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Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and a lack of available
targeted therapies. Therefore, there is an urgent need to identify novel prognostic markers
and therapeutic targets to assist in the diagnosis and treatment of LUSC. With the
development of high-throughput sequencing technology, integrated analysis of multi-
omics data will provide annotation of pathogenic non-coding variants and the role of non-
coding sequence variants in cancers. Here, we integrated RNA-seq profiles and copy
number variation (CNV) data to study the effects of non-coding variations on gene
regulatory network. Furthermore, the 372 long non-coding RNAs (lncRNA) regulated
by CNV were used as candidate genes, which could be used as biomarkers for clinical
application. Nine lncRNAs including LINC00896, MCM8-AS1, LINC01251, LNX1-AS1,
GPRC5D-AS1, CTD-2350J17.1, LINC01133, LINC01121, and AC073130.1 were
recognized as prognostic markers for LUSC. By exploring the association of the
prognosis-related lncRNAs (pr-lncRNAs) with immune cell infiltration, GPRC5D-AS1
and LINC01133 were highlighted as markers of the immunosuppressive
microenvironment. Additionally, the cascade response of pr-lncRNA-CNV-mRNA-
physiological functions was revealed. Taken together, the identification of prognostic
markers and carcinogenic regulatory mechanisms will contribute to the individualized
treatment for LUSC and promote the development of precision medicine.
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BACKGROUND

Lung cancer is the most common cause of cancer-related deaths worldwide (Ferlay et al., 2015),
although our understanding of the pathogenesis and treatment options of lung cancer has improved.
Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell carcinoma, which accounts for
about 40% of lung cancers (Goldstraw et al., 2011). Compared with lung adenocarcinoma (LUAD),
another subtype of non-small cell lung cancer (NSCLC), LUSC has a poor prognosis and lacks
effective clinical drugs (Hirsch et al., 2017). Immune checkpoint blockade (ICB) therapy is a hot spot
in cancer treatment (Yu et al., 2016). However, this treatment only works in a subset of patients for
LUSC and improves the prognosis of patients (Yuan et al., 2021). Currently, histopathological images
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are the main method for clinical diagnosis of lung cancer (Cui
et al., 2020); it is thus necessary to identify novel prognostic
markers and therapeutic targets to assist the clinical treatment
of LUSC.

Long non-coding RNAs (lncRNAs), which is defined as an
ncRNA of at least 200 nucleotides (nt) in length (Wilusz et al.,
2009; Ulitsky, 2016), have been found to play a critical role in the
regulation of gene expression contributing to physiological
function homeostasis, aging, and multiple cancers (Rinn and
Chang, 2012; Schmitt and Chang, 2016). With the development
of high-throughput technologies and comprehensive databases
(Wang et al., 2019a; Wang et al., 2021), the integrated analysis of
multiple omics data to reveal the roles of lncRNAs in tumor
pathogenesis has become the norm. Genetic variation in the
lncRNA region, such as single-nucleotide variation, somatic
mutation, and copy number variation (CNV), may affect the
expression level of the gene and its target genes, which may
contribute to tumor occurrence and development (Wang et al.,
2020). For example, lncRNAs with CNVs drive transcriptional
perturbed functional pathways (Xu et al., 2020), and single-
nucleotide variation in lncRNA regulates cancer-related
pathways through ceRNA mechanism (Zhang et al., 2021).

Immune cells are an important part of the tumor
microenvironment (TME) and have been proven to play an
important role in tumor proliferation and metastasis. For
example, increased abundance of specific T cell subtypes in
cancer tissues is associated with better patient prognosis (Jiang
et al., 2019; van der Leun et al., 2020). Macrophage polarization
plays a critical role in subverting adaptive immunity and
promoting tumor progression (Mantovani et al., 2002).
Exploring the relationship between dysregulated lncRNA and
immune cells is an important direction for deciphering the
carcinogenic mechanism of lncRNA.

