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Rice is an important staple food grain consumed by most of the population around the
world. With climate and environmental changes, rice has undergone a tremendous stress
state which has impacted crop production and productivity. Plant growth hormones are
essential component that controls the overall outcome of the growth and development of
the plant. Cytokinin is a hormone that plays an important role in plant immunity and defense
systems. Trans-zeatin is an active form of cytokinin that can affect plant growth which is
mediated by a multi-step two-component phosphorelay system that has different roles in
various developmental stages. Systems biology is an approach for pathway analysis to
trans-zeatin treated rice that could provide a deep understanding of different molecules
associated with them. In this study, we have used a weighted gene co-expression network
analysis method to identify the functional modules and hub genes involved in the cytokinin
pathway. We have identified nine functional modules comprising of different hub genes
which contribute to the cytokinin signaling route. The biological significance of these
identified hub genes has been tested by applying well-proven statistical techniques to
establish the association with the experimentally validated QTLs and annotated by the
DAVID server. The establishment of key genes in different pathways has been confirmed.
These results will be useful to design new stress-resistant cultivars which can provide
sustainable yield in stress-specific conditions.
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INTRODUCTION

Rice (Oryza sativa) is an important food grain crop that is
consumed worldwide (Kubo and Purevdorj, 2004). The human
population is estimated to reach approximately 10.7 billion by
2050 (Speidel, 2000) and accordingly, the demand for
consumption of rice will also increase. On the other hand, the
productivity of rice is not increasing at the same pace due to
various reasons such as poor water management, soil depletion,
abiotic stresses (e.g., drought, flooding, and salinity), biotic
stresses (e.g., damage caused by bacteria, fungi, insects), etc.
(Kumar et al., 2017). Therefore, it becomes necessary to
understand the underlying mechanisms in crops to sustain
production and fulfill the demand of the growing population
(Ma and Michailides, 2007). Plants must be able to react rapidly
with various abiotic and biotic stress signals and develop efficient
defense responses to cope with adverse conditions arising in the
field (Kumar et al., 2015). Understanding the crosstalk
mechanisms in a stress response could help in the
characterization of synergistic and antagonistic mechanisms
(Kim et al., 2021). Plant hormones are the key components of
these defense and adaptation mechanisms. To facilitate the
adaptations to the stresses, various hormonal pathways are
upregulated or downregulated. Change in hormonal influence
usually affects the degree of resistance or susceptibility to different
stresses (O’Brien and Benkova, 2013). Cytokinins (a class of
phytohormones) are central regulators of plant growth and
development. Cytokinins regulate numerous developmental
and physiological processes such as cytokinesis of shoots and
roots, reproductive behavior, leaf senescence, and responses to
environmental cues, particularly to light and nutrients (Haberer
and Kieber, 2002; Werner et al., 2003). Trans-Zeatin (tz) is an
active form of cytokinin involved in managing environmental
stress. Cytokinin pathway has been widely studied and a huge
amount of gene expression data are available in public
repositories (Edgar et al., 2002; Leinonen et al., 2011). These
data can be better utilized for constructing gene regulatory
networks and identifying key genes which will further help in
developing improved rice varieties having the ability to produce
high yield and resistance to such abiotic stress and adverse
conditions (Stuart et al., 2003; Lelandais et al., 2011).

Key genes regulating plant growth and cytokinin responsive
genes involved in development process will help in developing
better stress tolerant varieties (Zhang et al., 2011, 2012; Li et al.,
2019). Co-expression analysis is one of the important ways to
construct such a network and identify the most relevant module
(Heyer et al., 1999; Hudson et al., 2012; Gaiteri et al., 2014). A
statistical approach, Weighted Gene Co-expression Network
Analysis (WGCNA) is an effective way to perform such
analysis (Tang et al., 2016; Che et al., 2018; Wu et al., 2018)
and it has been successfully used previously in identifying
important modules and key hub genes related to rice in
different conditions (Tan et al., 2017; Zhang et al., 2018). This
approach provides an analytical framework for the analysis of
microarray and transcriptomic data and helps in relating the gene
expression to external traits. Based on various co-expression
analysis studies, we found WGCNA as a well-proven approach

