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Aim: This study aimed to accurately identification of potential miRNAs for gastric cancer
(GC) diagnosis at the early stages of the disease.

Methods: We used GSE106817 data with 2,566 miRNAs to train the machine learning
models. We used the Boruta machine learning variable selection approach to identify the
strongmiRNAs associated with GC in the training sample. We then validated the prediction
models in the independent sample GSE113486 data. Finally, an ontological analysis was
done on identified miRNAs to eliciting the relevant relationships.

Results: Of those 2,874 patients in the training the model, there were 115 (4%) patients
with GC. Boruta identified 30 miRNAs as potential biomarkers for GC diagnosis and hsa-
miR-1343-3p was at the highest ranking. All of the machine learning algorithms showed
that using hsa-miR-1343-3p as a biomarker, GC can be predicted with very high precision
(AUC; 100%, sensitivity; 100%, specificity; 100% ROC; 100%, Kappa; 100) using with the
cut-off point of 8.2 for hsa-miR-1343-3p. Also, ontological analysis of 30 identifiedmiRNAs
approved their strong relationship with cancer associated genes and molecular events.

Conclusion: The hsa-miR-1343-3p could be introduced as a valuable target for studies
on the GC diagnosis using reliable biomarkers.

Keywords: miRNA, machine learning, boruta algorithm, gastric cancer, hsa-miR-1343-3p, AUC, GSE106817,
GSE113486

INTRODUCTION

Gastric cancer (GC) is a significant global health issue due to being the fifth leading cancer worldwide
as well as the third cancer-related death leading cause, which leads to nearly 8,00,000 deaths annually
(Bray, 2018). Morbidity and mortality due to GC have reduced in recent years, though the rate of 5-
year survival is still fairly low (Howlader, 2014). A significant prognostic factor is the stage of cancer
at the diagnosis time. The 5-year survival of GC patients is below 30% if the disease is diagnosed at
the advanced stages (Hundahl et al., 2000), while the 5-year survival of patients ranges between 70
and 90% if diagnosed at the early stages (Choi, 2015). Thus, GC will remain among the toughest
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challenges for physicians and researchers for so long since GC is
not symptomatic until the advanced stages; this is why effective
screening approaches for the early detection of GC are mandatory
to overcome GC mortalities (Penon et al., 2014). Presently,
gastroscopy is yet the standard test to diagnose GC (Veitch
et al., 2015). Nonetheless, this screening approach is invasive
and costly. Furthermore, minimally invasive or non-invasive
markers, including carcinoembryonic antigen (CEA) and
carbohydrate antigen 19-9 (CA19-9) have been commonly
used clinically, though these markers are neither specific nor
sensitive enough for GC early diagnosis (Carpelan-Holmström
et al., 2002). Due to non-specific symptoms and the absence of an
early diagnosis, a great number of patients with GC are diagnosed
at the advanced stages (Hundahl et al., 2000; Hartgrink et al.,
2009). Thus, cost-effective and non-invasive biomarkers are
immediately required for the early diagnosis of GC.

Recent genome analysis revealed several biomarkers which are
related to RNA, DNA, exosome, et cetera. A class of endogenous
non-coding RNAs is MicroRNAs (miRNAs) (nearly 22 nt) which
module the expression of the gene after transcription through
degradation or translation blockage of target mRNAs (Bartel,
2004; Caldas and Brenton, 2005). It is well-known that cancer
cells may release miRNAs via exosomes to enhance proliferation
and migration (Li, 2018; Yoshimura, 2018; Zeng, 2018). The
exosomal miRNAs released into biofluids, including serum,
plasma, tear, urine, and gastric juice, may escape being
degraded by RNases (Gilad, 2008). Moreover, miRNAs have
been suggested as potential biomarkers which may be used to
diagnose several types of cancers, including testicular germ cell
tumors (using miRNA-371a-3p: specificity 94.0% and sensitivity
90.1%) (Dieckmann, 2019), bladder cancer (using 7-miRNA
panel: specificity 87% and sensitivity 95%) (Usuba, 2019a),
and hepatocellular carcinoma (using miR-424: specificity
87.13% and sensitivity 95.12%) (Lin, 2015), and lung cancer
(Aftabi, 2021). Moreover, several studies reported that
numerous miRNAs might be potentially used as biomarkers
for GC diagnosis (Zhou, 2010; Cui, 2013; Su, 2014).
Nonetheless, most of the miRNA biomarkers are not developed
using comprehensive data mining according to miRNA profiling,
and even they lack proper external efficacy validation (Link and
Kupcinskas, 2018; Wei, 2019). Instead, recently, Artificial
intelligence Technology (AT) usage in the field of microarray
Data has attracted more attention. The disadvantage of the
conventional statistical models, including logistic regression, was
that they excluded the possible interaction terms and highly
correlated variables; thus, they might lose a part of useful
information, which might decrease their accuracy, specifically in
the case of high dimensional miRNA data analysis (Alpaydin,
2020). Furthermore, the traditional models are not able to capture
variables’ non-linear associations (James et al., 2013; Gilani et al.,
2017; Gilani et al., 2019). Instead,Machine Learning (ML) is able to
deal with non-linear structures as well as detecting all the possible
interactions whichmay exist between predictors (Gilani et al., 2018;
Wiemken and Kelley, 2020).