Here, we collected RNA-seq profiles and CNV data of 482
tumor samples for LUSC from The Cancer Genome Atlas
(TCGA) (Tomczak et al., 2015) database to identify lncRNAs
whose expression is driven by CNV. Then, Cox and least absolute
shrinkage and selection operator (LASSO) regression analyses
were performed. Prognosis-related lncRNAs (pr-lncRNAs)
driven by CNV were recognized as prognostic markers of
LUSC. Moreover, we comprehensively characterized the
function and regulatory mechanism of pr-lncRNA by
immuno-infiltration and functional enrichment analysis.

METHODS

Data Collection and Pre-Processing
The RNA-seq profiles (482 tumor samples), CNV data (570 tumor
samples), and clinical information of LUSC collected by TCGA
database were downloaded from UCSC Xena browser (https://
xenabrowser.net/). The genome-wide annotation data of GRCH38
V37 including location of lncRNA was collected from the
GENCODE (Frankish et al., 2021) database (https://www.
gencodegenes.org/). The independent non-small cell lung cancer
datasets including GSE37745 and GSE50081 were obtained from
publicly available Gene Expression Omnibus (GEO, available at

https://www.ncbi.nlm.nih.gov/geo/) (Okayama et al., 2012), which
were used for verification of prognostic markers. The data of
lncRNA-immune cell infiltration correlation was collected from
the ImmLnc (Li et al., 2020) database (http://bio-bigdata.hrbmu.
edu.cn/ImmLnc/). Additionally, the signature matrix of 22 types of
immune cell was collected from previous studies (Newman et al.,
2015) for the analysis of immune cell infiltration. For CNV data of
LUSC, the software of GISTIC was used to analyze the CNV of the
entire lncRNA genome, taking the number of copies greater than 1
as the threshold of copy amplification and less than −1 as the
threshold of copy loss. The R package maftools (v2.4.12)
(Mayakonda et al., 2018) was used to observe the distribution
of the G-score of copy amplification and loss in the genome.

Identification of LncRNA Driven by CNV
Based on the copy number profiles for lncRNA, lncRNAs that
have no overlapped segments in more than 50% of patients were
deleted. We grouped patients according to the degree of copy
number variation in a particular lncRNA region, and patients
with copy numbers greater than 1 or less than −1 were assigned to
the group of patients with CNVs, while other patients were
assigned to the control group. Then, the Mann–Whitney U
test was used to test whether the lncRNA expression was
differentially expressed in the group of patients with CNVs
(H0: there was no difference between the group of patients
with CNVs and the control group). We also calculated the
fold change (FC) of each lncRNA between the group of
patients with CNVs and the control group, i.e., FC � mcnv/mc,
where mcnv and mc represent the mean expression of an lncRNA
in the group of patients with CNVs and the control group,
respectively. The lncRNAs with p < 0.01 and |FC| > 0 were
considered to be lncRNAs driven by CNV.

Identification of Prognosis-Related LncRNA
Signature
Based on the lncRNAs driven by CNV, we generated the lncRNA
expressionmatrix. The univariate Cox regression using R package
survival (Guo et al., 2019) was employed to screen for lncRNAs
with expression level significantly associated with patient’s overall
survival (OS) of LUSC patients (the cutoff of p-value was 0.05).
Furthermore, the LASSO regression using R package glmnet
(v4.0-2) (Alhamzawi and Ali, 2018) was used to further screen
for pr-lncRNA driven by CNV (pr-lncRNA-CNV) based on a
more rigorous algorithm. Next, we randomly selected 70% of all
tumor samples as the training set and the remaining as the test set.
The features selected by the LASSO regression were used to fit for
a multivariate Cox risk regression model based on training sets.
The reliability of the Cox risk regression model was validated by
the receiver operating characteristic (ROC) curve, and the area
under curve (AUC) also was calculated. Finally, we defined the
lncRNAs with a p-value <0.05 as the pr-lncRNA signatures,
which significantly contributed to the LUSC patient survival
outcomes. Besides, the nomogram method was used to build a
more intuitive prediction model, and the calibration curve was
used to evaluate the predictive ability of nomograph on the
patient’s 1- and 3-year survival risk.
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Construction of Risk Scoring Model
We used the linear combination of expression values weighted by
the coefficient from the multivariate Cox regression analysis to
calculate the risk score for each patient:

Riskscore(i) � ∑
n

k�1
βkeki,

where n denotes the number of the pr-lncRNAs (n � 9), β was
the coefficient of multivariate Cox regression analysis, and eki
was the expression level of the kth pr-lncRNA expression of
patient i. The median risk score was used as the cut-off to
divide patients into high- and low-risk groups. Then, the
samples of training set and test set were respectively divided
into high-risk and low-risk categories. Additionally,
Kaplan–Meier survival curve (Ranstam and Cook, 2017)
was used to prove the difference of OS between the high-
risk group and low-risk categories, and the bilateral
logarithmic rank test (Guyot et al., 2012) was used to
calculate the statistical significance. The whole pipeline
above was also performed in the independent dataset
[GSE37745 (Botling et al., 2013) and GSE50081 (Der et al.,
2014), Supplementary Table S1] to confirm the robustness
and stability of pr-lncRNAs.

Tumor Immune Microenvironment Analysis
First, the online tool CIBERSORTx (https://cibersortx.stanford.
edu/), which is a method to characterize the cell composition of
complex tissues from the gene expression profile based on
signature matrix, was used to calculate the fraction of immune
cell infiltration abundance. Then, the parameter perm, which is
the number of permutations when calculating the p-value, was set
to the max 1,000, and quantile normalization was disabled. The
function ggboxplot from the ggpubr package visualized the
difference in the abundance of 22 types of leukocytes between
the high- and low-risk groups. Additionally, we identified
immune cells associated with patient prognosis by linking
their abundance to patient’s OS. Besides, the lncRNA–immune
cell type correlation was performed by the ImmLnc.

Construction of CNV-LncRNA-PCG
Network
We first generated the expression matrix of protein-coding genes
(PCGs) to calculate PCGs related to the expression of pr-lncRNA
driven by CNV using Pearson’s algorithm (Bishara and Hittner,
2012). Then, we have defined that gene pairs with a p-value <0.01
and R > 0.3 correlation coefficient have significant correlation in
expression and are co-expressed genes with each other. For PCGs
related to each pr-lncRNA, theMann–WhitneyU test was used to
test whether the PCG expression was differentially expressed
between the group of patients with CNVs and the control group.
Finally, PCGs whose expressions were both differently expressed
between the two groups and correlated with pr-lncRNA’s
expression were collected as signature PCGs. The CNV-
lncRNA-PCG network was visualized using Cytoscape (v3.7.0)
(Shannon et al., 2003).

Functional Enrichment Analysis
PCGs driven by the CNV of each pr-lncRNA were used to
annotate the biological functions of pr-lncRNAs. The
functional enrichment analysis was performed by the online
tool Metascape (Zhou et al., 2019) (http://metascape.org/).

Statistical Analysis
All analyses were conducted using R (v3.6.3) software. The gene
sets enrichment analysis was performed using the Fisher’s exact
test. Log-rank test was used to compare the difference of survival
time between two groups.

RESULTS

Copy Number Amplitude Perturbs the
Expression of LncRNA
Aneuploidy such as CNV is a hallmark of most solid tumors
(including LUSC) (Ried et al., 2019). To explore the role of CNVon
lncRNA in the carcinogenic mechanism of LUSC, we first analyzed
the global characteristics of CNV.Maftool was used to visualize the
copy number amplitude calculated by GISTIC on the whole
genome. We found that there is an obvious copy number
amplification on q26.33 of chromosome 3, p11.23/q24.21 of
chromosome 8, and q.13.3 of chromosome 11 and copy
number deletion on q37.1 of chromosome 2, p25.2 of
chromosome 3, p23.2 of chromosome 8, and p21 of
chromosome 9 (Figure 1A). Next, the copy number amplitude
data was mapped to lncRNA to build copy number profiles, and
lncRNAs with significant copy number amplification and deletion
are defined as candidate lncRNAs (647 lncRNAs) that are used to
link lncRNA expression profiles. We found the characteristics of
the copy number amplitude of lncRNA in LUSC, that is, each
lncRNA with CNV has global amplification or global deletion in
patients (Figure 1B). Therefore, tumor patients were divided into a
group with CNV in the lncRNA and a control group based on
lncRNA copy number profiles. Moreover, lncRNAs tended to
undergo overall copy number amplification in LUSC
(Figure 1B), which is contrary to a previous study suggesting
that copy number deletion pattern of the lncRNAs was widely
observed in various cancer types (Xu et al., 2020). Furthermore, we
identified 372 lncRNAswhose expression levels (FPKM) are driven
by CNV (Figure 1C). Similar with the copy number amplitude
results, most lncRNA expressions were up-regulated in the group
with CNV in the lncRNA. Among them, the significantly up-
regulated lncRNA SOX2-OT driven by CNV has been shown to
regulate the proliferation and metastasis of multiple cancers
through the ceRNA mechanism (Zhang and Li, 2019; Herrera-
Solorio et al., 2021). By annotating the types of lncRNAs driven by
CNV, we found that they were mainly long intergenic non-coding
RNA (lincRNA) and antisense classes (Figure 1D). Taken
together, the CNV feature and CNV-driven lncRNAs for LUSC
were recognized.

