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Taro (Colocasia esculenta) is an important tuber crop and staple food. Taro corms have
higher nutritional value and starch contents as compared to most of the other root/tuber
crops. However, the growth and development of the taro rhizome have not been critically
examined in terms of transcriptomic signatures in general or specific to carbohydrates
(starch and sucrose) accumulation. In current study, we have conducted a comprehensive
survey of transcripts in taro corms aged 1, 2, 3, 4, 5, and 8months. In this context, we have
employed a whole transcriptome sequencing approach for identification of mRNAs,
CircRNAs, and miRNAs in corms and performed functional enrichment analysis of the
screened differentially expressed RNAs. A total of 11,203mRNAs, 245 CircRNAs, and 299
miRNAs were obtained from six developmental stages. The mRNAs included 139 DEGs
associated with 24 important enzymes of starch and sucrose metabolism. The expression
of genes encoding key enzymes of starch and sucrose metabolism pathway (GBSS,
AGPase, UGPase, SP, SSS, βFRUCT and SuSy) demonstrated significant variations at the
stage of 4 months (S4). A total of 191 CircRNAs were differentially expressed between the
studied comparisons of growth stages and 99 of these were associated with those miRNA
(or target genes) that were enriched in starch and sucrose metabolism pathway. We also
identified 205 miRNAs including 46 miRNAs targeting DEGs enriched in starch and
sucrose biosynthesis pathway. The results of current study provide valuable resources
for future exploration of the molecular mechanisms involved in the starch properties
of Taro.
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INTRODUCTION

Taro (Colocasia esculenta) has a long cultivation history and is an
important nutritional resource in the world, particularly in China.
China ranked third with 18% of the global production (1,908,830
tons) (FAOSTAT 2021) and China ranked first in taro export
(417.18 million US$ in 2018) (Otekunrin et al., 2021). Taro corms
have higher nutritional value as compared to most of the other
root/tuber crops. It has been shown that both leaf and corm are
rich sources of good-quality protein as well as nutrients including
calcium, potassium, and phosphorus (Temesgen and Retta,
2015). The edible part of taro is the corm, which is a source
of protein, carbohydrate, fat, crude fiber, vitamin C, thiamin,
riboflavin, and niacin (Temesgen and Retta, 2015). Starch is the
most important component of taro corms (Njintang et al., 2007).
The carbohydrate content of taro corms is almost double of that
of potato with an energy of 135 kcal/100 g. The protein content is
also 11% higher than yam, cassava, and sweet potato (Njintang
et al., 2007). Due to the presence of such a rich content of
nutrients, it is important to understand the genetic basis of the
nutrient composition. Particularly, the highest starch content in
taro corms calls for a detailed understanding of the
transcriptomic signatures that might regulate the related
pathways (Otekunrin et al., 2021). It has been reported that
the growth of the main plant is completed in three phases
i.e., phase I (1 to 6–8 weeks), II (8–24 weeks), and III (25–40/
46 weeks). The first phases last for about 6–8 weeks. The first
2 weeks result in a decrease in dry matter content of the corm
followed by a steady increase in dry matter contents till the
8th week after planting (Sivan, 1979). The early growth phase
i.e., phase I is essential for plant survival and early accumulation
of dry matter and nutritive components. During phase II, dry
matter accumulates rapidly. This trend is further extended till
phase III (Sivan, 1979; Tumuhimbise et al., 2009). In this regard,
the growth and development of the taro corm have not been
critically examined in terms of transcriptomic signatures in
general or specific to carbohydrates (starch and sucrose)
accumulation.

The carbohydrates are mainly biosynthesized through the
starch and sucrose metabolism pathway and the pathways that
are present both up- and downstream e.g., glycolysis/
gluconeogenesis pathway, and amino sugar and nucleotide
sugar metabolism (Preiss, 1982; MacRae and Lunn, 2006). The
major enzymes that take part in different steps of these pathways
are sucrose synthase, invertase, sucrose phosphate synthase,
ADPG pyrophosphorylase, starch synthase, starch branching
enzyme, starch debranching enzymes, and starch
phosphorylase (Preiss, 1982; MacRae and Lunn, 2006; Gao
et al., 2018). Starch is synthesized in plastids (chloroplasts) in
leaves. Of the starch synthesizing enzymes, three are the most
important. The first enzyme, starch synthase, takes part in the
elongation of non-reducing ends of glucose chains. The second
enzyme i.e., the branching enzyme, synthesizes branches from
existing chains through glucanotransferase reactions. While the
third type of enzyme (debranching enzymes) hydrolyzes some of
the branches again. These three steps are simultaneous and
interdependent processes (Gao et al., 2018). Our current

understanding of these biosynthetic enzymes is very much
advanced in different plant species. Yet, the identification and
functional validation of starch biosynthesis-related genes in taro
remain to be studied. An earlier study on taro leaves used the
transcriptome sequencing (mRNA) approach to identify the
putative genes involved in starch biosynthesis in taro and
reported 26 genes e.g., starch branching enzyme A, soluble
starch synthase I, II, and UDP-glucose dehydrogenase (Liu
et al., 2015). However, this study was limited to leaves only
and didn’t explore the main edible part of taro i.e., corm, which is
considered the main source of starch. Another study reported the
identification and cloning of an ADP-glucose pyrophosphorylase
and confirmed that its higher expression is positively correlated
with higher starch contents in taro corms (Li et al., 2016).
However, the knowledge on the regulation of this and other
starch and sucrose synthesis-related genes in the early growth
period is still scarce.