Machine learning has several algorithms of which the decision
trees (DT), random forests (RF), extreme gradient boosted trees
(XGBT), and artificial neural networks (ANN) that have been

frequently applied in medicine (Cleophas and Zwinderman, 2015;
Deo, 2015), particularly in prediction of cancer (DeGregory, 2018;
Fakhari et al., 2019). Random forest is a tree-based classification
algorithm, and as the name indicates, the algorithm creates a forest
with a huge number of trees. It is an ensemble algorithm that
combines multiple algorithms. The random forest creates a set
of decision trees from a random sample of the training set. It
repeats the process with multiple random samples and makes a
final decision based on majority voting (Zhou, 2012). Briefly,
gradient boosted trees combine multiple classification trees into
an additively weighted classifier. Boosting refers to the method
where sequentially ascertained trees were trained, meaning each
observation was weighted by its error obtained by minimizing the
appropriate loss of function in the previous iteration. In this way,
boosting is a gradient descent algorithm (Christensen and Bastien,
2016) and forces the classifier to focus on aspects of the data that
are difficult to learn (Hastie et al., 2009).

Artificial neural networks have been broadly used in medical
studies (Darsey et al., 2015; DeGregory, 2018; Shahid et al., 2019).
Such models perform satisfactorily, especially for classification
problems with complex and non-linear associations between
variables (Hastie et al., 2009). Briefly, artificial neural networks
are based on a collection of artificial neurons, which receive and
process inputs (predictors), transmit them to other artificial
neurons, and produce an output (Zhou, 2012).

Considering the important role of GC early diagnosis in
patient’s survival rate and the lack of published article on
identifying potential miRNAs for GC prediction at an early
stage by AT, the present study aims to identify the potential
miRNA for predicting GC by AT in the datasets of Gene
Expression Omnibus (GEO) specifically with the stat of the art
machine learning models. Traditional statistical models such as
linear models previously has been used in looking for GC
biomarkers and identified miRNAs with the potential
prediction power (Yao, 2020), however, they have not
implemented advanced methods such as machine learning and
new variable selection approaches such as Synthetic Minority
Oversampling Technique (SMOTE). In the present study, for the
first time, we aimed to use those new techniques for identification
of GC related miRNAs with a reliable cut-of and highest possible
accurecy in the external validation.

METHODS

The Applied Datasets
For training sample, we used GSE106817 dataset that is
available at https://www.ncbi.nlm.nih.gov/geo/. The dataset
consist of the data of 2,566 miRNAs obtained from 2,759 non-
cancer controls, and 115 GC cases (4%). In the original study
the serum samples of cancer cases and non-cancer controls
have been analyzed by microarray for miRNA expression
profiles (Yokoi, 2018). For test sample we used GSE113486
dataset, which includes data of miRNA expression profiles
from the serum samples of 40 GC cases (28.6%) and 100
normal controls (71.4%) (Usuba, 2019b). All the datasets
were serum miRNA profiles based on the same microarray
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platform, 3D-Gene Huma miRNA V21_1.0.0 (39). The study
was approved by the NCCH Institutional Review Board
(2015-376, 2016-29) and the Research Ethics Committee of
Medical Corporation Shintokai Yokohama Minoru Clinic
(6019-18-3772). Written informed consent was obtained
from each participant (42). This study was approved by
the Ethics Committee of Tabriz University of Medical
Sciences (No: IR. TBZMED.REC.1400.006).