The Nine Pr-LncRNAs for LUSC
LncRNA is an emerging biomarker for cancer development and
patient’s prognosis (Bolha et al., 2017). To identify CNV-driven
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FIGURE 1 | A global view of CNV for LUSC. (A) The graph shows the distribution of the copy number amplitude on the genome for LUSC. The ordinate represents
G-score, and the abscissa is the position of 22 homologous chromosomes and two sex chromosomes. (B) The amplification and deletion of lncRNA copy number in

(Continued )
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lncRNAs related to prognosis, we developed a computational
model by combining LASSO regression and Cox regression
models to identify pr-lncRNA. We performed the univariate
Cox and LASSO algorithm to identify 16 lncRNAs that were
significantly related to the patient’s OS. After the construction of
a multivariate Cox regression model, nine lncRNAs including
LINC00896, MCM8-AS1, LINC01251, LNX1-AS1, GPRC5D-AS1,
CTD-2350J17.1, LINC01133, LINC01121, and AC073130.1 were
finally identified as prognostic markers (Figure 2A,
Supplementary Figure S1). For the nine pr-lncRNAs, LNX1-
AS1, AC073130.1, MCM8-AS1, and LINC01251 were treated as
the risk factors for patient’s survival of LUSC, while LINC00896,
GPRC5D-AS1, CTD-2350J17.1, LINC01133, and LINC01121 were
treated as the protective factors. Furthermore, based on the
expression of nine prognostic markers, the nomogram
algorithm was used to construct 1- and 3-year survival
probability prediction models (Figure 2B). Then, the
calibration curve was used to evaluate the predictive
performance of the nomogram, and the result showed that the
nomogram algorithm has a good performance in predicting the
survival risk for the patients of LUSC (Figure 2C). We divide the
1–3-year period into five time points, and the ROC curve was
used to determine the best prediction time point for the risk
prediction model. We found that the risk prediction result
reached the maximum AUC value of 0.73 in 1,095 days
(Figure 2D). All these suggest that the nine pr-lncRNAs can
be used as prognostic markers to predict the survival risk for
patients of LUSC.

Risk ScoreModel Supports the Diagnosis of
Patient Prognosis
To accurately quantify the survival risk of patients, we
constructed the risk score model based on the regression
coefficients calculated by multivariate Cox regression model
and patient’s survival (Guo et al., 2020). The formula of the
risk scoring model was as follows: Risk score � (−0.11 ×
LINC00896 + 0.05 × MCM8-AS1 + 0.04 × LINC01251 + 0.07
× LNX1-AS1 − 0.20 × GPRC5D-AS1 − 0.08 × CTD-2350J17.1 −
0.09 × LINC01133 − 0.06 × LINC01121 + 0.07 × AC073130.1).
Furthermore, the samples of training and test sets were
respectively divided into the high- and low-risk groups based
on the median risk score. We found that there was an obvious
expression difference of pr-lncRNAs between the high- and low-
risk categories (Figure 3A), and the samples with high-risk score
have poor prognosis (Figure 3B). Moreover, the high-risk
samples in test sets also exhibited an association with poorer
OS of LUSC (Figure 3C,D). All these suggest that the risk score
can quantify the prognosis of patients and provide convenience
for clinical diagnosis. Using the online analysis tool of GEPIA
(Tang et al., 2019), we found that the high expression of single

