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Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental
and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the
cardiovascular disease would advance the field and promote prophylactic methods
targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies
and surveillance. The present review reported the latest development on the epigenetic
regulation of MI in terms of DNA methylation, histone modifications, and microRNA-
dependent MI mechanisms and the novel therapies based on epigenetics.
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1 INTRODUCTION

Myocardial infarction (MI) is a common cause of global morbidity and mortality and has caused
nearly half of all deaths across Europe, more than 24 million deaths in the United States, and
approximately 7–18% of the global 1-year mortality (Nichols et al., 2014; Reed et al., 2017).
Atherosclerosis develops in the younger age group and persists for several decades, resulting in
MI or other lethal cardiovascular diseases such as heart failure, stroke, and sudden death (Weintraub
et al., 2011). Lifestyles changes and effective therapeutic strategies such as diet, abstinence from
cigarettes and alcohol, percutaneous coronary intervention, and coronary artery bypass graft resulted
in a considerable reduction in MI-induced mortality (Cokkinos and Pantos, 2007; Nichols et al.,
2014; Xue et al., 2021). Although patients with MI increased, the life expectancy of patients is almost
unaffected (Shibata et al., 2015; Thygesen et al., 2018). A New England Journal of Medicine study
reported no evidence comparing an initial invasive strategy to an initial conservative approach to
decrease cardiovascular risk or deaths in a median of 3.2 years (Maron et al., 2020). Thus, finding
novel biomarkers is necessary for early MI detection. Patients with coronary artery disease (CAD) or
MI repeatedly exhibited positive family history (Mayer et al., 2007). Familial genetic defects with an
autosomal dominant form resulted in MI in humans (Wang et al., 2003). MI is a complex disease
involving both environmental and genetic factors and their interactions. Genetic polymorphisms for
numerous genes through atherosclerosis, inflammation and thrombogenesis pathways may account
for the susceptibility to MI and severe CAD consequences (Chen et al., 2007). With improved
resequencing technology, the gene identification and confirmation methodology can be used for
reference in CAD. This enables researchers to better quantify CAD risk in early life, formulate more
efficient therapeutic approaches, and reduce the individual probability of developing MI (Damani
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and Topol, 2007). Genetic linkage studies were performed in both
human and animal models to identify these gene polymorphisms.
Several genetic association studies have revealed numerous genes
and biological pathways (Newton-Cheh and O’Donnell, 2004).

Research work on epigenetics and epigenomics in this field has
made remarkable progress and attracted numerous geneticists,
molecular biologists, oncologists, and cardiologists.
Advancements in epigenetic areas have offered a fresh
perspective on human diseases and ushered a new era in
genomics by exploring the role of environmental interaction
and genetic heritability in disease pathology (Portela and
Esteller, 2010; Cao et al., 2014). The heritability of
cardiovascular diseases such as myocardial infarction can vary
depending on sex, age, and environmental and lifestyle conditions
(Saban et al., 2014; Dorn and Matkovich, 2015; Sen et al., 2016;
Cavalli and Heard, 2019; Asllanaj et al., 2020; Deegan et al., 2021).
Epigenetics is currently a popular biological research area. The
term “epigenetics” generally suggests all genetic variations of gene
expression regulation except nucleotide sequence and chromatin
organisation depending on DNA sequences (Egger et al., 2004;
Abi Khalil, 2014). Thus, epigenetic mechanisms related to gene
expression regulation are chromatin-based and not involving any
DNA sequence changes (Cao et al., 2014). Epigenetic inheritance
is a critical mechanism that maintains the dynamic and stable
propagation of gene activity states from cells of the last generation
to those of the following generation (Kim, 2013; Abi Khalil, 2014).

Epigenetic regulatory processes encompass diverse molecular
mechanisms such as DNA methylation (DNAm), histone post-
translational modifications, and RNA-based mechanisms such as
long non-coding RNAs, lncRNAs, and microRNAs (Kim et al.,
2009). In several cases, the epigenetic changes reflect responses to
environmental and lifestyle factors, resulting in persistent
dynamic changes in gene expression that affect the course of
cardiovascular disease. Epigenetic regulators have been
increasingly targeted in cancer therapeutics. Thus, epigenetic

regulatory mechanisms for cancer and CAD must be explored
and are significant in the oncology and cardiology fields (Ding
et al., 2018). The epigenome expression can fundamentally differ
from different cell types, possibly modulating single cell gene
expression by organising nuclear architecture in chromosomes,
suppressing or promoting transcription factor access to DNA,
and regulating gene expression (Wang and Chang, 2018).
Epigenetics dysregulation is considered the cause of many
human disorders, such as severe cardiovascular diseases, due
to the significance of differential gene regulation in cellular
differentiation and application function (Abi Khalil, 2014;
Yang et al., 2015; Prasher et al., 2020). Through the search of
PubMed, we have summarized a large amount of literature related
to epigenetics, aiming to gain insight into their potential
application in MI (In Figure 1 -Flow Chart). The present
review focused on the crucial role of epigenetic regulatory
mechanisms in MI.

