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Background: Globally, hepatocellular carcinoma (HCC) is the sixth most frequent
malignancy with a high incidence and a poor prognosis. Immune cell infiltration (ICl)
underlies both the carcinogenesis and immunogenicity of tumors. However, a
comprehensive classification system based on the immune features for HCC remains
unknown.

Methods: The HCC dataset from The Cancer Genome Atlas (TCGA) and International
Cancer Genome Consortium (ICGC) cohorts was used in this study. The ICI patterns of
571 patients were characterized using two algorithms: the patterns were determined
based on the ICI using the ConsensusClusterPlus package, and principal component
analysis (PCA) established the ICI scores. Differences in the immune landscape, biological
function, and somatic mutations across ICI scores were evaluated and compared,
followed by a predictive efficacy evaluation of ICl scores for immunotherapy by the two
algorithms and validation using an external immunotherapy cohort.

Results: Based on the ICl profile of the HCC patients, three ICI patterns were identified,
including three subtypes having different immunological features. Individual ICI scores
were determined; the high ICI score subtype was characterized by enhanced activation of
immune-related signaling pathways and a significantly high tumor mutation burden (TMB);
concomitantly, diminished immunocompetence and enrichment of pathways associated
with cell cycle and RNA degradation were found in the low ICI score subtype. Taken

Abbreviations: CDF: Cumulative distribution function; CR: Complete response; DEGs: differentially expressed genes; FDR:
false discovery rate; FKPM: Fragments Per Kilobase per Million; GO: Gene Ontology; GSEA: Gene set enrichment analysis;
HCC: Hepatocellular carcinoma; ICGC: International Cancer Genome Consortium; ICI: Immune Cell Infiltration; KEGG:
Kyoto Encyclopedia of Genes and Genomes; PD: Progressive disease; PR: Partial response; SD: Static disease; TME: Tumor
Microenvironment; TCGA: The Cancer Genome Atlas; TPM: Transcripts Per Million; TMB: Tumor Mutation Burden; TIDE:
Tumor Immune Dysfunction and Exclusion.
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together, our results contribute to a better understanding of an active tumor and plausible
reasons for its poor prognosis.

Conclusion: The present study reveals that ICl scores may serve as valid prognostic
biomarkers for immunotherapy in HCC.

Keywords: carcinoma, immune cell infiltration landscape, immunotherapy, ICl scores, prognosis

INTRODUCTION

HCC is an aggressive malignancy that frequently develops and
progresses in the setting of chronic liver disease or cirrhosis (Park
et al., 2015). Statistics from 2018 indicate that HCC is the sixth
most frequently occurring malignancy and the fourth highest
cause of cancer-related deaths (Kulik and El-Serag, 2019). To
date, approximately 841,000 new cases are registered and more
than 782,000 HCC-related deaths are recorded (Singal et al,
2020). Alcohol consumption, obesity, fatty liver, and hepatitis
infection are some of the important risk factors for HCC (Caruso
et al., 2021). Current advances in HCC-diagnosis, surgical
treatment, transplantation, chemotherapy, radiotherapy, and
targeted molecular therapies, to some extent, have improved
the prognosis of HCC patients (Fan, 2012), but the majority of
the diagnosed patients are already at an advanced stage and have
only limited conservative treatment options. The rate of cure in
HCC remains low due to its high malignancy, recurrence rate,
increased metastasis, and adverse response to chemotherapy
(Pillai et al., 2020; Farzaneh et al., 2021).

As a treatment for HCC, despite its limited efficacy,
immunotherapy has yielded promising results (Silva et al,
2020). However, the benefits of immunotherapy are largely
limited to only a small number of HCC patients. Existing
studies have shown that immune-associated genes and
lymphocytes infiltrating tumors play a key role in tumor
oncogenesis and its progression (Wang et al, 2020); the
dynamic interactions between immune cells infiltration into
the tumor microenvironment, cytokines secreted by immune
cell types, and cancerous cells are involved in HCC tumor
progression (Choi and Park, 2017; Sachdeva and Arora, 2020).
A clearer understanding of these specific dynamical patterns may
be beneficial for immunotherapy. Therefore, detailed
investigations of the immune landscape of the tumor
microenvironment (TME) and identification of ideal HCC
subgroups for immunotherapy are important to improve the
immunotherapeutic responses and prognostic prediction
(Hosseinzadeh et al., 2018; Robert et al., 2020).