Boruta Machine Learning Algorithm
We used the Boruta machine learning algorithm to select the
most critical miRNAs related to GC in the training sample
that produce the highest prediction accuracy. In short, Boruta
selects the variables that have a high impact on the prediction
accuracy by providing the “variable importance” (Kursa and
Rudnicki, 2018). We used SMOTE random oversampling to
balance the outcome in the GSE106817 data. We then used
five-fold cross-validation to find the optimal hyper
parameters on DT, RF, LR, XGBT, and ANN to choose the
best approaches in the balanced sample using the most
important variables selected by Boruta. Once the
prediction models were developed, we applied them on the
test sample GSE113486 to verify the accuracy of developed

prediction approach. We looked for an algorithm that may
generate a higher predictive power among the 5 ML
algorithms in terms of the yielded areas under the ROC
curves (AUCs). Sensitivity, specificity, positive predictive
value, negative predictive value, misclassification rate, and
Kappa were assessed. The guidelines of developing
transparent multivariable prediction models was followed
for these analysis (Moons, 2015).

GeneCodis Ontological Analysis
GeneCodis is a web-based tool for the ontological analysis of lists
of genes, proteins, and regulatory elements like miRNAs,
transcription factors, and CpGs. It can be used to determine
biological annotations or combinations of annotations that are
significantly associated to a list of genes under study with respect
to a reference list. As well as single annotations, this tool allows
users to simultaneously evaluate annotations from different
sources, for example GO Biological Process and KEGG. To
this end, and before computing p-values, it uses the apriori
algorithm to extract sets of annotations that frequently co-
occur in the analyzed list of genes (Garcia-Moreno, 2021). We
used GeneCodis 4 (https://genecodis.genyo.es/) for ontological
analysis of the identified miRNAs list.

TABLE 1 | Selected important miRNAs by Boruta Algorithm Using XGboost Algorithm.

No miRNA Importance Se (%) Sp (%) PPV (%) NPV (%) AUC (%) Accuracy
(%)

Kappa
(%)

1 hsa-miR-1343-3p 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.00
2 hsa-miR-1290 80.39 92.50 98.00 94.87 97.03 99.05 96.43 0.96
3 hsa-miR-5100 80.11 100.00 99.00 97.56 100.00 99.23 99.29 0.99
4 hsa-miR-6746-5p 64.57 100.00 93.00 85.11 100.00 97.23 95.00 0.95
5 hsa-miR-4532 64.85 67.50 100.00 100.00 88.50 95.11 90.71 0.91
6 hsa-miR-8073 61.79 97.50 100.00 100.00 99.01 100.00 99.29 0.99
7 hsa-miR-1228-5p 56.24 97.50 100.00 100.00 99.01 100.00 99.29 0.99
8 hsa-miR-1199-5p 54.12 62.50 97.00 89.29 86.61 92.56 87.14 0.87
9 hsa-miR-

3622a-5p
54.49 80.00 99.00 96.97 92.52 97.26 93.57 0.94

10 hsa-miR-8060 53.75 85.00 98.00 94.44 94.23 98.79 94.29 0.94
11 hsa-miR-1246 50.42 92.50 100.00 100.00 97.09 99.90 97.86 0.98
12 hsa-miR-4787-3p 50.32 90.00 100.00 100.00 96.15 98.75 97.14 0.97
13 hsa-miR-6087 49.68 22.50 88.00 42.86 73.95 62.70 69.29 0.69
14 hsa-miR-4259 47.55 90.00 98.00 94.74 96.08 99.04 95.71 0.96
15 hsa-miR-6877-5p 46.90 92.50 94.00 86.05 96.91 97.73 93.57 0.94
16 hsa-miR-124-3p 45.42 92.50 94.00 86.05 96.91 96.81 93.57 0.94
17 hsa-miR-6787-5p 45.14 87.50 99.00 97.22 95.19 99.70 95.71 0.96
18 hsa-miR-4454 45.05 95.00 98.00 95.00 98.00 98.10 97.14 0.97
19 hsa-miR-6760-5p 45.42 90.00 94.00 85.71 95.92 98.58 92.86 0.93
20 hsa-miR-668-5p 45.24 77.50 98.00 93.94 91.59 96.44 92.14 0.92
21 hsa-miR-6762-5p 42.09 45.00 92.00 69.23 80.70 88.94 78.57 0.79
22 hsa-miR-3191-3p 40.43 75.00 94.00 83.33 90.38 93.48 88.57 0.89
23 hsa-miR-1268b 39.32 70.00 94.00 82.35 88.68 93.91 87.14 0.87
24 hsa-miR-1185-

