have
been reported to be up-regulated in the serum of patients with
DN (Li et al., 2020;Wang, 2020; Zhu et al., 2020). So, we speculate
that NEAT1/XIST/KCNQ1T1-let-7b-5p-IL6, NEAT1/XIST-
miR-93-5p-CXCL8 and NEAT1/XIST/KCNQ1T1-miR-27a-3p/
miR-16-5p-ATF3 might be potential RNA regulatory pathways to
regulate the disease progression of early DN.Of course, there are some
limitations of our study. The sample size for analysis and validation
was relatively small. In addition, due to database limitations, we did
not have enough data sets to validate our results. Therefore, future
studies will need to increase the sample size and conduct prospective
cohort studies to further confirm our views.

CONCLUSION

Our work identified four hub genes, IL6, CXCL8, MMP9, and
ATF3, as potential biomarkers for the early diagnosis and
treatment of DN, and provided clues to the mechanism of
disease development of DN at the transcriptome level. In
addition, we propose that NEAT1/XIST/KCNQ1T1-let-7b-5p-
IL6, NEAT1/XIST-miR-93-5p-CXCL8 and NEAT1/XIST/
KCNQ1T1-miR-27a-3p/miR-16-5p-ATF3 are potential RNA
regulatory pathways that control disease progression in early DN.
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