Extensive studies on the TME indicate the critical functions of
infiltrating immune cells in tumor dissemination, recurrence,
metastatic activity, and immunotherapeutic responses (Jiang
et al,, 2018a; Zeng et al., 2018). As an example, CD8" T cells
are potent regulators of adaptive immunity as they can eliminate
pathogen-infected and tumor cells (Stairiker et al., 2020), and
thus, critically affect tumor immunity (Han et al., 2020). Tumor-
associated macrophages (TAM) exert multiple tumor-beneficial
effects through the secretion of immunosuppressive cytokines,
associated with unfavorable prognoses (De Palma and Lewis,

2013; Noy and Pollard, 2014). Through their inhibitory activity,
M2-type macrophages critically regulate the tumor
microenvironment (Mehla and Singh, 2019). Taken together,
these studies suggest that immune cell interactions in TME
may provide new insights for cancer therapy. However, a
comprehensive and clear understanding of immune landscape
complexity in HCC is still lacking.

Here, we evaluated the immune landscape of HCC using the
CIBERSOFT algorithm. Based on their ICI features, the HCC
patients were classified into four subtypes. Subsequently, based on
immune subtypes, ICI scores were established to further assess
the immune landscape of HCC, for accurate prognostic
prediction of the patients and their immunotherapeutic
responses.

MATERIALS AND METHODS

Hepatocellular Carcinoma Sample and Data
Acquisition

Patients with complete clinical information (Stage, Follow-up
Information, Age and Gender) were selected in this study, after
removing patients who did not meet the criteria. RNA-Seq data of
340 HCC patients and their complete corresponding clinical
information were acquired from The Cancer Genome Atlas
(TCGA) using the GDC APIL for the training cohort,
expression data in FPKM (Fragments Per Kilobase per
Million) were subsequently TPM-normalized (Transcripts Per
Kilobase per Million). In addition, RNA-Seq data of 231 HCC
patients and their complete corresponding clinical information
were obtained from the International Cancer Genome
Consortium (ICGC) database (Fujimoto et al., 2016). Similarly,
for the validation set, the raw sequencing data were TPM
normalized.

Evaluation of Immune Infiltration Levels and

Consensus Clustering

The level of infiltration of the 22 immune cells was quantified for
each sample of the HCC-TCGA cohort using the “CIBERSORT”
R package with the LM22 signature (Newman et al., 2015). Next,
the ESTIMATE algorithm was used to compute the scores for
immune and stromal characteristics for each patient (Yoshihara
et al, 2013). Hierarchical consensus clustering for HCC was
performed for each sample based on the individual pattern of
ICL. In this analysis, the PAM unsupervised clustering based on
Pearson’s correlation and Ward’s linkage based on the
“ConsensusClusterPlus” R package, were used (Yu et al., 2012)
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and repeated 1,000 times to reduce sampling errors and ensure a
stable classification. Consensus clustering is a popular
bioinformatics algorithm, which was extensively utilized in
cancer-related studies (Liu et al., 2021a; Liu et al.,, 2021b; Liu
et al,, 2021¢; Liu et al., 2021d).

DEGs Identified Based on ICI Phenotype
Patients were subdivided based on ICI and were referred to as the
ICI subgroups. Subsequently, differentially expressed genes
between subgroups were analyzed using the “limma” package,
and genes associated with the ICI patterns were identified.
Significance criteria of p. adjust < 0.05 and | Log2FC | > 1
were set to identify the significant DEGs among the different ICI
subgroups.

Dimensionality Reduction and the
Construction of ICI Scores

The ICI scores were constructed following the work of Zhang
et al. (2020). First, to classify the patients in the training set based
on DEGs, an unsupervised clustering method was used; the
positively and negatively correlated DEGs with the clustering
features were called ICI gene signatures A and B, respectively.
Second, the dimensionality reduction of gene signatures A and B
based on ICI was performed using the Boruta algorithm, followed
by subsequent extraction of the signature score (corresponding to
principal component 1) using the PCA algorithm. Finally, the
computation of ICI scores for each patient was according to the
following equation:

ICI score = Z PCl, - Z PCl;

Somatic Mutations in the The Cancer

Genome Atlas Cohort

The corresponding data for the patient mutations in the HCC-
TCGA cohort were collated on the Mutect2 platform and were
downloaded using the “TCGAbiolinks” package (Colaprico et al.,
2016). The total number of nonsynonymous mutations in the
samples was calculated to compare the differences in the
mutation burdens between the two ICI score-based subgroups.
Subsequently, using the “maftool” in R, the top 25 driver genes
having the highest mutation frequency were identified and the
mutation differences in the driver genes between the high- and
low-score subgroups were compared (Mayakonda et al., 2018).