Recent developments in genomics have resulted in an
increased understanding of the genome as well as specific
pathways in different crop plants. In this regard, the release of
a high-quality genome sequence of taro is an important step (W.
Li et al., 2016). Concomitant developments in sequencing
approaches are already helping researchers to understand how
different traits are regulated in taro. For example, transcriptome
sequencing revealed the possible mechanism of purple pigment
formation (He et al., 2021) and the development of EST-SSR (You
et al., 2015), and SSR markers (Wang et al., 2017) in taro. Other
studies using deep sequencing (Illumina Hiseq 2000) of the taro
transcriptome have explored the major metabolic pathways of
starch synthesis. This study greatly helped to identify the mRNAs
(and respective genes) that are expressed in taro corm for the
biosynthesis of starch [See Table 4 in Liu et al., 2015]. Though this
study reported the major genes responsible for starch
biosynthesis, but how the expression of these genes is
modulated during corm development is not known.
Additionally, the role of miRNAs and CircRNAs in corm
development is yet to be elaborated. Since earlier studies have
reported that miRNAs can modulate the stability of starch
biosynthesizing enzymes in wheat (Goswami et al., 2014) and
form a complex network in maize (Zhang et al., 2019) to regulate
starch biosynthesis. Thus, the role of miRNAs in corm
development and starch and sucrose metabolism could be
expected. This expectation is based on the earlier report in
cassava that miRNAs effect the expression of genes involved
in plant development, starch biosynthesis, and responses to the
environmental stresses (Panigrahi et al., 2021). Since, CircRNAs
act as miRNA sponge to regulate target gene expression by
inhibiting miRNA activity. Furthermore, one CircRNA can
regulate multiple miRNAs (Hansen et al., 2013). Similarly, the
role of CircRNAs have not been explored yet for their role in
starch and sucrose biosynthesis pathway in taro (Hansen et al.,
2013). Through the whole transcriptome sequencing approach
(mRNA, CircRNA, and miRNA), we have conducted a
comprehensive survey of transcripts in taro corms aged 1, 2, 3,
4, 5, and 8 months. We specifically focused on the starch and
sucrose metabolism pathway and the two pathways present up
and downstream i.e., amino sugar and nucleotide sugar
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metabolism, and glycolysis/gluconeogenesis pathways,
respectively.

MATERIALS AND METHODS

Plant Material
Taro (Colocasia esculenta L. Schott) variety “Guiyu No. 2” was
grown in field conditions in Guangxi Academy of Agricultural
Sciences, Nanning, Guangxi, China in March 5, 2020 following
the agronomic practices and growing conditions recommend by
Onwueme et al. (Onwueme, 1999). One, two, three, four, five, and
eight-months old taro corms were harvested separately, washed
thoroughly with running water and then with distilled water.
Samples were immediately frozen in liquid nitrogen, and stored
in −80°C refrigerator until processed for RNA extraction. Three
samples from three different plants were harvested at each
sampling time.

RNA Extraction, Library Preparation, RNA
Sequencing, Read Mapping, and
Transcriptome Assembly
Total RNA was extracted from the 18 corms (triplicate samples of
S1-S6) using TRIzol Reagent (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instructions.
The quality and integrity of the extracted RNAs were tested
with Agilent 2,100 Bioanalyzer (Agilent Technologies,
United States) and NanoDrop 2000 spectrophotometer
(Thermo Scientific, United States), respectively.

The libraries for three RNA types i.e., mRNA, miRNA and
CircRNA, were prepared as follows. First, we removed the
ribosomal RNA by using the Ribo-Zero Plant Kit (Illumina,

San Diego, CA, United States) according to the manufacturer’s
instructions. After the removal of rRNA, the libraries were
preparing using TruSeq Stranded Total RNA Library Prep kit
according to the manufacturer’s protocol. For each sample, 5 µg
total RNA was used. For small RNA libraries preparation for each
taro sample and replicate, 3 µg of the total RNA was used and
processed by using Truseq Small RNA sample prep Kit (Illumina,
United States) according to the manufacturer’s instructions. The
libraries were then quantified in a Fluorometer (TBS-380, Turner
Biosystem, United States) followed by sequencing on an Illumina
HiSeq platform.

For validation of RNA-seq data, qRT-PCR was performed
using qtower3 G (Jena Analysis, Germany) system. One
microgram RNA was used for the first strand cDNA synthesis
using MonScript™ RTIII All-in-One Mix with dsDNase. The
QuantiNova SYBR Green RT-PCR Kit was used for qRT-PCR
reaction. The reactions were carried out by using gene specific
primers (Table 1). The 2−ΔΔCt method was used to analyze
relative gene expression (Livak and Schmittgen, 2001). The
Taro-actin gene was used as an internal control (Lekshmi
et al., 2020).

Data Analyses
The paired-end raw reads were processed as reported earlier (Fu
et al., 2019). Briefly, the Quality Score (probability of base calling
errors) were computed (Ewing et al., 1998) followed by base type
distribution check. HISAT2 was used for the comparison of
sequencing reads and read alignments, and StringTie was used
to assemble the reads on the comparison pair. We used the taro
genome [C. esculenta (Niue 2), https://db.cngb.org/search/
project/PRJNA328799/] as reference sequence for alignment
and subsequent analyses. The identified genes were
functionally annotated in different data bases i.e., NR, Swiss-

TABLE 1 | List of primers used for qRT-PCR analysis.