for the identification of functional modules and co-expressed
genes from large biological datasets (Kost et al., 2017; Zhang et al.,
2018; Mishra et al., 2021). WGCNA is available as an R package
and works on the principle of “guilt by association” (Langfelder
and Horvath, 2008), that is, a group of genes are more likely to be
associated with each other when they have similar expressions
(Gillis and Pavlidis, 2012; van Dam et al., 2018). It uses an
unsupervised learning method where large-scale data is
clustered by building a tree from bottom to top by connecting
the two nearest branches or genes. Modules are formed using the
hierarchical clustering method and comprised of genes with
similar functions. The modules can be further utilized to
identify the important key genes. These key or hub genes are
centrally connected genes in different modules which are
expected to have an important function and play a critical role
in maintaining overall harmony within the cell and development
of tissue (Sircar and Parekh, 2015).

In this paper, we have performed co-expression analysis on
publicly available microarray data retrieved from the NCBI GEO
database (Edgar et al., 2002; Barrett et al., 2013) for cytokinin-
responsive genes. We have identified novel key genes in each
module using sound statistical approaches of co-expression
analysis. Furthermore, we have done the biological validation
of the novel key genes using well-established and experimentally
validated QTLs (quantitative trait locus) of rice.

MATERIALS AND METHODS

Data Summary
Microarray data related to cytokinin effect on root and leaves of
rice were retrieved from the NCBI GEO database with reference
series GSE6719 (Hirose et al., 2007). In this experiment, roots and
leaves of rice seedlings were treated with trans-zeatin (an active
form of type-A cytokinin hormone) for 30 and 120 min. Three
independent replicate treatments were performed for roots and
leaves at each time point. To identify cytokinin responsive
genes, dimethyl sulfoxide (DMSO) treated roots and leaves
for each time point (30 and 120 min) were used as a control.
Three independent replicates of DMSO treatment were
performed for each organ per time point. Then, the
microarray data were generated by using the Affymetrix
GeneChip® rice genome array which contains probes to
query approximately 48,564 japonica and 1,269 indica
transcripts. There are 24 samples having accession series
(GSE6719). The number of transcripts (features) in the
expression data was 57,381, of which annotation data was
available for only 23,850 transcripts. We have used only the
annotated transcripts for WGCNA-based co-expression
analysis.

Weighted Gene Co-Expression Analysis
To perform the analysis, we first studied the distribution pattern
of grown samples using transcript count data and performed
principal component analysis. Following, uniform distribution
pattern we have used the R package “WGCNA” for constructing
the network (Langfelder and Horvath, 2008). The elements in the
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co-expression matrix are defined as the weighted value
of correlation coefficients. Gene co-expression of a pair
of genes i and j were calculated using Eq. 1 of an unsigned
network:

Aij �
∣∣∣∣∣cor(Ei,Ej)

∣∣∣∣∣
β

(1)

where Ei and Ej consist of expression vector profiles of genes i and
j across multiple samples and Aij is the adjacency of the unsigned
network. Pearson’s correlation coefficient was used to identify the
similarity of genes. The absolute value of correlation is raised to a
power β to create the adjacency matrix. WGCNA emphasizes
high correlation by raising the absolute value of correlation to a

FIGURE 1 | Clustering dendrogram of samples based on their Euclidean distance.

FIGURE 2 | Analysis of network topology for various soft-thresholding powers. The left panel shows the scale-free fit index (y-axis) as a function of the soft-
thresholding power (x-axis). The right panel displays the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis).

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7805993

Mishra et al. Cytokinin Responsive Key Genes in Rice

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 3 |Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with assignedmergedmodule colors and the original module
colors.

FIGURE 4 | Visualization of the eigengenes network representing the relationships among the modules. The top panel shows a hierarchical clustering dendrogram
of the modules based on the dissimilarity score of Ei and Ej given by 1−cor (Ei, Ej). The heatmap in the bottom panel shows the eigengenes adjacency Aij� (1 + cor
(Ei, Ej))/2.
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power β ≥ 1. The correlation network among the genes is built
based on the adjacency matrix. Each gene is considered as a node
and an edge between two genes is built if it passes a set threshold
of co-expression strength. A soft threshold value of 6 was used to
determine the significant edges for connecting pairs of genes.
Furthermore, modules within the networks were identified by
calling the R function “cutreeDynamic” available in the WGCNA
package, which helps in identifying the minimum number of
large modules with a strong association of genes. The function
was applied after identifying the soft threshold of the adjacency
matrix, and cut them respectively to get modules related to
different functions. These identified modules were further used
to identify the key or hub genes responsible for governing specific
biological functions in cell development.