Immunotherapeutic Responses of ICI
Subgroup

Since different ICI subgroups may have different sensitivities to
immunotherapy, the TIDE (http:/tide.dfciharvard.edu/)
algorithm was used to predict the anti-PD1 and anti-CTLA4
treatment responses of patients in the TCGA and ICGC cohorts
(Jiang et al., 2018b; Fu et al., 2020). Subsequently, with the aid of
unsupervised subclass mapping (https://cloud.genepattern.org/
gp/) (Hoshida et al., 2007), data from the high- and low-score

Immune Cell Infiltration Landscape in HCC

subgroups were compared to a published dataset consisting of 47
patients’ responses to anti-PD1 and anti-CTLA4 treatments (Roh
et al., 2017). This analysis predicted the immunotherapeutic
responses of the high- and low-subgroups; FDR < 0.05 was set
as the threshold for a significant response to anti-PD1 and anti-
CTLA4 treatment. Additionally, the independent dataset
IMvigor210 was used to analyze the predictive efficacy of ICI
scores. The IMvigor210 dataset consisting of 298 cases of
uroepithelial carcinoma samples and their corresponding
clinical information, were obtained from the freely available,
fully documented software and data packages under the
Creative Commons 3.0 Attribution License, available at http://
research-pub.gene.com/IMvigor210CoreBiologies.

Statistical Analysis

All statistical analyses and plotting were performed using R
software (version 4.04). For comparisons of more than two
groups, the Kruskal-Wallis test was used, else, we used the
Wilcoxon test. For the subgroups in each data set, the Kaplan-
Meier plotter generated the survival curves, and the log-rank tests
were determined any statistically significant differences. The
correlations between ICI score for the subgroups and
associated somatic mutation frequencies were evaluated and
analyzed by the chi-square test. Unless stated, p < 0.05 (two-
tailed) was considered to be statistically significant.

RESULTS

Immune cell infiltrationlCl Landscape in the

TCGA Cohort

Supplementary Figure S1 displayed a brief flow chart of this
study. The execution of the CIBERSORT algorithm quantified the
activity or enrichment of immune cells in the HCC tumor tissues
(Figure 1A, Supplementary Table S1). Based on the 340 tumor
samples and their corresponding ICI features in the training set,
the ConsensusClusterPlus package of R software executed the
unsupervised clustering method. Thus, we classified the HCC
patients into three different ICI subtypes.

There were significant survival differences among the subtypes
(log-rank test, p < 0.0001; Supplementary Figure S2A-E;
Figures 1B,C); ICI cluster 1 was associated with a good
prognosis while ICI cluster 3 had the worst prognosis.
Additionally, to assess the intrinsic differences among the
biological parameters underlying the different clinical
phenotypes, ICI differences were compared between the three
subgroups. ICI cluster 1 showed the highest infiltration of
activated B cells, monocytes, and resting memory CD4 T cells,
and the lowest infiltration of regulatory T cells. A more favorable
prognosis of patients in ICI cluster 2 may be attributed to the high
degree of infiltration of plasma cells, activated memory
CDAT cells, M1 macrophages, and CD8T cells. However, in
ICI cluster 3, higher infiltration of regulatory T cells, MO
macrophages may underlie the poorest prognosis due to
suppressed tumor immunity responses (Figure 1D). We also
plotted the correlation heat maps to depict the interactions
between immune cells in TME (Figure 1E). The expression
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FIGURE 1 | Immune landscape in the TCGA cohort. (A) The immune landscape of 22 ICls in HCC patients; (B) Unsupervised clustering of tumor-infiltrating immune

cells in the TCGA cohort, where rows represent tumor-infiltrating immune cells and columns represent samples; (C) Kaplan-Meier curves for overall survival (OS) of
patients with different ICI clusters, where log-rank p = 0.018; (D) Proportion of tumor-infiltrating immune cells in the three ICI clusters, where Kruskal-Wallis was used to
test and compare the statistical differences of the three ICl clusters. *p < 0.05; ##p < 0.01; ###p < 0.001; ***xp < 0.0001; (E) Cell interactions of tumor-infiltrating
immune cell types. (F-H) Expression differences in PD-L1 (F), PD1 (G), and CTLA4 (H) between different ICI clusters (Kruskal-Wallis test, p < 0.0001).

Immune Cluster

Frontiers in Genetics | www.frontiersin.org

November 2021 | Volume 12 | Article 777931


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Yang et al.