Gene ID Primer sequence

Taro-Actin Forward CCTTCGTCTTGATCTGGCAG
Reverse AGATGAGTTGGTCTTCGCAGTC

Colocasia_esculenta_newGene_13195 (beta-fructofuranosidase) Forward CCCTTGAACAATGCTACCCC
Reverse CATCTTAGCCACCTCCTCGTC

Colocasia_esculenta_newGene_17987 (alpha-amylase) Forward GACATCCACAGCCGTTCAGC
Reverse TTGCCAGAGTCCACTCCCTC

Colocasia_esculenta_newGene_2769.1 (beta-amylase) Forward CATTCTTTTGTGATGGAGGGG
Reverse GCATGGCTGGCTGTCTTGTA

Colocasia_esculenta_newGene_46372.1 (glucose-6-phosphate isomerase) Forward GCAGAATGTGGAAAAGGCAGAC
Reverse GAAGAAATCCATTCCCTCAGTGTT

Colocasia_esculenta_newGene_50233.1 (UTP--glucose-1-phosphate uridylyltransferase) Forward ATGTTCCCCTCCTTTTGATGA
Reverse TCGCCCCTTGCTTGGTAGT

Colocasia_esculenta_newGene_60403 (Starch synthase 4) Forward TTCAGAGCAAAGCATTAGTGGA
Reverse TTAGTAAGGGAGGGAAGATCAACA

Colocasia_esculenta_newGene_74347 (beta-amylase) Forward GGCGAGGGACCCAAGATTT
Reverse TGAGCACCCACTGTGGTAAGG

Colocasia_esculenta_newGene_8502 (beta-fructofuranosidase) Forward CACCGTGGAATGGCTGTCT
Reverse GAGGTCTCCATCCCGTAGTTG

Colocasia_esculenta_newGene_92065 (glucan endo-1,3-beta-glucosidase) Forward GGAAATGCAAATAGATGGAGCC
Reverse TTCGTAGCAATGTAATTGTCGG

Colocasia_esculenta_newGene_93013 (beta-glucosidase) Forward CCACAGATACAAGGAAGATGTTGA
Reverse AGCCTGTTGTAATATGCCACTC
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Prot, COG, KEGG, pfam, KOG, and GO as reported earlier (L.
Chen et al., 2019). The gene expression was quantified using
StringTie and expressed as Fragments Per Kilobase of transcript
per Million fragments mapped (FPKM). Overall gene expression
was represented as box plot. The read counts were used to
determine the differential expression of genes. The genes/
transcript with fold change >2 and false discovery rate (FDR)
<0.05 were considered as differentially expressed genes (DEGs).
Further we performed the KEGG pathway enrichment analysis
for the DEGs and displayed the top 20 pathways with the most
reliable enrichment significance (lowest Q-values) as a bubble
chart. Then we manually selected the DEGs that were enriched in
the pathways of interest and arranged their log 2 fold change
values according to the selected taro corm age comparisons
followed by the preparation of the heatmaps in TBtools (C.
Chen et al., 2020).

For the data analysis of the small RNAs, we calculated the
base quality value of the reads as reported earlier (Ewing and
Green, 1998). We then removed the sequences smaller than
18 nt and greater than 30 nt, removed reads with low quality,
and removed the reads with unknown N bases. The quality
statistics of the miRNA sequencing were than represented as a
table in Microsoft Excel 2019. The resulting sequences were
then compared with the GtRNAdb, Rfam, and Repbase
databases using Bowtie (Langmead et al., 2009). Sequence
alignment was performed and filtered the rRNA, tRNA,
snRNA, snoRNA, and other ncRNAs to obtain unannotated
reads containing miRNAs. Bowtie was used to compare the
sequences of unannotated reads with the reference genome to
get the mapped reads. Furthermore, we compared the reads
with the mature sequence of the known miRNAs in miRbase
(v22). To predict the miRNAs that haven’t been previously
reported, we used Biomark (which uses miRDeep2 software)
(Friedländer et al., 2012). The expression of the miRNAs was
quantified as transcripts per million (TPM). For detection of
the differentially expressed miRNAs (DEmiRNAs), we used a
screening criterion of log2 foldchange ≥0.58 and p-value ≤ 0.05
between the two samples. Further, we predicted the target
genes for the known and newly identified miRNA in plants by
using TargetFinder software (Allen et al., 2005). The
annotation and KEGG pathway enrichment of the target
genes of the miRNAs was done as reported above in the
case of mRNA.

After determining the quality parameter of the RNA
sequencing libraries, we used find_circ software to predict
CircRNAs based on the following criteria. GU/AG appears on
the both sides of the splice site, a clear breakpoint could be
detected, have only two mismatches, the breakpoint should not
appear outside the anchor two nucleotides, at least two reads
support this junction, and the position of a short sequence that is
aligned to the correct position is 35 points higher than that of
other points. Furthermore, we calculated the distribution of
CircRNA length in each sample (exon, intergenic region, and
intron). We then predicted the positions of the CircRNA and its
source genes on the reference genome followed by the prediction
of CircRNA-miRNA targeting relationship by using TargetFinder
(Bo and Wang, 2005).

The expression of the CircRNAs was computed as SRPBM
(reads per billion mapped reads). For the screening of the
differentially expressed CircRNAs we used log 2 foldchange
≥1.5 and p-value < 0.05. The annotation and KEGG pathway
enrichment of the differentially expressed CircRNAs was done as
described above for mRNA and miRNAs. The Principal
Component Analysis was performed in R.