In order to identify the modules that were highly related,
module similarity was quantified by eigengenes correlation (Shi et al.,
2015). The eigengenes of a module are defined as the eigenvector
associated with the first principal component of the expressionmatrix

(Langfelder and Horvath, 2007). Highly related modules were
identified using module significance. Module significance is defined
as the average gene significance of all the genes in the modules to
access the association of a module to the phenotype.

Visualization of Network and Hub Genes
Identification
Various methods have been used for the identification of hub
genes from a large dataset (Bader and Hogue, 2003; Chin et al.,
2014). These methods mainly focused on hub gene
identification, based only on gene connection degrees in the
gene co-expression network. A heat map was generated to
compare the expression pattern across the samples and
assigned different colors to genes with similar values (Zhao
et al., 2014). Genes are interconnected in each module and
possess specific functions. After identifying the most
significant module, identification of key or hub genes was

FIGURE 5 | Visualizing the gene network using a heatmap plot. The heatmap depicts the Topological Overlap Matrix (TOM). The light red color represents low
overlap and progressively darker shades of red represent higher overlap. Blocks of dark colors along the diagonal depict modules. The gene dendrogram and module
assignment are also shown along the left side and the top of the Figure.
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carried out using an R package, “dhga” (Differential Hub Gene
Analysis) (Das et al., 2017).

Gene Annotation and Gene Ontology
Analysis
The annotation of expressed genes was performed using the
Institute for Genomic Research (TIGR) database which

includes information regarding biological processes (BP),
molecular function (MF), and cellular components (CC)
(Ouyang et al., 2007). Furthermore, the identified genes
from identified modules were submitted to the
OryzaExpress database (Hamada et al., 2011) and converted
the ids into probeID (Affymatrix). These ids were subsequently
converted into geneid using DAVID (the database for

FIGURE 6 | Module-trait associations where each row corresponds to a module or eigengene and a column to a trait. Each cell contains the corresponding
correlation and p-value. The table is color-coded by correlation according to the color legend mentioned in the Figure.

TABLE 1 | Identified hub genes with respect to their level of connectivity in the turquoise module.

S.No Hub gene Function/Annotation Locus location Acc. No

1 Os04g0295400 Horcolin/Jasmonate-induced protein, putative,
expressed

LOC4335407/Chr 4, NC_029259.1 (12989808.12993215) AK067477

2 Os03g0425800 uncharacterized LOC4333157 LOC4333157/Chr 3, NC_029258.1 (17780383.17784105) AK100427
3 Os02g0731200 MADS-box transcription factor 57 LOC4330621/Chr 2, NC_029257.1 (30456659.30462758) AY177702
4 Os01g0558800 uncharacterized LOC4324676 LOC4324676/Chr 1, NC_029256.1 (21151568.21155639,

complement)
AK068120

TABLE 2 | Identified hub genes with respect to their level of connectivity in the blue module.

S.No Hub gene Function Locus location Acc. No

1 Os07g0424400 probable cellulose synthase A catalytic subunit 3 [UDP-
forming]

LOC4343049/Chr 7, NC_029262.1 (13741571.13747205,
complement)

AK120236

2 Os02g0511800 uncharacterized LOC4329457 LOC4329457/Chr 2, NC_029257.1 (18343563.18347153,
complement)

AK069817

3 Os08g0505200 uncharacterized LOC4345975 LOC4345975/Chr 8, NC_029263.1 (24986078.24990484) AK067190
4 Os01g0276800 Glucosidase 2 subunit beta LOC4324264/Chr 1, NC_029256.1 (9702711.9709700,

complement)
AK108476
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TABLE 3 | Identified hub genes with respect to their level of connectivity in the brown module.