Immune Cell Infiltration Landscape in HCC

Gender

I Male

Female
Age
80

20

Cluster
Cluster1

i Cluster2

_ Cluster3

Gene cluster
Cluster1
Cluster2
Cluster3
Cluster4

DEGS of 1&3

DEGS of 283

GO enrichment analysis (BP)

p-adjust

A Jul 1 TR T ARITL T WENE W IR T W HEIECE0 Status
ImmuneScore
(LI T NN LULIED ML L IWEN LI O OO WO UOR OGN OO R OERLI0 DL HAME WAMDINEL L[] Stage
Gender
Age
LA T O AL Cluster
Gene cluster
Bi L] 'l T 1 R T u II vn T T I|| Status
e ot ol e} i Wy e o i Dead
(LT R T Ty e ’h" ,
0 i : i Ll Al " P L R T R |‘ | et et | A“"°
- e Wit e U e
< [ i ol | i T i f {1 ™
s WML 1 TR AT gl T T TP T i i ©
H i i b i l |21 1000
& [ REARARRRY [ e P T L -
£ I R | ey T e Ty [F8 N e W | stage
s i 001 i i e Stage |
2 [ ISR AT T W PTG B b o el i Stage Il
c @i 'l i) b o i) R I R T e I Stage Il
" (17 it . o LT S T BT R S | Stage IV
altid g L ! AR TR | T .!F...l e, |,
e gl i W B Peesor s
fl o] I T ln'ﬂ'thI i
@ o o b e T, RERRTT LOELS I b P e |n-||n|:|u|n“|“m“|.
g | T | ! |" g1 ' ".’l”'lr'[n w"lnllK .f”’ '1"|
5 [ ket i R o B S TN PRL | """"'M £ o (T TN
e r u |'|: wgildh [ 8 |'||| T
3 IV T r'L‘L ¥ :11
5 ' PR e I P Il"i‘..l.'" "I'II"'J‘l Lol
—_ 1 " i L LND A ' 1 I lll 1 !
2 y | v” it ':{ l ] | I:'I' L ’{:Il”"“ﬂ!ll!!\l'F| ||1”|[!I” Elll ! 'I "
T TR T ||'"H'l'ulllu|||l|||"||||||w |
: GIEER L e | RN ML R L Y )T
c Strata == Clustert == Cluster2 == Cluster3 == Cluster4 D
100
g 75 p
2
% cGMP metabolic process
Q
S 50— :
s : i
S : . gly P
g 2 ; P
3 i i i galactosylceramide metabolic process
E E E cyclic nucleotide metabolic process{
04 p=002 ' o
0' 2' : é é 1'0 calcium ion-regulated exocytosis of
Time(Year) neurotransmitter
Number at risk
& o= | 47 15 9 4 0
© = | 127 50 25 9 1
B o= 122 42 15 7 0
[ 4I4 21 1|3 6I fl) E T cell activation;
0 2 4 10
Tlme(Year) regulation of T cell activation-

@

Log2 PD1 Expression
Log2 PDL1 Expression

Gene Cluster

Keuskal-Walis, p = 069

Log2 CTLA4 Expression

Gene Cluster

Kruskal-Walls, p = 0.87

leukocyte cell-cell adhesion-

positive regulation of T cell activation{

positive regulation of leukocyte
cell-cell adhesion

of cell-cell

positive regulation of cell-cell adhesion

- e
5.6819850-28

4.885364e-19
9.770728e-19
1.465609¢-18
1.954146e-18

P v
o o o o
Gene Cluster
F " s
204
% i
¢ i
:
i

Gene Cluster
3 Clustert

Cusen
£3 et
£3 e

FIGURE 2 | Identification of Immune-Related Gene Subtypes. (A) Unsupervised clustering of common DEGs in the three ICI subgroups, dividing patients into four
groups; (B) Number of DEGs among subgroups as shown by Venn diagram; (C) Kaplan-Meier curves for the three subgroups of patients, where the log-rank test shows

(Continued)

Frontiers in Genetics | www.frontiersin.org

November 2021 | Volume 12 | Article 777931


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Yang et al.

Immune Cell Infiltration Landscape in HCC

CTLA4 (1) using Kruskal-Wallis test.

FIGURE 2 | an overall p = 0.02; (D,E) Gene ontology (GO) enrichment analysis of ICl-associated signature genes: ICI signature genes A (D) and B (E), where x-axis
indicates the number of genes in each GO term; (F) Proportion of tumor-infiltrating immune cells in the three gene clusters, where Kruskal-Wallis was used to test and
compare the statistical differences of the three ICl clusters. *p < 0.05; **p < 0.01; ###p < 0.001; #**xp < 0.0001; (G-I) Expression differences of PD-L1 (G), PD1 (H) and

differences in the different ICI subtypes, for three important
immune checkpoints, PD1, PDL1, and CTLA4, were also
analyzed. ICI cluster 2 had the highest levels of expression of
immune checkpoint genes, while these were lowest in ICI cluster
1 (Figures 1F-H).