2-3p
39.13 30.00 87.00 48.00 75.65 53.88 70.71 0.71

25 hsa-miR-6131 38.30 87.50 98.00 94.59 95.15 99.21 95.00 0.95
26 hsa-miR-920 38.39 87.50 96.00 89.74 95.05 98.26 93.57 0.94
27 hsa-miR-4635 38.02 77.50 98.00 93.94 91.59 95.38 92.14 0.92
28 hsa-miR-6724-5p 37.28 45.00 81.00 48.65 78.64 74.35 70.71 0.71
29 hsa-miR-1185-

1-3p
37.19 20.00 85.00 34.78 72.65 54.70 66.43 0.66

30 hsa-miR-422a 38.02 55.00 87.00 62.86 82.86 72.94 77.86 0.78
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FIGURE 1 | Boxplot of the selected miRNA from Boruta Algorithm. (A), hsa-miR-1228-5p; (B), hsa-miR-8073; (C), hsa-miR-6746-5p; (D), hsa-miR-5100; (E),
hsa-miR-4532; (F): hsa-miR-1343-3p; (G), hsa-miR-1290.
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RESULTS

Of those 2,874 patients included in this study, there were 115
(4%) patients with gastric cancer. This analysis consists of 2,566
miRNAs.

Selected miRNAs as Potential GC
Biomarkers
Of those 2,566 miRNA in GSE106817 data, the Boruta
algorithm initially selected 108 miRNA using Gini Index
measurement (results are not shown here). The processing
time was 17.24 minuts There were 77 tentative variables at the
first stage. After fixing the tentative features, Boruta identified
156 miRNA for the analysis (results are not shown here). The
process took 99 iterations convergence. It was observed that
hsa-miR-1343-3p had the highest importance for prediction
accurecy (minimum importance; 6.47, median importance;
11.44, mean importance; 10.81; maximum importance; 13.63)
among all identified miRNAs. The hsa-miR-1290 and hsa-
miR-5100 had the second and third highest importance, with
mean importance of 8.69 and 8.66, respectively (Table 1).

The balanced training data using SMOTE random
oversampling technique had 1,376 cancer cases and

1,498 non-cancer controls. We trained DT, RF, LR, XGBT,
and ANN perdition models with the selected miRNAs in the
balanced training data.

Prediction Models and Accuracy in the
Validation Data
The external validation data GSE113486 had 40 (28.6%) gastric
cancer and 100 (71.4%) non-cancer (controls). hsa-miR-1343-3
produced the highest prediction accuracy for GC prediction
(Table 1). For the hsa-miR-1343-3, all of the accuracy
measures including AUC, sensitivity and specificity, positive
predictive value, negative predictive value, Kappa were 100%.
According to the decision trees, the cut-off point for this miRNA
was 8.2 (Figure 1). Further, hsa-miR-8073 and hsa-miR-1228-5p
produced 100% AUC but other accuracy measures were not
100%. On the other hsa-miR-1185-1-3p had the lowest AUC
which has the least contribution to the prediction of GC.

Among several models discussed in the study, the XGBT
algorithm had better prediction accuracy overall (Table S1-S4).
However, for hsa-miR-1343-3 all models had consistently 100%
accuracy which indicates that this miRNA may strongly predict
GC. For some miRNA such as hsa-miR-422a XGBT algorithm
could predict GCwith higher accuracy than the logistic regression

FIGURE 2 | Correlation plot of the selected miRNAs. Dark blue and dark red shows the strength of the correlations between miRNAs.
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and decision trees. Figure 2 shows the correlation of the
important miRNAs. It can be observed that most of the
identified miRNAs except hsa-miR-422a, hsa-miR-1185-1-3p,
hsa-miR-1185-2-3p, hsa-miR-6087, and hsa-miR-1199-5p are
highly correlated. Consequently, clustering of correlated those
miRNAs is helpful for the identification of cancerous and non-
cancerous patients. Finally, Heatmap plot indicates the result of
the hierarchical clustering analysis of the 30 selected miRNAs,
which represents that identified miRNAs can easily distinguish
GC cases and controls in test sample obtained from GSE113486
dataset (Figure 3).