S.No Hub gene Function Locus location Acc. No

1 Os01g0743600 ATP-dependent protease La domain containing protein,
expressed

LOC4326165/Chr 1, NC_029256.1 (31078612.31088072,
complement)

AK102317

2 Os06g0319800 Os01g0512300 Os01g0512300/Chr 1, NC_008394.3 (18047906.18050788,
complement)

AK107048

3 Os07g0636600 dirigent protein 5 LOC4344033/Chr 7, NC_029262.1 (26445635.26446517,
complement)

AK106022

4 Os05g0128100 uncharacterized LOC4337691 LOC4337691/Chr 5, NC_029260.1 (1652011.1653860) AK108556

TABLE 4 | Identified hub genes with respect to their level of connectivity in the green module.

S.No Hub gene Function Locus location Acc. No

1 Os07g0171300 uncharacterized LOC4342515 LOC4342515/Chr 7, NC_029262.1 (3773297.3779772) AK100663
2 Os03g0610800 serpin-ZXB LOC4333434/Chr 3, NC_029258.1 (23054420.23068346) AK107194
3 Os01g0827600 exocyst complex component EXO70B1 LOC4327525/Chr 1, NC_029256.1 (35412698.35416714) AK122173
4 Os08g0200400 KH domain-containing protein At4g18375 LOC4344900/Chr 8, NC_029263.1 (5810049.5816102, complement) AK067859

TABLE 5 | Identified hub genes with respect to their level of connectivity in the yellow module.

S.No Hub gene Function Locus location Acc. No

1 Os09g0442400 protein GAMETE EXPRESSED 1 LOC4347181/Chr 9, NC_029264.1 (16443693.16448158) AK106970
2 Os08g0522400 putative L-ascorbate peroxidase 6 LOC4346078/Chr 8, NC_029263.1 (2,5971775.25974968, complement) AK065893
3 Os03g0654600 chlorophyll (ide) b reductase NOL, chloroplastic LOC4333604/Chr 3, NC_029258.1 (25520290.25525342, complement) CB669633
4 Os07g0550600 benzyl alcohol O-benzoyltransferase LOC4343545/Chr 7, NC_029262.1 (21854513.21856895) AK109553

TABLE 6 | Identified hub genes with respect to their level of connectivity in the red module.

S.No Hub gene Function Locus location Acc. No

1 Os12g0566000 boron transporter 1 LOC4352546/Chr 12, NC_029267.1 (23248819.23253256) AK100510
2 Os04g0658300 ribulose bisphosphate carboxylase/oxygenase activase,

chloroplastic
LOC4337267/Chr 4, NC_029259.1 (33575149.33579656,
complement)

AK067399

3 Os05g0358200 DNA primase small subunit LOC9267485/Chr 5, NC_029260.1 (17006498.17011733,
complement)

AK073973

4 Os11g0707000 ribulose bisphosphate carboxylase/oxygenase activase,
chloroplastic

LOC4351224/Chr 11, NC_029266.1 (28932976.28936094,
complement)

CB673145

TABLE 7 | Identified hub genes with respect to their level of connectivity in the black module.

S.No Hub gene Function Locus location Acc. No

1 Os11g0491400 uncharacterized LOC4350546 LOC4350546/Chr 11, NC_029266.1 (17379762.17382920) AK068341
2 Os07g0271500 bisdemethoxycurcumin synthase LOC4342896/Chr 7, NC_029262.1 (10018732.10020733) AK109558
3 Os09g0482740 uncharacterized LOC9271634 LOC9271634/Chr 9, NC_029264.1 (18576964.18581257) AK061852
4 LOC4338611 lichenase-2 LOC4338611/Chr 5, NC_029260.1 (18106236.18110996, complement) CB628871

TABLE 8 | Identified hub genes with respect to their level of connectivity in the pink module.

S.No Hub gene Function Locus location Acc. No

1 Os07g0187700 SEC12-like protein 1 LOC4342601/Chr 7, NC_029262.1 (4682485.4687647) AK111777
2 Os05g0568800 bradykinin-potentiating and C-type natriuretic peptides LOC4339650/Chr 5, NC_029260.1 (28310927.28311938) AK059883
3 Os04g0334700 aspartic proteinase-like protein 2 LOC4335504/Chr 4, NC_029259.1 (15623634.15653865, complement) AK120870
4 Os03g0359000 uncharacterized LOC4332880 LOC4332880/Chr 3, NC_029258.1 (13927427.13935150, complement) AK064512

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7805997

Mishra et al. Cytokinin Responsive Key Genes in Rice

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


annotation, visualization, and integrated discovery) (Huang
et al., 2007) for KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway analysis web server to decipher the role of

genes varies from BP, CC, MF, and KEGG pathway analysis
respectively against oryza sativa database and observed in
REVIGO database (Supek et al., 2011). We found the

TABLE 9 | Identified hub genes with respect to their level of connectivity in the grey module.