Identification of Immunogenic Subtypes

To better understand the underlying biological features of different
immunophenotypes, differentially expressed genes (DEGs) between
these subtypes were identified using the “limma” package of the R
software. A total of 1,038 DEGs were identified (Supplementary
Table S2), and their intersections are shown in the Venn diagram
(Figure  2B).  Subsequently, based on DEGs, the
ConsensusClusterPlus package was executed for unsupervised
clustering analysis; thus, the TCGA cohort was divided into four
gene clusters (Supplementary Figure S3A-F); Positively associated
318 DEGs in the gene clusters were defined as ICI gene feature A, and

the remaining were defined as ICI gene feature B (Supplementary
Table S3). Moreover, to attenuate noise and gene redundancy,
dimensionality reduction of ICI gene features A and B was
performed using the Boruta algorithm. The transcriptional profiles
of the 78 signature DEGs identified after dimensionality reduction are
shown in the heat map (Figure 2A). The significantly enhanced
biological processes among the DEGs are shown in Figures 2D,E and
Supplementary Table S4. Kaplan-Meier analysis showed a
significant difference in survival outcomes among the four
subgroups (p = 0.02, Figure 2C). Patients in clusters 1 and 2 had
a better prognosis as compared to those in cluster 3. The presence of
higher infiltration levels of M1 macrophages, monocytes, gamma
delta T cell, and lower infiltration levels of regulatory T cell in clusters
1 and 2, indicated that patients in these two clusters may have a
stronger anti-tumor immune response (Biswas and Mantovani, 2010;
Chen and Mellman, 2017). In contrast, the highest levels of
infiltration of regulatory T cell and M0 macrophage, and lowest
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FIGURE 4 | Immune landscape of subgroups with different ICI scores. (A) Scatter plots depicting a negative correlation between ICl scores and immune scores in
the TCGA cohort, showing a Pearson correlation between ICI scores and immune scores; (B) Expression of immune checkpoint-related genes (IDO1, CD274, HAVCR2,
PDCD1, CTLA4, and LAG3) and immunoreactive-related genes (CD8A, CXCL10, CXCL9, GZMA, GZMB, PRF1, IFNG, TBX2, and TNF) in high and low ICI score
subgroups; (C) ICI Proportion in different ICI score subgroups; (D) Immune scores of the high and low ICl score groups; (E) ESTIMATEscores of the high and low ICI
score groups; (F) Stromal scores in the high and low ICI score subgroups; (G) Tumor purity in the high and low ICI score subgroups. *p < 0.05; ##p < 0.01; ###%p <
0.001; #=##xp < 0.0001.

levels of infiltration of all other immune cells in cluster 3, suggested
that this may be an immune desert subtype (Biswas and Mantovani,
2010; Chen and Mellman, 2017). The concordance between the
immune profiles and the prognosis using different gene clusters
suggested that our classification strategy is scientifically sound and
reasonably good. The levels of PD1, PDLI1, and CTLA4 expression
among the four clusters, however, were not significantly different
(Figures 2F-H).

Construction of the Immune Cell Infiltration

Scores

PCA analysis was used to quantify the ICI status of HCC patients. We
calculated the sum of ICI scores A from ICI signature gene A minus
the sum of ICI score B from ICI signature gene B. Thus, the
prognostic feature scores defined as ICI scores were obtained.
Additionally, ICI scores for the validation cohort, from ICGC
were calculated using the same gene signatures A and B and the
algorithm as described above. Patients were divided into high- or low-
score subgroups based on median ICI score, and the distribution of

patients in the four clusters is shown in Figure 3A. Kaplan-Meier
analysis showed a significant difference in the prognoses between the
two groups; the high-score subgroup had the best prognosis (p =
0.0014, Figure Figure3B). The prognostic efficacy of ICI scores was
also validated in the ICGC cohort (p < 0.001, Supplementary Figure
S4A); the high-score subgroup patients had better survival outcomes
in both the TCGA and ICGC cohorts (Figure 3C; Supplementary
Figure S4B). GSEA analysis showed that NK cell-mediated
cytotoxicity, T cell receptor signaling, and peroxisome-related
pathways were substantially enriched in the high-score subgroup,
while cancer-related, cell cycle, and RNA degradation pathways were
substantially enriched in the low-score subgroup (Figures 3D,E;
Supplementary Table S5).