RESULTS

Morpho-Biochemical Analysis of Taro
Corms
In this study, we sampled taro corms at six developmental
stages, including S1, S2, S3, S4, S5, and S6 harvested after 1, 2,
3, 4, 5, and 8 months. The corms at the early developmental
stages (S1 and S2) had very low amounts of starch, amylose
and amylopectin as compared to later developmental stages
(Figure 1A), indicating that thought the starch formation
starts at early developmental stages but its accumulation in
the corms increased rapidly after 2 months. Since there is a
significant increase in starch contents at between S2 and S3
followed by a gradual increase in S4 and S5. Meanwhile,
average mass of a corm significantly increases between S3 and
S4 followed by gradual increase (Figure 1B).

Taro Corm Transcriptome
A total of 18 libraries (three biological replicates of each sample)
were used to generate sequencing data. The data output statistics
of each sample of this project are shown in Supplementary
Table S1. After sequencing quality control, a total of 300.23 Gb
clean data was obtained, and the percentage of Q30 bases in each
sample was not less than 94.38%. The comparison efficiency
between the Reads of each sample and the reference genome
ranged from 88.88 to 90.65%. GC content ranged from 49.25 to
61.91%. ∼90% of the total reads could be mapped to the
reference genome (Supplementary Table S1). The PCA
showed that first and second principal components explained
43.47 and 23.27% variation, respectively (Figure 2A). Overall,
the FPKMmean distribution of S3, S4, and S5 was lower than S1,
S2, and S5 (Figure 2B). The comparison of five samples (S2 to
S6) with S1 resulted in the identification of 622, 1,947, 3,833,
5,554, and 6,765 differentially expressed genes (DEGs),
respectively (Figure 2C). Only 114 DEGs were common in
all the five taro comparisons (Figure 2D).

The RNA-Seq data was validated through qRT-PCR. 10
transcripts were selected from starch and sucrose metabolism
pathway for qRT-PCR (Supplementary Table S1;
Supplementary Figure S1). The expression patterns of these
DEGs were consistent with FPKM values of the same genes
(Supplementary Tables S2, S3).

Functional Annotation of DEGs
Based on the selected reference genome sequence, StringTie
software was used for mapping reads, and comparing with the
original genome annotation information, finding the original
unannotated transcription regions, discovering novel

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7710814

Dong et al. Taro Corm Transcriptome

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


transcripts/genes, and to improve the original genome
annotation information. The coded peptide chains having
less than 50 amino acid residues or containing only a single
exon sequence, were filtered out. A total of 11,203 genes were
discovered and of which 2,558 were functionally annotated as
new genes. This annotation was performed using the
DIAMOND (Buchfink et al., 2015) software to compare
the sequences with NR (Deng et al., 2006), Swiss-Prot
(Apweiler et al., 2004), COG (Tatusov et al., 2000), KOG
(Koonin et al., 2004), KEGG (Kanehisa, 2000), and to process
the results for obtaining the new gene KEGG Orthology and
other results. InterProScan (Jones et al., 2014) used the
InterPro integrated database to analyze the GO Orthology
results of the annotated genes (Ashburner et al., 2000). After
predicting the amino acid sequence of the new gene, we used
the HMMER (Eddy, 1998) software to compare with the Pfam
(Punta et al., 2012) database to obtain the annotation
information of the new gene. The final statistics on the
number of new genes annotated by each database are
shown in Figure 3A.

Based on the GO annotation, 1,824 new genes were
grouped into three functional GO categories,
i.e., Molecular Function (MF; 2,220), Cellular Component
(CC; 1,295 sequences), and Biological Process (BP; 2,698
sequences), with subsets of sequences further divided into
11, 3, and 18 subcategories in these three groups, respectively
(Figure 3B). There was a high representation of “binding”
and “catalytic activity” in the category MF, which included
53.06 and 39.36% of the sequences in these subcategories,
respectively. Furthermore, there was an enrichment of
“cellular anatomical entity” (58.02%) and “intracellular”
(33.75%) in the CC parental category, and a high
representation of “cellular process” (37.69%), and
“metabolic process” (36.21%) in the BP category.

KEGG Pathways and Gene Ontology
Enrichment Analysis
The significantly expressed DEGs were mapped on the KEGG
pathways to identify the significantly enriched pathways. The

FIGURE 1 | Morpho-biochemical comparison of taro corms based on growth stage and starch contents. S1, S2, S3, S4, S5, and S6 refer to the corm samples
harvested after 1, 2, 3, 4, 5, and 8 months.
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DEGs were enriched in a total of twenty pathways. At
different developmental stages of taro, highly enriched
pathways included pentose and glucoronate
interconversions pathway, carbon metabolisms,
biosynthesis of amino acids and starch and sucrose
metabolism pathway (Figure 3C). It is reported that the
starch and sucrose metabolism pathway has a major
contribution in the carbohydrate accumulation in different
plant species (Zhu et al., 2017).