S.No Hub gene Function Locus location Acc. No

1 Os07g0131600 hexose carrier protein HEX6 LOC4342334/Chr 7, NC_029262.1 (1669273.1671384) AK068296
2 Os03g0704100 probable plastid-lipid-associated protein 4, chloroplastic LOC4333849/Chr 3, NC_029258.1 (28304914.28307925) AK070474
3 Os06g0130400 probable aminotransferase ACS12 LOC4340002/Chr 6, NC_029261.1 (1629690.1633597) AK065212
4 Os03g0322500 14 kDa zinc-binding protein LOC4332685/Chr 3, NC_029258.1 (11672780.11677395) AK121029

FIGURE 7 | Mapped hub genes on different chromosomes.
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involvement of these hub genes by observing the changes in the
expression level of treated and control (normal) conditions
[S1_file].

Validation of Identified Hub Genes
We validated the identified hub genes using in-silico
approach. In the in-silico approach, we identified the
chromosome-wise distribution of the hub genes and
mapped these genes on chromosomes using web server
oryzabase (https://shigen.nig.ac.jp/rice/oryzabase/) (Kurata
and Yamazaki, 2006). Further, we used a statistical
framework approach to test the association of these hub
genes with well-known experimentally validated and
genetically rich QTLs data reported for biotic and abiotic
stress conditions (Jaiswal et al., 2002). We have used an R
package “GSAQ” (https://cran.r-project.org/web/packages/
GSAQ) (Das et al., 2018) for mapping the identified hub
genes with QTLs on respective chromosomes. GSAQ
provides a platform to associate the selected hub genes to
the corresponding overlapped QTL-IDs with their genomic
positions. Furthermore, the identified hub genes were also
validated through pathway analysis.

RESULTS

Weighted Co-expression Network
Construction and Module Identification
Clustering of the samples (Figure 1) suggests that there is no
outlier present in the data. Power β was obtained through two
types of graphs given in Figure 2: 1) soft threshold values of β
(x-axis) vs scale-free topology model fit scaled R2 (y-axis) and 2)
soft threshold values of β (x-axis) vs mean connectivity scores
(y-axis). The optimal value of β obtained using these graphs is 6
with R2value 0.8. This value of β was further used to produce
hierarchical clustering (Figure 3).

A dynamic hierarchical tree algorithm was used to divide
the clustering tree constructed from the differentially
expressed genes, resulting in 24 different co-expression
modules in the data which were named as blue (3,972
genes), brown (3,064 genes), green (1801 genes), yellow
(2,387 genes), red (1,272 genes), and turquoise (5,670
genes), Black (1,115 genes), Cyan (275 genes), dark green
(85 genes), dark red (113), dark turquoise (83 genes), green
yellow (338 genes), grey (35 genes), grey60 (162 genes), light
cyan (246 genes), light green (144 genes), light yellow (141

FIGURE 8 | Hub gene distribution on chromosome to the corresponding QTL ids.
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genes), magenta (644 genes), midnight blue (252 genes), pink
(835 genes), purple (442 genes), royal blue (122 genes), salmon
(296 genes), and tan (326 genes) (Figure 4). After clustering,
the genes were grouped into modules (subnetworks) depicted
in different colors for easy identification (Figure 5).

Moreover, in order to explore the relationship between
identified modules and the experimental samples (traits), we
calculated and tested the correlation coefficients. These
correlation coefficients along with their p-values for
module-trait relationship were depicted (Figure 6). In
Figure 6, the red color shows a strong positive correlation
and the blue color displays a strong negative correlation.
Furthermore, the centralized hub genes were identified from
these modules through statistical analysis with the help of
R-package “dhga” using a weighted gene score. A total of 36
hub genes were identified in 9 modules and their detailed
description (function/annotation, location, and accession
number) are mentioned in Table 1; Table 2; Table 3;
Table 4; Table 5; Table 6: Table 7; Table 8; Table 9.