Correlation of Immune Cell Infiltration

Scores With Immune Landscape

The immunocompetence and stromal content of the TCGA cohort
were quantified using the ESTIMATE algorithm. ICI scores and
immune scores were negatively correlated (Pearson correlation:
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TABLE 1 | The association of ICl scores with somatic cell variation, where chi-
square tests were used to compare statistical differences between high and
low ICI score subgroups.

Gene symbol High ICI score (%) Low ICI score (%) p Value
CTNNBH 53 (32) 0 (18) 0.0054
TP53 37 (22) 6 (34) 0.0147
AXINT 8 (5) 9(12) 0.0270
TN 49 (29) (1 9) 0.0298
ALB 23 (14) 2(7) 0.0734
CSMD3 9 (5) 17 (10) 0.1039
LRP1B 8 (11) 9 (6) 0.1074
RYR2 11 (7) 19 (12) 0.1272
ADGRV1 74 3(8) 0.1713
APOB 20 (12) 2(7) 0.1934
HMCN!1 15 (9) 8 (5) 0.1945
PCLO 21 (13) 3(8) 0.2057
CACNATE 16 (10) 9 (6) 0.2122
ABCA13 18 (11) 1(7) 0.2441

MUC4 20 (12) 3(8) 0.2720
FAT3 8 (5) 2(7) 0.3635
CCDC168 9 (5) 1(7) 0.6503
MUC16 25 (15) 28 (17) 0.6536
RYR1 10 (6) 2(7) 0.6638
ARID1A 11(7) 3(8) 0.6757
SPTA1 11(7) 38 0.6757
FLG 12 (7) 49 0.6863
OBSCN 15 (9) 2(7) 0.6892
XIRP2 15 (9) 2(7) 0.6892
USH2A 11(7) 0 (6) 1.0000

R =-0.249, p < 0.001; Figure 4A). Box plots exhibited lower immune
scores and ESTIMATE scores for the high-score subgroups (p < 0.05;
Figures 4B,C), while stromal scores and tumor purity scores did not

differ significantly between the two subgroups (Figures 4D,E). To
assess immunocompetence among subgroups, CD274, CTLA4,
HAVCR2, IDO1, LAG3, and PDCD1 were selected as immune
checkpoint-related features, while CD8A, CXCL10, CXCL9,
GZMA, GZMB, IENG, PRF1, TBX2, and TNF were selected as
immunocompetence features (Hugo et al., 2016; Ayers et al., 2017).
Our results showed that almost all, immune checkpoint-related and
immunocompetence-related genes (except CD274 and CXCL10),
had a significant overexpression in the high ICI score subgroup
(Figure 4F). Additionally, higher infiltration levels of NK cells,
gamma delta T cells, monocytes, and M1 macrophage and lower
infiltration levels of regulatory T cells were observed in the high-score
subgroups (Figure 4G), which was also consistent in the immune
landscape of the ICGC cohort (Supplementary Figures S4C,D).

Association Between Immune Cell
Infiltration Scores and Somatic Cell

Variation

Previous investigations have revealed that increased infiltration of
CDST cells in high mutation burden-associated tumor tissues
(nonsynonymous variants) can identify and eliminate these
cancers (McGranahan et al, 2016). Higher tumor mutation
burden (TMB) and somatic mutation rates are associated with
stronger anti-cancer immunity (Rizvi et al., 2015; Rooney et al,,
2015). The KEYNOTE 012 clinical trial showed that TMB
increase was associated with improved PD-1 inhibitors and
prolonged progression-free survival of patients (Seiwert et al.,
2016; Cristescu et al., 2018). Because of the clinical significance of
TMB, the correlation between TMB and ICI scores was analyzed
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in detail. For this purpose, first, the TMB comparison between
patients in the high- and low-score subgroups were analyzed; ICI
score and TMB were positively correlated (Pearson correlation: R
= 0.151, p = 0.009; Figure 5A). TMB was significantly higher in
the high-score subgroup (Wilcoxon test p < 0.001; Figure 5B).
Patients were divided into high- and low-TMB score subgroups
based on the optimal cut-off value of TMB calculated from the
“survminer” package; patients with high TMB scores exhibited
poorer OS (p = 0.056; Figure 5C). Due to the opposing
predictions of OS by ICI and TMB scores, the combined effect
of these scores in the prognostic stratification of HCC was
subsequently evaluated. Stratified survival analyses showed that
TMB did not affect ICI score-based prediction; significant
survival differences for ICI score subtypes were obtained
between the two TMB-based score subgroups (log-rank test,
p = 0.002; High TMB & High ICI score (HH) versus High
TMB & Low ICI score (HL), p = 0.011; Low TMB & Low ICI
score (LH) versus Low TMB & Low ICI score (LL), p = 0.047;
Figure 5D). Overall, our findings suggested that ICI scores may
have implications as an independent predictor of TMB and could
be a reliable parameter for patient prognosis. In addition,
differences in somatic variant driver genes between the low

and high ICI score subgroups were evaluated. The driver
genes for HCC were obtained using “maftools”; among them
the most frequently altered top 25 genes were further analyzed
(Figure 5E). The frequencies of CTNNBI1, TP53, AXINI, and
TTN were significantly altered between the high- and low-score
subgroups (chi-square test; Table 1). Taken together, these results
may provide new insights for future investigations on the
constituents of tumor ICI and the mechanisms of gene
mutations in immune checkpoint blockade therapy.