Differential Regulation of Starch and
Sucrose Metabolism and Pathways Present
Both up and Downstream
A total of 139 DEGs associated with 24 important enzymes were
enriched in starch and sucrosemetabolism (Figure 4, Supplementary
Table S2). These enzymes include sucrose synthetase [EC 2.4.1.13],
ADP-glucose pyrophosphorylase [EC:2.7.7.27], beta-glucosidase [EC:
3.2.1.21], Alpha-amylase [EC:3.2.1.1], beta amylase [EC:3.2.1.2],

FIGURE 2 | Taro corm transcriptome comparison statistics. (A) Principal component analysis of the genes that were differentially expressed between different
treatments, (B) Overall distribution of gene expression (FPKM), (C) number of differentially expressed genes between the taro samples, and (D) Venn diagram
representing the number of common and specific differentially expressed genes between the taro samples. S1, S2, S3, S4, S5, and S6 represent taro samples harvest
after 1, 2, 3, 4, 5, and 8 months.
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beta-glucosidase [EC:3.2.1.21] and glucan endo-1,3-beta-D-
glucosidase [EC:3.2.1.39]. Most of the transcripts were
differentially regulated in S4, S5 and S6. There were
almost 32 transcripts related to beta-glucosidase [EC:
3.2.1.21]. Sixteen of these 139 genes were only
differentially expressed between S1 and S2; one alpha-
amylase, three beta-glucosidases, and two glucan endo-1,3-
beta-glucosidases were upregulated in S2 as compared to S1,
while rest of the genes were downregulated. Actually, we
found that different transcripts of the same genes were up-
and downregulated, indicating that a possible
interconversion of the intermediate products is going
during these two stages. On the contrary, we found that
36, 77, 84, and 94 genes were differentially regulated
between S1 vs. S3, S1 vs. S4, S1 vs. S5, and S1 vs. S6,
respectively. These changes clearly indicate that large scale
changes in the starch and sucrose metabolism occur during
the fourth to eighth month of taro corm development. Apart
from starch and sucrose metabolism, 87 and 140 genes were
enriched in amino sugar and nucleotide sugar metabolism
and glycolysis/gluconeogenesis pathways, respectively. Only
six genes were differentially regulated between S1 and S2,
whereas relatively higher number of genes were differentially
regulated in S1 and stages latter than S3 i.e., S4, S5, and S5; 58
and 59 genes were differentially regulated in S1 vs. S5 and S1
vs. S6, respectively in amino sugar and nucleotide sugar
metabolism pathway (Supplementary Table S2).

The Prediction of New CircRNA
After performing the quality control of sequencing, a total of
300.21 Gb Clean Data was obtained, and the percentage of Q30
bases in each sample was not less than 97.94%, which indicated

the use of high-quality clean reads in current study. From the
statistics of the comparison results, the comparison efficiency of
the Reads of each sample and the reference genome ranges from
99.74 to 99.94%. (Supplementary Table S1). It indicated that the
sequence data is qualified for auxiliary analysis.

Based on the sequence reads, the number of candidate
CircRNAs identified in the 18 samples ranged from 277 to
1,372 (Supplementary Table S3). In context of their origin,
these CircRNAs are grouped into three categories as exonic,
intronic and intergenic CircRNAs. Among the total 9,524
CircRNAs identified in C. esculenta, most were exonic
CircRNAs (53–61%), followed by intergenic CircRNAs
(33–41%) and intronic CircRNAs (1–6%) (Figure 5A). It is
important to note that the length distribution of these
CircRNAs ranged from 28 to 99,844 bp. The most abundant
lengths were in the range from 200 to 600 bp, and the longest
CircRNAs with more than 3,000 bp were generated from exonic
and intergenic regions (Figure 5B).

To investigate the CircRNAs biological function during
growth of taro corm, we compared the expression levels of
CircRNAs among growth stages (S1 vs. S2, S1 vs. S3, S1 vs.
S4, S1 vs. S5, and S1 vs. S6). A total of 191 CircRNAs were
differentially expressed between the studied comparisons
(Supplementary Table S3). Among them, 153 were known
CircRNAs and 38 were newly identified. Remarkably, most
CircRNAs seem to be specifically expressed between S1 and S5
(120 differentially expressed, 80 up regulated and 20 down
regulated; Figure 5C; Supplementary Table S3). Almost 99 of
the 191 CircRNAs were associated with those miRNAs (or target
genes) that were enriched in starch and sucrose metabolism
pathway (Figure 5D; Supplementary Table S3, see
highlighted yellow cells).

FIGURE 3 | (A) Annotation summary of newly identified genes and Representation of gene’s enrichment in KEGG and GO pathways. (A) Gene ontology
classification of assembled genes and (B) Histogram of enrichment of differentially expressed genes in KEGG pathways in S1 vs. S2.
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Identification of Micro RNA
TheMicro RNA (miRNA) sequencing of 18 taro samples resulted
in a total of 375.10 M clean reads (average clean reads per sample
were 15.50). The average Q30% and GC% was 97.29 and 47.1%,
respectively. On an average 47.48% reads could be mapped on the
reference genome (Supplementary Table S1). Based on these
clean reads, we identified 205 miRNAs; 10 known and 195 newly
predicted miRNAs. Overall transcript per million (TPM) of the
miRNAs was variable between the different aged taro corms

(Figure 6A). There were 60, 44, 128, 134, and 142 differentially
expressed miRNAs (DEmiRNAs) detected between S1 vs. S2, S1
vs. S3, S1 vs. S4, S1 vs. S5, and S1 vs. S6, respectively (Figure 6B).
The high number of DEmiRNAs between the S1 and the older
stages i.e., S5 and S6 indicates that miRNAs might target a large
number of genes during these age comparisons. The 10 known
and 195 newly identified miRNAs were associated with 145 and
4,106 target genes; 2,613 of which could be annotated in different
databases (Figure 6C).