genes GPRC5D-AS1 and LINC01133 is associated with better
patient prognosis (Figure 3E,F), which was consistent with the
result in this study, suggesting GPRC5D-AS1 and LINC01133 as
protective factors for patient’s OS. Besides, LNX1_AS1 has been
reported as the poor prognosis marker for non-small cell lung
cancer (Wang et al., 2019b) in previous studies. The evidence
further emphasized that pr-lncRNAs may play an important role
in the progression of LUSC.

Evaluation of the Robustness for Nine
Pr-LncRNA Signatures
To further confirm that the pr-lncRNA signature is a robust
biomarker in LUSC, we collected the expression profiles and
clinical information of two sets (GSE37745 and GSE50081)
including LUSC samples from public databases for prognostic
marker testing. Furthermore, we divided samples fromGSE37745
series into high-risk group (n � 33 LUSC samples) and low-risk
group (n � 33 LUSC samples) based on median risk score. We
found that only six pr-lncRNAs were detected in the microarray
matrix, and the risk score distribution, survival status, and
lncRNA expression of all patients were consistent with those
observed in TCGA cohort (Figure 4A). There is a significant
difference in the OS between the two groups, and the risk score
was also identified as a poor prognosis marker (p � 0.018)
(Figure 4B). In the set of GSE50081 series, 45 patients of
LUSC were divided into high-risk group (n � 22) and low-risk
group (n � 23). The results of log-rank test also showed that the
risk score was significantly correlated with OS (Figure 4C,D). All
these further supported that the pr-lncRNA signature was a
robust prognosis indicator in LUSC.

Immune Cell Components Regulated by
Pr-LncRNAs Support Tumor Progression
To investigate the effect of the nine pr-lncRNAs in the tumor
immune microenvironment, we first identified the abundance of
immune cell infiltration for TCGA cohort using the
CIBERSORTx tool. The LUSC samples of TCGA cohort were
divided into two groups based on the risk score of each sample,
and the statistical difference in the infiltration abundance of 22
types of leukocytes between the two groups was calculated. We
found that the infiltration abundance of multiple immune cells is
significantly different in the high- and low-risk groups
(Figure 5A). For example, the infiltration abundance of
memory CD4+ T cells was up-regulated in the high-risk
group, the infiltration abundance of macrophage M0 was up-
regulated in the high-risk group, and the infiltration abundance of
resting dendritic cells was down-regulated in the high-risk group.
By combining with the patient’s survival information, we found
that the infiltration abundance of the three cell types [resting

FIGURE 1 | tumor samples are displayed by a heat map. Yellow indicates copy number amplification, blue indicates copy number deletion, and white indicates no CNV
has occurred. (C) The expression difference of the candidate lncRNA between the group with CNV in the lncRNA and the control group is shown by a volcano graph. Red
dots indicate up-regulation, and green dots indicate down-regulation. (D) The pie chart shows the proportion of various types of CNV-driven lncRNAs. Different colors
represent specific lncRNA types. CNV, copy number variation; LUSC, lung squamous cell carcinoma; lncRNA, long non-coding RNA.
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FIGURE 2 | Identification of prognostic markers for LUSC. (A) The error bar graphs are used to show the correlation between the expression level of lncRNA and
the patient’s overall survival (OS). The abscissa represents the hazard ratio (HR) value with the 95% confidence interval. (B)Nomogram for survival risk prediction of 1 and
3 years. The nine prognostic markers are marked by a star. Additionally, *p < 0.05, **p < 0.01, ***p < 0.001. (C) The calibration curve of the nomogram. (D) The predictive
performance of the survival predictive model at five time points from 1 to 3 years. The different colored curves represent specific time points.
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FIGURE 3 | Construction of risk scoring model. (A) Risk scores, survival status, and the expression of nine prognosis-related lncRNAs (pr-lncRNAs) for the training
set. (B) The Kaplan–Meier curves for the two groups in the training set. Log-rank test is used to calculate statistical significance. The unit of time is days. (C) Same as in (A)
but for the testing set. (D) Same as in (B) but for the two groups in the testing set. (E–F) The Kaplan–Meier curves for survival in groups with high and low expression
(FPKM) of lncRNA GPRC5D-AS1 and LINC01133.
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dendritic cells, resting natural killer (NK) cells, and macrophage
M0] were significantly related to the patient’s prognosis
(Figure 5B–D). High infiltration abundance of resting
dendritic cells was associated with better patient prognosis
(Figure 5B), which is consistent with the phenomenon of low
expression of resting dendritic cells in high-risk samples. We
found that the expression abundance of resting NK cells can be
used as a poor prognostic marker (Figure 5C), which may be due
to the low solubility of resting NK cells to target cells (Bryceson
et al., 2006). Moreover, the high fraction of macrophage M0 was
significantly associated with poor patient prognosis (Figure 5D),
which is consistent with a previous study suggesting that
macrophage polarization plays a key role in promoting tumor
progression (Mantovani et al., 2002). These suggest that the
infiltration of these immune cell types could support tumor
progression. Furthermore, we systemically analyzed the
correlation between pr-lncRNA expression and immune cell
infiltration abundance. For the pr-lncRNAs, AC073130.1,