Predictive Efficacy of Immune Cell

Infiltration Scores for Immunotherapy

Novel immune checkpoint inhibition has shown promising
results in both preclinical trials and real clinic settings.
However, only a small proportion of patients respond to these
therapies (Curran et al, 2010; Grosso and Jure-Kunkel, 2013;
Larkin et al., 2015). Our subsequent analyses assessed the utility
of scores based on ICI in predicting the efficacy of
immunotherapy in HCC. Differences in response to anti-PD1
and anti-CTLA4 therapy between the high- and low-score
subgroups of patients in the TCGA and ICGC cohorts were
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evaluated using the TIDE algorithm. In the high-score subgroup,
the patients had a higher immunotherapy response rate (chi-
square test p < 0.001; Figure 6A; Supplementary Figure S4E).
Subclass mapping analysis predicted the immunotherapy
responses of both subgroups to PD1 and CTLA4 inhibitors.
The high-score subgroups in both the TCGA and ICGC
cohorts were found to be more sensitive to anti-PD1
treatment (TCGA: FDR = 0.042; ICGC: FDR = 0.022,
respectively) (Figure 6B; Supplementary Figure S4F). In
addition, patients in the IMvigor210 cohort administered with
anti-PD-L1  immunotherapy were also assigned the
corresponding ICI scores (high or low). Notably, patients with
high ICI scores in the IMvigor210 cohort survived longer as
compared to those with low ICI scores (log-rank test, p = 0.0017;
Figure 6C). In the IMvigor210 cohort, anti-PD-L1 therapy’s
objective remission rate was significantly higher in the high
ICI score subgroup (Chi-square test, p = 0.002; Figure 6D).
Our results also indicated that higher ICI scores in the
IMvigor210 cohort were associated with objective responses to
anti-PD-L1 therapy (Wilcoxon test, p < 0.01; Figure 6E). Overall,
these findings suggest a possible association between ICI scores
and immunotherapeutic responses.

DISCUSSION

HCC is an aggressive tumor with a high degree of malignancy, and
most patients are diagnosed initially at an advanced stage (Zhou et al,,
2020). High recurrence and metastasis rates of advanced HCC to a low
possibility for surgical resection (Zhou et al.,, 2020; Feng et al., 2021).
Within the local area, the complex genomic alterations, differences in
biological ~behaviors, and heterogeneity of the tumor
microenvironment resulting in a complex HCC process. Currently,
immunotherapy is a promising treatment strategy available for HCC
(Huang et al, 2020). Due to the limitations of surgical resection,
chemotherapy and immunotherapy have received increasing attention
in the treatment of advanced HCC (Brown et al,, 2019). However,
immunotherapeutic response rates are highly heterogeneous and
remain considerably low (Feng et al, 2021). Thus, in HCC,
immune-related classification criteria may provide new insights to
assess the efficacy of immunotherapy and predict the patient prognosis.

The high genomic heterogeneity of HCC results in the
complexity of the immune microenvironment (Dal Bo et al,
2020). Therefore, the identification of novel signatures in HCC
based on immune-related genes provides a new direction for
assessing the efficacy of immunotherapy. Further assessment of
these classifications based on gene signatures may help in
developing immunotherapy strategies with improved sensitivity
for different subtypes of HCC. Zhang et al. characterized the ICI
dynamics in HCC by single-cell sequencing, and thus provided a
new basis for investigations of the immune landscape (Zhang et al,,
2019a). Sia et al. identified active or depleted immune subtypes in
HCC based on immune gene transcriptional profiling. This suggests
that active immune subtypes may be more sensitive to
immunosuppressant therapy (Sia et al, 2017). Zhang et al
integrated multi-omics data and show new immunophenotypic
classifications in HCC which may be useful for prognostic

Immune Cell Infiltration Landscape in HCC

prediction and potentially supporting new treatment targets
(Zhang et al, 2019b). Indeed, these studies have their unique
strengths and potential and complement each other. Therefore,
investigations of HCC immune subtypes from different
perspectives hold great promise for research, and a better
classification of immune features would enhance the overall
understanding of HCC immunotherapy.