FIGURE 4 | Enrichment of differentially expressed genes in starch and sucrose metabolism pathway. (A) Pathway map of starch and sucrose metabolism showing
identified transcripts related to important enzymes of this pathway. Transcripts with elevated expression are shown in red. Downregulated transcripts are represented in
green and transcript with both up- and downregulation are represented with blue color. (B) Heatmap representing log 2 foldchange values of the differentially expressed
genes in starch and sucrose metabolism pathway.
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The target genes of the miRNAs were significantly
enriched in mRNA-surveillance pathway, plant hormone
signal transduction, and RNA transport (Supplementary
Figure S2). We also focused on the miRNA target genes
that were enriched in starch and sucrose metabolism
pathway. Of the predicted target genes, we found that 33
DEGs were enriched in starch and sucrose biosynthesis
pathway. However, only four of these 33 genes were

differentially expressed in the studied treatment
comparisons. These 33 genes were target for 46 different
miRNAs; 45 newly identified and one known miRNA (aqc-
miR156b) (Table 2).

The expression of 18 of the newly identified miRNAs was
reduced in at least one of the later stages i.e., S2, S3, S4, S5, and S6.
The same number of miRNAs showed increased expressions in
the studied stages as compared to S1. The remaining nine had

FIGURE 5 |Characterization of CircRNAs. (A) Distribution of the identified CircRNAs accrsoos growth stages. (B) Length distribution of CircRNAs. (C)Numbers of
differentially expressed CircRNAs in pairwise comparisons of growth stages. (D) expression patterns of differentially expressed CircRNAs in pairwise comparisons of
growth stages. Genes with the symbols ##, represents spliced variants.
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FIGURE 6 | Characterization of miRNAs (A) Overall expression of miRNAs, (B) summary of differentially expressed miRNAs, and (C) annotation summary of the
miRNA target genes in taro.

TABLE 2 | List of genes and associated miRNAs that were enriched in starch and sucrose metabolism pathway.

Gene ID Gene description miRNA

gene-Taro_019805 alpha-amylase [EC:3.2.1.1] novel_miR_105; novel_miR_49
gene-Taro_006317 novel_miR_12; novel_miR_147; novel_miR_162; novel_miR_169; novel_miR_198;

novel_miR_210; novel_miR_48; novel_miR_75
gene-Taro_006204 novel_miR_112; novel_miR_94; novel_miR_98
gene-Taro_007911 novel_miR_179
gene-Taro_029774 alpha-glucosidase [EC 3.2.1.20] novel_miR_111; novel_miR_126; novel_miR_201; novel_miR_22; novel_miR_43;

novel_miR_15
Colocasia_esculenta_newGene_2769 beta-amylase [EC:3.2.1.2] novel_miR_7
gene-Taro_027220 beta-fructofuranosidase [EC:3.2.1.26] novel_miR_11
gene-Taro_014327 novel_miR_15
gene-Taro_047897 novel_miR_196
gene-Taro_029867 novel_miR_65
gene-Taro_020067 novel_miR_121
gene-Taro_016898 novel_miR_148
gene-Taro_048354 novel_miR_127; novel_miR_177; novel_miR_196; novel_miR_2; novel_miR_41;

novel_miR_59; novel_miR_70
gene-Taro_048263 novel_miR_121
gene-Taro_041504 glucan endo-1,3-beta-glucosidase [EC:

3.2.1.39]
novel_miR_127; novel_miR_177; novel_miR_2; novel_miR_41; novel_miR_59;
novel_miR_70

gene-Taro_028508 novel_miR_193; novel_miR_87
gene-Taro_049745 novel_miR_125
gene-Taro_051583 novel_miR_112; novel_miR_94; novel_miR_98
Colocasia_esculenta_newGene_73911 aqc-miR156b
gene-Taro_044097 novel_miR_196
gene-Taro_055611 novel_miR_196
gene-Taro_007421 novel_miR_179
gene-Taro_015719 novel_miR_6
gene-Taro_008604 novel_miR_196
gene-Taro_017902 novel_miR_196
gene-Taro_047489 novel_miR_196
gene-Taro_001951 novel_miR_196
gene-Taro_012457 novel_miR_196
gene-Taro_024129 starch synthase [EC:2.4.1.21] novel_miR_112; novel_miR_94; novel_miR_98
gene-Taro_026046 trehalose 6-phosphate phosphatase

[EC:3.1.3.12]
novel_miR_156; novel_miR_188

gene-Taro_023524 novel_miR_15; novel_miR_6
gene-Taro_018385 novel_miR_179
gene-Taro_021354 novel_miR_175; novel_miR_186; novel_miR_197; novel_miR_29; novel_miR_32;

novel_miR_76
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variable expression patterns in different treatment comparisons
(Figure 7).

DISCUSSION

The Transcriptome of C. esculenta Corm
During Development
Since the edible part of Taro is the corm, therefore, understanding
the multitude of changes, especially during development is an
important task of taro breeders (Boampong et al., 2020). The
corm development starts as early as 2 weeks after planting
followed by a rapid growth in the first 2 months in the rainfed
areas whereas this growth is slightly delayed in irrigated
conditions (up to 3–5 months). The maximum corm weight is
reached in 10–11.5 months. However, farmers start harvesting
the corms as early as 8 months after planting (Ahmadizadeh et al.,
2011; Boampong et al., 2020). Therefore, we opted to study the
transcriptome of taro corms of ages 1, 2, 3, 4, 5, and 8 months.