Ontological Analysis
Regulatory, functional, and perturbation analysis by
GeneCodis 4 showed that 30 identified miRNAs (Table 1)
are related strongly to the cancer-associated genes and
molecular events (Figure 4). Visualizations generated for
10 top terms of associations with Transcription Factors
(Figure 4A), co-annotation of HMDD v3 (the Human
microRNA disease database), MNDR (Mammalian ncRNA-
Disease Repository), and TAM2 (The tool for annotations of
human miRNAs) databases (Figure 4B), GO (Gene Ontology
and GO Annotations) Biological Process (Figure 4C), GO
Molecular Function (Figure 4D), co-annotation of KEGG
(Kyoto Encyclopedia of Genes and Genomes) Pathways,
Panther (Protein ANalysis THrough Evolutionary
Relationships) Pathways, and WikiPathways (Figure 4E),
and co-annotation of HPO (The Human Phenotype

Ontology) and OMIM (Online Mendelian Inheritance in
Man) databases (Figure 4F).

DISCUSSION

Using artificial intelligence technology, we identified hsa-miR-
1343-3 as a very strong nominate for biomarker analysis of GC
diagnosis. The value of hsa-miR-1343-3 higher than 8.2 indicates
that it could be a strong predictor for GC (100% of AUC, 100% of
Sensitivity and Sepecificity). We also found three other miRNAs
(hsa-miR-8073 and hsa-miR-1228-5p) with a great contribution
to the GC prediction. A medical expert can use these findings for
the early detection of GC instead of using costly and time-
consuming tools such as colonoscopy Yao et al. (Yao, 2020).

This study had several strengths compared to the previous
studies. Compared to Shi et al. that identified the miR-1246 as the
potential biomarker of GC that generated the AUC of 83%, our
study identified the hsa-miR-1343-3p using the Boruta algorithm
that led to a significant increase in the AUC (Shi and Zhang,
2019). The study of Yao et al., selected three miRNAs that
produced similar precision to our study that using only single
miRNA that may have economical merits. Further, their study
used a limited sample size (70 gastric cancer patients and
374 non-cancer controls) in the training set that may lead to
an inferior model. The current study used very advanced variable
selection methods and the state of the art machine learning
approaches that produced consistent results. Another merit of

FIGURE 3 | Heathmap plot of clustering of 30 selected miRNAs.
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the study is introducing a simple cut-off point of 8.2 using
decision trees that may has very practical value in GC
classification.

Figure 4A depicted that among the transcription factors
related to the genes associated with the identified miRNAs list
(Table 1) the SP1, MYC, and E2F1 have higher priorities. SP1
protein expression is up regulated in GC tissues compared with
normal tissues and is positively associated with depth of invasion
and TNM stage of GC (Shi and Zhang, 2019). MYC is an

oncogene responsible for excessive cell growth in cancer,
enabling transcriptional activation of genes involved in cell
cycle regulation, metabolism, and apoptosis, and is usually
overexpressed in GC (Maués, 2018). E2F1 is a member of the
E2F family that functions in cell cycle progression and apoptosis
induction in response to DNA damage. Deregulated E2F1 acts as
a driving force in GC progression and promotes tumor invasion
and metastasis independently from its other cellular activities
(Yan, 2014).

FIGURE 4 | GeneCodis Ontological analysis. Visualizations generated for 10 top terms of related categories with our identified miRNAs list are presented here for
Transcription Factors (A), Co-annotation of miRNAs-based analysis using HMDD v3, MNDR, and TAM2 (B), GO Biological Process (C), GOMolecular Function (D), Co-
annotation of KEGG Pathways, Panther Pathways, and WikiPathways databases (E), and Co-annotation of HPO and OMIM databases (F).
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As depicted in Figure 4B gastrointestinal cancers including
hepatocellular cancer, colon cancer, biliary tract cancer, and
especially early-stage GC are among the most related diseases
to the analyzed miRNAs list. From biological process and
molecular function perspectives as showed in Figures 4C,D,
the regulation of transcription and gene expression, and
protein and DNA binding are the most targeted aspects,
which are the general aspects of molecular biology of GC
(Cervantes et al., 2007; Vauhkonen et al., 2006; Tan and Yeoh,
2015). Co-annotation of three pathway databases (Figure 4E) has
shown that the miRNAs list is general in relation with pathways
in cancer, VEGFA-VEGFR2 signaling pathway and PI3K-Akt
signaling pathway. The increased expression of VEGFA in the
tubular glands and VEGFR2 in the endothelium of GC samples
mainly in the T2, T3 and T4 stages of tumor progression has been
reported previously (Tamma, 2018). Also, it is showed that the
PI3K/AKT/mTOR pathway is activated in GC with
overexpression in tumor tissue, which is correlated with the
depth of tumor infiltration and the presence of lymph node
metastases (Tapia, 2014). Surprisingly, relation with Human
cytomegalovirus infection, which was identified in our
pathway analysis, has been reported to be associated with the
development of GC (Jin, 2014) and GC lymphatic metastasis
(Zhang, 2017).