In the present study, we analyzed the classical HCC dataset from
the TCGA and ICGC cohorts and divided the patients into three
different immune subtypes. Our results suggested that high
infiltration levels of CD4 T cells, CD8 T cells, and Ml
macrophage and low infiltration levels of regulatory T cells were
associated with good prognosis, consistent with previous studies
(Rooney et al., 2015; He et al., 2018). Due to the heterogeneity of
immune landscape and prognosis among the three immune subtypes,
we speculated that an integrated ICI profile analysis and evaluation of
immune-based gene expression patterns would be a new approach to
develop patient-customized and tailored treatment strategies. Four
distinct gene clusters were obtained based on differentially expressed
genes between the subtypes; clusters 1 and 2 exhibited a more
favorable immune activation phenotype, exhibited higher
infiltration of M1 macrophages, monocytes, gamma delta T cells,
and lower infiltration levels of regulatory T cells (Biswas and
Mantovani, 2010; Chen and Mellman, 2017); in contrast, the
highest infiltration levels of regulatory T-cells and MO macrophage
and lowest infiltration levels of other cell types were found in cluster 3,
which suggested a general immune failure phenotype (Biswas and
Mantovani, 2010; Chen and Mellman, 2017). TME impact on
patient’s OS has been well documented in previous studies; ICI
differences resulted in cluster 1 and cluster 2 patients having a good
prognosis, while patients in cluster 3 had the worst prognosis,
consistent with previous studies (Chen et al., 2019; Li et al., 2019).
These findings suggested that the gene clusters in this study may have
a potential role in more accurate predictions of patient outcomes.

Given the differences in patient prognosis and immune landscape
between gene clusters, it was imperative to quantify the individual
patient ICI patterns for improved outcome prediction. Individual
models based on tumor subtype-specific biomarkers show good
efficacy for HCC (Sia et al, 2017; Kurebayashi et al, 2018). In
this study, potential “subtype biomarkers” were obtained using the
Boruta algorithm and ICI scores were calculated to quantify ICI
patterns. GSEA showed that cancer-related pathways including cell
cycle pathways and RNA degradation pathways were significantly
enriched in the low ICI score group. Recently, preclinical trial reports
show the correlation of gene mutations with tolerance or
immunotherapeutic responses (Rizvi et al, 2015 Rooney et al,
2015). Several genes with significant differences in mutation
frequencies exist between the high and low ICI score subgroups.
All of these play an important role in cancer progression (Mazzoni
and Fearon, 2014; Mantovani et al,, 2019; Wen et al,, 2019; Yang et al,,
2020). Moreover, the highly immunotherapy-sensitive, TMB, was
significantly lowered in patients with lower ICI scores (correlation
0.151). The stratified analysis could independently predict the
prognostic value of ICI scores for TMB. These results implied that
ICI scores and TMB represented different aspects of tumor
immunobiology and ICI scores could indeed predict patient
responses to immunotherapy in conditions independent of TMB.
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The efficacy of ICI scores in predicting immunotherapeutic
responses was further evaluated by multiple methods; TIDE and
subclass mapping analyses showed that patients with higher ICI
scores were more sensitive to anti-PD1 therapy. After evaluating
patients in the anti-PD1 immunotherapy regime in the IMvigor210
cohort, a significant increase in ICI scores was found which validated
the predictive value of patients’ response. These results indicated that
mono-immunotherapy may benefit patients with high ICI scores.

However, the present study has some limitations. The current
results need to be validated for their efficiency in immunotherapy
clinical trials with larger HCC cohorts. This would confirm the utility
of classification for clinical evaluation and decision-making.
Additionally, transcriptomic information was obtained from post-
surgical liver tissues. Thus, the model may not accurately predict
outcomes prior to the onset of HCC. Therefore, a better
understanding of circulating biomarkers released into the
bloodstream from tumor cells and tumor-associated immune cells
is important. Further in vivo and in vitro experiments should
investigate the potential functional and mechanical differences
between the subtypes. Finally, the findings of this study and ICI
scores may apply to other cancers, and these require further studies.

In conclusion, a comprehensive analysis of ICI patterns in HCC
provides a foundational basis for the regulation of anti-tumor/tumor-
promoting immune responses in HCC. These suggested that
differences in ICI patterns correlated with tumor heterogeneity
and therapeutic complexity. Based on this, a practical model for
quantifying individual ICI patterns was proposed, which could
predict the prognosis of HCC patients and identify potential
candidates for developing immunotherapy regimens.
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