GPRC5D-AS1, and LINC01133 exhibited significant
associations with multiple immune cells, i.e., CD4+ T cell,
CD8+ T cell, dendritic cell, macrophage, and neutrophil,
suggesting that the three pr-lncRNAs may be immune-related
lncRNAs for LUSC (Figure 5E). We also found that the pr-
lncRNA GPRC5D-AS1 showed negative correlations with the
expression levels of major histocompatibility complex I (MHC
I) and MHC II (Figure 5F and Supplementary Figure S2A) that
assist in tumor cell recognition and antigen presentation (Lauss
et al., 2017), indicating that a high expression of GPRC5D-AS1
may reduce tumor immunogenicity.

The Cascade of Pr-LncRNAs Regulates the
Carcinogenic Mechanisms for LUSC
To better understand the biological functions and regulatory
mechanisms of pr-lncRNA-CNV, we explored the pr-lncRNA-
mRNA regulatory mode. In determining the regulatory

FIGURE 4 | Verification of prognostic markers in public data. (A) The expression pattern of lncRNA and survival status and risk scores of LUSC patients for
GSE37745 series. (B) Kaplan–Meier curve of two groups (high-/low-risk score) for GSE37745 series. Log-rank test is used to calculate statistical significance. The unit of
time is days. (C) The same as in (A) but for GSE50081 series. (D) Kaplan–Meier curve of two groups (high-/low-risk score) for GSE50081 series. The unit of time is days.
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FIGURE 5 | The analysis of the relationship between pr-lncRNAs and tumor immune activity. (A) The infiltration abundance of 22 types of leukocytes between the
high- and low-risk groups is displayed by a boxplot. The p-values were calculated by the Mann–Whitney U test. (B–D) Kaplan–Meier curve of the two groups (high-/low-
infiltration abundance) for resting dendritic cells, resting natural killer (NK) cells, and macrophage M0. Log-rank test is used to calculate statistical significance. (E) The
bubble chart shows the correlation between the infiltration abundance of the six immune cells and the expression of pr-lncRNA. (F) The relationship between the
expression of genes encoding major histocompatibility complex I (MHC I) molecules and that of pr-lncRNAs is displayed by a heat map. The stronger the correlation, the
darker the color.
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relationship of lncRNA-mRNA, we required the co-expression
of lncRNA and mRNA, and mRNA was expressed significantly
different between the CNV group and the control group as
determined by the lncRNA. We identified 183 lncRNA-mRNA
regulatory axes containing four pr-lncRNAs (GPRC5D-AS1,
LINC00896, LINC01121, and LINC01133) and 167 mRNAs to
construct the pr-lncRNA-mRNA network (Figure 6A).
Furthermore, a series of lncRNA-CNV gene cascade reactions
were proposed, and the physiological functions of its regulation
were analyzed. The lncRNA GPRC5D-AS1 with CNVs driving
the dysregulation of downstream cancer genes such as PRKCI,
SEM1, TBL1XR1, IMPACT, and RPL22L1 further disturbed the
activities of NOTCH signaling pathway that is usually