The observations that the DEGs were significantly enriched in
starch and sucrose metabolism, carbon metabolism, biosynthesis
of amino acids, and pentose and glucoronate interconversions
suggests that during corm development carbon metabolism plays
an essential role in the carbon assimilation (Figure 2). Since
starch is present in the corm in highest concentrations as
compared to other nutrients (Temesgen and Retta, 2015),
therefore, the regulation of starch and sucrose metabolism and
associated pathways i.e., pentose and glucoronate
interconversions proposes large scale changes in the starch
and sucrose concentrations in the studied time points of corm
development (Gao et al., 2018). This was further confirmed by the
GO enrichment analysis where major portion of the genes were
enriched in metabolic process, cellular process, and biological
regulations. These large-scale changes in the growth and
development of corm are also evident from the observation
that 5,765 and 5,554 DEGs were regulated in S1 vs. S5 and S1
vs. S6, respectively (Figure 2). A similar trend for the differential
expression of CircRNAs and miRNAs confirmed that at the later

FIGURE 7 | Expression profiles of miRNAs. (A) miRNAs expressed in pairwise comparisons of growth stages. (B) Expression profiles of selected miRNA target
genes. (C) Starch and sucrose metabolisms pathway representing enzymes identified as the targets of selected miRNAs.
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stages of corm development, significant transcriptomic changes
take place (Figure 4C; Figure 5B). Together these processes are
responsible for overall corm mass increase from 8.77 g/plant (S1)
to 1800 g/plant (S6) (Figure 1). In this regard, the highly
upregulated genes in S2 to S6 as compared to S1 are ideal
candidates for future research. For example, C.
esculenta_newGene_69493, C. esculenta_newGene_47533, and
C. esculenta_newGene_83404 are newly identified genes in this
species which showed highest log 2 foldchange value in S2 as
compared to S3. According to GO enrichment these are involved
in nucleic acid binding (MF) (Schultz and Champoux, 2008;
Vicient and Casacuberta, 2020). A detailed understanding of
these genes will elaborate their roles in early corm development.

Starch and Sucrose Metabolism
Significantly Contributes to Variations in
Tarostarch Content
Starch is one of the most abundant compounds found in the
corm (storage organ) of C. esculenta. It is already known that
starch accumulation and enlargement of storage organ is a
parallel process (Burton, 1978). Therefore, a higher
coordination exists between storage organ formation and
starch synthesis (Geigenberger et al., 1994). The
observation that starch content significantly increased up
to S5 as compared to S1 is possibly due to the increased
expression of genes encoding beta-glucosidase [EC:3.2.1.21],
ADP-glucose pyrophosphorylase [EC:2.7.7.27], Alpha-
amylase [EC:3.2.1.1], beta amylase [EC:3.2.1.2], beta-
glucosidase [EC:3.2.1.21], and glucan endo-1,3-beta-D-
glucosidase [EC:3.2.1.39] and granule-bound starch
synthase [EC:2.4.1.242] (Figure 3). Granule-bound starch
synthase is a major contributor towards starch synthesis in
storage organs of plants (Nakamura et al., 1998). There are
two types of granule-bound starch synthase (GBSSI and
GBSSII) in plants and have different expression profiles. In
transgenic rice, GBSSI positively affected the content of
amylose. Moreover, the difference in amount of amylose in
transgenic and non-transgenic plants resulted from long unit
chains of amylopectin (Hanashiro et al., 2008). The DEGs
identified in current study belonged to both GBSSI EC
2.4.1.21 (gene_Taro_043611), and GBSSII EC:2.4.1.242
(gene_Taro_033806). Both transcripts were differentially
upregulated in all growth stages with higher expression in
S3, S4 and S5. Additionally, there was a lack of correlation
between starch contents and the expression of important
starch degradation enzymes including sucrose-phosphate
synthase [EC:2.4.1.14], disproportionating enzyme [EC:
2.4.1.25], and alpha/beta amylase [EC:3.2.1]. It indicates
that the gene expression analysis of starch synthesizing or
degradation enzymes is not enough to decide the ultimate
factors responsible for the variation of starch contents in
corms (K. Zhang et al., 2017). The expression of genes
encoding key enzymes of starch and sucrose metabolism
pathway (GBSS, AGPase, SP, SSS and SuSy) demonstrated
significant variations at stage S4. It is in accordance to starch
accumulation in corms which almost peaked at S4, indicating

that S4 is potentially the most important stage in starch
biosynthesis (Figure 1).

The structure and important features of starch are significantly
affected by amylose contents and amylose to amylopectin ratio. In
sweet potato, RNA interference was used to suppress the expression
of GBSSI and SBEII to produce amylose-free and high-amylose
transgenic plants, respectively (Shimada et al., 2006; Kitahara et al.,
2007; Otani et al., 2007). It affirms a critically important role of
these enzymes in controlling starch composition. In current
analysis, the two GBSS encoding genes (gene_Taro_043611 and
gene_Taro_033806) were expressed at relatively higher levels at S4
and S5, while amylose to amylopectin ratio was still increasing.
Similarly, expression of gene_Taro_004018 and gene_Taro_026553
(AGPase) was significantly upregulated at S4. It indicates that
variation in the expression of these genes may potentially affect
the variation in starch composition. However, the expression of
genes encoding other starch-synthesizing enzymes, including SBE
[EC 2.4.1.18], and ISA [EC:3.2.1.68], was not directly correlated
with the composition of starch in corms. It is reported that the
properties of starch are dependent on a coordinated expression
of all the genes in a pathway and not on a singular gene product
(Lai et al., 2016). Since the synthesis of amylose and amylopectin
follows a multifaceted procedures including several starch
synthesizing enzymes (Zeeman et al., 2010; Lai et al., 2016), we
may conclude that the transcript abundance on an individual starch-
synthesizing enzyme would not be enough to decide starch
composition in corm.