The analysis of human phenotype and Mendelian inheritance
ontologies identified Autosomal dominant inheritance and
Global developmental delay among the most related
phenomena with our miRNAs list. It is reported that gastric
adenocarcinoma and proximal polyposis of the stomach is an
autosomal dominant syndrome (Worthley, 2012). Also, some
common variants have been described for GC and developmental
delay (Hansford, 2015; Zhang, 2020).

In our study, we have shown theoreticaly that ther is a
strong relationship between hsa-miR-1343-3p and GC. Hsa-
miR-1343-3p has been indicated as a tumor suppressor for
many types of cancer. It has been suggested that miR-1343-
3p, which regulates the oncogenic effect of TEA domain
transcription factors is associated with GC (Zhou, 2017).
The correlation between hsa-miR-1343-3p and lung
adenocarcinoma was evaluated and its expression was
found to be low in patients with vascular invasion (Kim,
2017). Yuan et al. demonstrated that hsa-miR-1343-3p is
consistently down-regulated in colon, prostate, and
pancreatic cancers. Also, hsa-miR-1343-3p has been
proposed as a biomarker to distinguish pancreato-biliary
malignancy from non-malignant diseases. The major genes
targeted by miR-1343-3p have been identified (Yuan, 2016).
In this context, these target genes and their interaction with
GC should also be investigated. The hsa-miR-1343-3p targets
including SHISA7, TGFBR1, DLGAP3, SPRED1, ATXN7L3,
and PLXDC2 genes are listed at MIRDB (http://mirdb.org/).
Among them transforming growth factor beta-1 (TGFβ1)
play an important role in carcinogenesis upon binding its
receptor (TGFBR1). It acts as a tumor suppressor by
inhibiting cellular proliferation or by promoting cellular
differentiation and apoptosis. However, it turns to be a

tumor promoter by stimulating angiogenesis and cell
motility, suppressing the immune response, and increasing
progressive invasion and metastasis (Yuan, 2016). Other
reports have also revealed that hsa-miR-1343-3p reduces
the expression of transforming growth factor-β (TGF-β)
receptor-1, which induces angiogenesis through vascular
endothelial growth factor (VEGF)-mediated apoptosis.
Therefore, hsa-miR-1343-3p may also play an anti-
angiogenic role (Ferrari et al., 2009; Stolzenburg et al.,
2016; Kim, 2017). He et al. determined that TGFBR1
genes’ two polymorphisms (rs334348, rs10512263) were
associated with the risk of GC (He, 2018). In another
study, Zhang et al. have shown that silencing of TGFBR1
inhibited cell proliferation, migration, invasion, and EMT in
GC cells (Zhang, 2019).

Discs large associated proteins (DLGAPs) family has been
implicated in psychological and neurological diseases. However,
few studies have explored the association between the
expression of DLGAPs and different types of cancer. Liu
et al. has suggested that the significant overexpression of
DLGAP4 in GC may be a promising potential prognostic
marker for GC (Liu et al., 2018). Aslo, Liu et al. have
determined decreased expression of SPRED1 in GC tissues
(Liu et al., 2020).

However, there were certain limitations in our study. We
had relatively small sample size in GC group. Other limitations
were the pathological information such as the tumor stage, age
or other factors which were not available in our datasets.
Nonetheless, the prediction accuracy of our model has high
enough (100% AUC) for clinical use. Further, we were unable
to do the survival analysis to further validate the markers
identified in this paper based on public available data
(Howlader, 2014).

CONCLUSION

Using several state of the art machine learning methods and
Boruta algorithm, we identified several miRNAs that can predict
GC. Specifically, hsa-miR-1343-3p, which identified by cut-off
point of 8.2 may be nominated as a highly reliable biomarker for,
GC diagnosis after meticulous empirical tests.
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