inactivated in LUSC (Katoh and Katoh, 2020) (Figure 6B,C).
Similarly, the lncRNA LINC01133 may regulate the activity of
tumor suppressor pathways by dysregulating ACTL6A,
SMARCD2, SMO, PHC3, and CENPP (Figure 6B,D). It is
worth noting that LINC01133 has been shown to be closely
related to the invasion and malignant proliferation of human
non-small cell lung cancer (Zhang et al., 2020; Geng et al., 2021).
The lncRNA LINC00896 is associated with copy number
variation syndrome by regulating the corresponding target
gene (Supplementary Figure S2B). Taken together, all these
results provide novel insights for understanding the function of
lncRNA-CNV and the pathogenesis based on these
lncRNA-CNV.

FIGURE 6 | The cascade response of pr-lncRNA-CNV-mRNA carcinogenic mechanism. (A) pr-lncRNA-mRNA regulatory network showing the dysregulation of
functional genes driven by lncRNA-CNV. The green hexagon represents lncRNA, and the yellow square represents mRNA. (B) Four (lncRNA-CNV) gene cascade
responses. The heat map combination includes the copy number and the expression of lncRNA-related genes for the four pr-lncRNAs. The first row of each combination
represents the copy number amplitude of lncRNA, and the second row represents the copy number amplification and deletion of lncRNA. (C–D) The enrichment
results for genes related to lncRNA GPRC5D-AS1 and LINC01133 are displayed by bar graphs, colored by p-values.
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DISCUSSION

In this study, we integrated multiple omics data to identify the
prognostic-related lncRNAs driven by CNV and define the
cascade response of lncRNA-CNV-mRNA carcinogenic functions.
Based on the principle of CNVdysregulated gene expression, we have
identified 372 lncRNAs whose expression levels vary with copy
number amplitude. Through the combined Cox regression
algorithm and LASSO algorithm, nine CNV-driven lncRNAs were
identified as prognostic markers. Immune cell infiltration analysis
revealed the composition of the immune microenvironment for
LUSC and the leukocytes associated with the patient’s survival
risk. Moreover, the correlation between the nine pr-lncRNAs and
immune cell types has been revealed, emphasizing the important role
ofAC073130.1,GPRC5D-AS1, and LINC01133 in immune disorders.
We next identified mRNAs driven by lncRNA-CNV and defined the
function of lncRNAwithCNV,which highlight the novelmechanism
of non-coding RNA with CNV driving oncogenic function in LUSC.

In the past decades, with the development of high-throughput
sequencing dataset and technologies (Yu et al., 2018; Yu et al., 2021),
the integrated analysis ofmultiple omics data to reveal the pathogenesis
of cancer has become the norm. For example, Zheng et al. (2020)
identified three lncRNA prognostic characteristics of ovarian cancer
based on genome-wide CNV. Although this study is also based on
genome-wide CNV to identify prognostic-related lncRNA, it did not
reveal the functions and regulatory mechanisms of pr-lncRNA. The
analysis of pr-lncRNA’s involvement in tumor immune infiltration and
carcinogenic function cascade is an important feature of this study.

The lncRNAs GPRC5D-AS1 and LINC01133 were emphasized in
this study as prognostic markers that play an important role in
immune cell infiltration and carcinogenic mechanisms. The
expression levels of GPRC5D-AS1 and LINC01133 were negatively
correlatedwith the infiltration ofmultiple immune cells (CD4+/CD8+

T cell, dendritic cell, and neutrophil), suggesting that a high
expression of GPRC5D-AS1 and LINC01133 can inhibit cell
infiltration. This provides novel therapeutic target for the
development of immune checkpoint therapy.

In summary, we provided prognostic-related lncRNA driven
by CNV for LUSC and revealed the regulatory mechanism of

lncRNA-CNV-mRNA oncogenic function. By revealing the
function of pr-lncRNA, potential targets that can be used for
immunotherapy have been identified. Taken together, our
research provides useful theoretical guidance for the clinical
diagnosis and treatment for LUSC.
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