Accumulation of starch in a storage organ is a continuous
activity that involves the synthesis, transport, degradation, and
inter-conversion of starch and sucrose (Zeeman et al., 2010;
Schreiber et al., 2014). The cleaved products of sucrose (major
photo-assimilate) are used in plant storage organs to synthesis
starch (X.-Q. Li and Zhang, 2003). The enzymes affecting
metabolism and/or cleavage of sucrose potentially play key
role in starch accumulation. There are two ways for sucrose
cleavage in the cytosol; 1) beta-fructofuranosidase [EC:3.2.1.26]
mediated conversion of sucrose into fructose and glucose, and ii),
invertase or sucrose synthetase [EC 2.4.1.13] converts sucrose
into fructose and UDP-glucose (X.-Q. Li and Zhang, 2003; Wind
et al., 2010). Later on, UGPase [EC:2.7.7.9] converts the UDP-
glucose into glucose-1-phosphate, which is used in subsequent
starch synthesis. In current study, 5 sucrose synthetase, 2 UGPase
and 11 beta-fructofuranosidase encoding differentially expressed
transcripts were detected, and most of these unigenes were
expressed during all developmental stages examined, indicating
that these genes have essential roles in corms.

Possible Roles of CircRNA and miRNAs in
CormDevelopment and Starch and Sucrose
Metabolism
CircRNAs function as miRNA sponges and have been studied for
their participation in miRNA-related pathways where they might
regulate genes expression (P. Zhang et al., 2020). The 191
differentially expressed CircRNAs could be associated with the
corm development in taro. We propose this because these
CircRNAs (or their target genes) were enriched in amino acid
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biosynthesis and protein processing in endoplasmic
reticulum, RNA transport, starch and sucrose metabolism,
plant hormone signal transduction, and carbon metabolism.
Particularly, the amino acid biosynthesis and carbon
metabolism pathways are significantly important for early
corm development since they directly impact nitrogen use
efficiency and carbon partitioning in source-sink tissues
(Hajirezaei et al., 2000; Dellero, 2020). In this regard, the
99 of the 191 CircRNAs are good candidates for their roles in
the regulation of miRNAs and their target genes in starch and
sucrose metabolism. Of the known miRNAs, aqc-miR156b
has been previously reported in Colorado blue columbine
(Aquilegia coerulea) (Puzey and Kramer, 2009). However, its
functional validation is still to be done but it has been
reported that its expression increased in clubroot infected
Brassica napus L. plants 10 days after infection suggesting its
role in either stress response or establishment of clubroot
(Verma et al., 2014). In our experiment, this miRNA didn’t
differentially express between S1 and S2, S3, and S4. Its
expression increased in S5 (log 2 fold change � 2.67) and
S6 (log 2 fold change � 3.30) as compared to S1. Its target gene
was a glucan endo-1,3-beta-glucosidase 5/6 (gene-
Taro_049745 and gene-Taro_051583). Most of the DEGs
annotated as glucan endo-1,3-beta-glucosidase were
downregulated in the later growth stages (S5 and S6) as
compared to S1 except gene-Taro_001976 (which is
upregulated S4, S5 and S6). Thus, there could be negative
relationship between the expression of aqc-miR156b and
glucan endo-1,3-beta-glucosidase 5/6; it converts 1,3-
β-glucan into D-glucose (Reese and Mandels, 1959).
However, there were other novel miRNAs (novel_miR94,
novel_miR98, novel_miR112, and novel_miR125) that were
also associated with this enzyme. Future studies would help to
reveal the possible role of these miRNAs in related to this
enzyme.

Other than the two glucan endo-1,3-beta-glucosidases, the
differential expression of an alpha-glucosidase (gene-
Taro_029774) and a beta-fructofuranosidase (gene-
Taro_014327) between different treatment comparisons
(Figure 6) is important. The alpha-glucosidase converts
sucrose into D-fructose (Lebosada and Librando, 2017)
whereas beta-fructofuranosidase also serves the same purpose
in plants (Lopez et al., 1988). We found that these genes are the
targets of novel_miR_22, novel_miR_43, novel_miR_126,
novel_miR_201 (alpha-glucosidase) and novel_miR_15 (beta-
fructofuranosidase). Both the genes were downregulated in
other growth stages as compared to S1 (Figure 6). The
transcript abundances of the miRNAs associated with the
alpha-glucosidase were also decreased in all treatments
(negative log 2 fold change values) as compared to S1. While
that of novel_miR_15 was increased in all taro corms (S2-S6) as
compared to S1. These results suggest that the hydrolysis of the
sucrose into D-fructose might be affected by the targeted

differential changes in the abundances of these miRNAs to the
alpha-glucosidase and fructofuranosidase.

CONCLUSION

Current study reported the variations in starch accumulation and
the differential expression of mRNAs, CircRNAs and miRNAs in
six different growth stages of Taro corm development. A potential
correlation starch/sucrose metabolism pathway and gene
expression was also discussed. Although some of these genes
were already reported, a large number of reported coding and
non-coding genes were reported for the first time Taro corm. This
study revealed important candidates involved in the biosynthesis
and metabolism of starch and sugars during corm formation and
growth. The information generated from current research will be
a valuable foundation for deciphering molecular and
physiological mechanisms governing starch and sucrose
properties of Taro corms.
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