Validation of Identified Hub Genes
These 36 identified hub genes were mapped on rice
chromosomes and 32 genes were found to be located at

various rice chromosomes (Figure 7). In the process of
finding the association of these genes with the well-known
QTLs related to salt, cold, drought, bacterial stress, we found
that 17 out of the 36 identified hub genes were associated with
these QTLs mapped on various chromosomes (Figure 8). We
also performed pathway analysis and found that the expression
of these genes either increased or decreased during the period
of treatment in five different pathways. Heat map analysis was
conducted through DAVID to produce a matrix of enriched
GO terms with the identified genes. The green and black color
shading on the heat map matrix indicate a positive and
negative correlation between the enriched GO term and
identified DMSO and tz-treated hub genes, respectively
(Figure 9).

DISCUSSION

The productivity of rice is severely affected due to various biotic
and abiotic stresses. Therefore, to develop a variety that is
resistant to these stresses, there is an urgent need to identify
important hub genes governing the whole production process.
Rice genome consists of around 58,000 genes (Cao et al., 2012)

FIGURE 9 | The classification of identified hub genes represented by heat map using DAVID software. It is noted that eight genes (y-axis) are classified into four
classes (x-axis).
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and conventional approaches can identify several hundred genes
related to these stresses. However, by using conventional
approaches, it becomes difficult to identify the few centrally
important genes that play important roles in cellular functions
to cope with these stresses. This problem can be solved by
applying systems biology approaches (Arora et al., 2019). In
this study, we have performed a comprehensive analysis on
existing data retrieved from NCBI to understand the potential
genes and mechanisms involved in such processes by first
performing PCA to validate the distribution and uniformity of
data evenly (Figure 10) and subsequently obtained significant
modules associated with the biological functions regulating the
growth and development of the plant. Moreover, hub genes in
these modules were also identified that play an important role
during cytokinin signaling and are crucial in plant growth and
development.

Amongst the identified modules, the hub genes identified in
these modules were observed to be involved in various processes.
For example, in the turquoise module, the top hub gene
(Os04g0295400) is located in chr4 and its important function
is to encode Jasmonate-induced protein. Though little is known
about this function in rice, Jasmonate-induced proteins are
already reported for immunity and development in other
plants (Wasternack and Hause, 2013; Campos et al., 2014). In-

depth characterization of this gene is further required as this
family of genes are reported to play important roles such as in the
defense systems against lethal disease and bacterial blight
(Yamada et al., 2012; Taniguchi et al., 2014) and it may also
be involved in stress management as both these stresses (abiotic
and biotic stress) are interlinked with each other (Cao et al.,
2017). Similarly, in the blue module, we identified the
Os07g0424400 hub gene in chr7 that played an important role
in cellulose synthase A catalytic subunit 3 [UDP-forming] that
governs a major mechanism of cell wall formation (Taylor et al.,
2000) and ultimately helps in supporting the plant growth against
abiotic stress. In the brown module, the top potential hub gene,
Os01g0743600, is located on chr1 with the reported function of
ATP-dependent protease La domain containing protein
(Koodathingal et al., 2009) and it is one of the key
components in providing protection against the harmful
effects of unfolded proteins. It is activated by stress conditions
in the endoplasmic reticulum (ER) and it supports plant defense
as well as response to abiotic stresses (Bao and Howell, 2017).

The top potential key gene in the green module,
Os07g0171300, is still not fully characterized, but annotation
results suggest it has a key influence in the protein kinase-like
domain superfamily which is believed to be a conserved protein
domain mainly involved in most signaling and regulatory

FIGURE 10 | Distribution of samples based on different stress at different time intervals and obtained uniform distribution of data in all four coordinates (Szklarczyk
et al., 2017).
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FIGURE 11 | The identified top hub genes are denoted with circles and are known as the first shell of interactors. Each color symbol signifies a specific interaction
either known or predicted, as mentioned in previous studies.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 78059912

Mishra et al. Cytokinin Responsive Key Genes in Rice

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


processes in the eukaryotic cell, and as a switch in controlling
biological processes such as metabolism, transcription, cell
moment, apoptosis, etc.

In the yellow module, the identified key gene Os12g0566000
codes for boron transporter 1, and is located at LOC4352546 of
Chr12 and mapped with QTL identification number AK100510.
Boron is essential for maintaining the integrity of plants cell walls.
It exhibits an important structural role in shaping the cell by
providing mechanical strength via cross-linking of cell wall
rhamnogalacturonan II (RG-II) to form a stable three-
dimensional pectic network which contributes to the
mechanical properties of cell wall structure (Funakawa and
Miwa, 2015). It is also reported that boron expression
deficiency inhibits plant photosynthetic capacity (Zhao and
Oosterhuis, 2002; Kastori et al., 2008) and directly impacts the
total yield of the crop.

In the red module, the identified key gene Os09g0442400
codes for protein Gamete expressed 1, and is located at
LOC4347181 of Chr9 and mapped with QTL identification
number AK106970. Gamete expressed 1 protein is mainly
responsible for fertilization. It has a dual function during

gametophyte development and early embryogenesis and it is
required for correct pollen maturation (Engel et al., 2005). In
the pink module, the identified key gene Os07g0187700 codes for
protein SEC12-like protein1, and is located at LOC4342601 of
Chr7 and mapped with QTL identification number AK111777.
Phosphate Transporter 1 (PHT1) is a plant-specific SEC12 gene
that encodes phosphate transporter involved in phosphate uptake
by facilitating the trafficking of PHT1-1/PHT1; 1 from the ER to
the plasma membrane that enables the ER exit of a high-affinity
phosphate transporter (González et al., 2005). The top key hub
gene identified in the grey module, Os07g0131600, codes for
HEX6 protein which is one of the hexose carrier proteins, and is
located at LOC4342334 of Chr7 mapped with QTL identification
number AK068296. HEX6 protein has an active uptake of hexose
with an important role in glucose/hydrogen symport (Boles and
Hollenberg, 1997). These different hub genes directly or indirectly
govern the main function of the positive build-up of overall cell
growth but there are leftover top key genes Os07g0171300 in the
green module and Os11g0491400 in the black modules that need
to be further characterized to understand their role at different
stages of crop development.

FIGURE 12 | Gene ontology analysis viz biological process, cellular component, and molecular function terms associated with different modules performed using
REVIGO.
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Further, the identified key hub genes were visualized using the
STRING database for protein-protein interaction (Szklarczyk
et al., 2017). The STRING database helped in the
identification of direct (physical) interactions and indirect
(functional) interactions as long as the interactions were
specific and biologically meaningful. Out of the 9 obtained
modules, seven genes were found to be associated with
neighboring proteins (Figure 11).

Similarly, we identified other important hub genes in each
module (Table 1 to Table 9) which are not yet fully explored with
respect to cytokinin signaling to maintain the harmony of cell and
rice growth mechanisms. Although we identified 36 key genes, we
were interested in understanding the role of genes in various
processes such as BP, CC, and MF to further delineate the role of
these genes in playing different roles in the development of
cytokinin-related responses. The Gene Ontology terms in these
processes include transcription (GO:0006351), auxin-activated
signaling pathway (GO:0009734), MAPK cascade (GO:0000165),
and regulation of transcription in BP (GO:0006355)
(Figure 12A), whereas the GO terms mostly constituted in CC
include nucleus (GO:0005634), cytoplasm (GO:0005737),
chloroplast (GO:0009507), and microtubule (GO:0005874)
(Figure 12B) and composed of molecular functions metal ion
binding (GO:0046872), protein serine/threonine phosphatase
activity (GO:0004722), ATP-dependent RNA helicase activity
(GO:0004004), and RNA polymerase II regulatory region
sequence-specific DNA binding (GO:0000977) are some
(Figure 12C). Likewise, the Kegg pathway also revealed the
enrichment of GO terms such as plant hormone signal
transduction (osa04075), starch and sucrose metabolism
(osa00500), and diterpenoid biosynthesis (osa00904)
(Figure 12D). In the absence of wet lab experiments, these
identified hub genes were validated with the help of well-
known QTLs and pathways using an in-silico approach. The
analysis indicates the involvement of identified hub genes in these
stress conditions as these genes are found to be associated with
biotic and abiotic stress-related QTLs and pathways. These results
indicate the role of identified hub genes in the regulation of plant

growth and development. However, these hub genes need further
attention at the molecular level through wet lab experiments to
improve the traits which will be useful in enhancing the
productivity of the crop.
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