2 DNA METHYLATION AND MI

Normal DNA methylation, among the central mechanisms
regulating gene expression, can decide a severe cardiovascular
event (Nurnberg et al., 2020). However, aberrant DNAm with
genome-wide hypomethylation and CpG island
hypermethylation is also observed in CAD (Breton et al., 2014;
Sharma et al., 2014). The development of epigenetic epidemiology
increases the probability to investigate the correlations of
genomic coding, modifiable exposures, and disease phenotype
manifestations. As a vital epigenetic modification type, DNAm
plays a significant role as a potential mechanism of such
correlations (Zhong et al., 2016). DNA methylation represents
a pre-transcriptional modification that can alter the
transcriptional process by adding methyl groups onto specific
DNA nucleotides (Ma et al., 2014). The process leads to inactive

FIGURE 1 | Flow chart.
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gene expression because the methyl binding protein binds
transcriptional factors and DNA. Hypomethylation is more
common in most diseases than hypermethylation (Movassagh
et al., 2011). DNAm, together with genetic mechanisms, is crucial
for natural evolution and maintenance under specific gene
expression patterns among mammals. Simultaneously, it is also
dynamic and reversible for the regulating effect of genetic
mechanisms (Fardi et al., 2018). DNAm pattern changes and

the resulting differentially methylated regions have focused on
numerous studies on normal development and disease (Ziller
et al., 2013). Several studies report the value of epigenetic
processes as disease biomarkers, with multiple studies
associating DNAm with clinical events (Locke et al., 2019).

DNAm is the most promising target for accurate diagnosis,
prognosis, and treatment (Koch et al., 2018). A lack of DNAm
markers has been successfully translated into clinical

TABLE 1 | The characteristic of DNA methylation in myocardial infarction.

Author Year Nation Detection method Species Gene Site MI related functional
consequences

Talens et al. (2012) 2012 Netherlands Mass spectrometry Human INS、GNASAS Unknown Reflected a developmental
component of MI.

Jia et al. (2013) 2013 China PCR Human FOXP3 Unknown Increase the risk of ACS
Felician et al. (2014) 2014 Italy Bisulfite sequencing Mouse Notch Unknown Expanded the proliferative

capacity of neonatal
cardiomyocytes

Wang et al. (2015) 2015 China Bisulfite sequencing
PCR (BSP)

Mouse ALDH2 Unknown Myocardial protection
against ischaemia

Guarrera et al.
(2015)

2015 Italy Microarray analysis Human ZBTB12 Unknown Angiogenesis and vascular
permeability

Rask-Andersen
et al. (2016)

2016 Sweden Infinium
humanmethylation450
beadchip

Human 196 genes 211 CpG-sites Cardiac function,
cardiovascular disease,
cardiogenesis and recovery
after ischaemic injury

Zuo et al. (2016) 2016 China Bisulfite pyrosequencing Human IL-6 3 CpG-sites DNA hypomethylation of IL-
6 promoter is associated
with the increased risk
for CHD

Mohammadpanah
et al. (2020)

2020 Iran

Nakatochi et al.
(2017)

2017 Japan Infinium
humanmethylation450
beadchip

Human ZFHX3 cg06642177,
cg07786668, cg17218495

FHX3 belongs to a
susceptibility gene for CVD;
SMARCA4 is able to affect
inhibition of vascular smooth
muscle cell proliferation by
hydrogen sulfide

SMARCA4

Ward-Caviness et al.
(2018)

2018 US Illumina humanHT-12v3
array

Human LRP8、KCNN1 9 CpG-sites Risk factor for MI; reduce
ventricular fibrillation and
ventricular tachycardia
during induced acute
myocardial infarction

Agha et al. (2019) 2019 US Illumina infinium 450k
microarray

Human ATP2B2, CASR,
GUCA1B,
HPCAL1, CASR,
PTPRN2, CDH23,
HPCAL1

52 CpG-sites Calcium regulation
Serum calcium and serum
calcium-related risk of CHD
Coronary artery calcified
plaque
Kidney function

Chen et al. (2019) 2019 United States 5-mC DNA ELISA Mouse Sirt 1 Unknown Sirt 1-mediated signaling is
the potential therapeutic
target for the heart ischemic
disease in offspring

Koseler et al. (2020) 2020 Turkey Illumina hiSeq4000 Human LDAH, APOB,
ACSM2A, ACSM5,
ACSF3, CES1,
CES1P1, AFG3L2,
ISCU, SEC14L2,
MTTP

Unknown Cholesterol and lipoprotein
metabolism

Yousuf et al. (2020) 2020 Pakistan Methylation-specific
polymerase chain
reaction

Human ABO Unknown Thrombosis and altered
endothelial function

Fernández-Sanlés
et al. (2021)

2021 Spain Infinium methylationEPIC
beadchip

Human AHRR, PTCD2,
intergenic, MPO

cg05575921cg25769469 The four identified CpGs as
predictive biomarkers

cg21566642cg04988978 1Smoking, lipid metabolism,
and inflammation
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applications. However, the recent improvements in DNA
sequencing and other molecular biomedical science
technologies result in DNA methylation-based biomarkers
exhibiting colossal potential for transforming the treatment
and observation of diseases like MI and cancer (Gallardo-
Gómez et al., 2018). Several reports reported the role of
DNAm in regulating cardiovascular risk factors and
myocardial protection in MI, particularly those related to lipid
metabolism and myocardial protection against ischaemia (for the
detailed description, Table 1). Talens et al. (2012) reported that
the risk and developmental components of MI in women are
linked to DNAmethylation marks at specific loci that were earlier
sensitive to prenatal conditions. Aldehyde dehydrogenase 2
(ALDH2) is crucial for protection against myocardial
ischaemia. Regulatory T (Treg) cells have been shown to play
a protective role in experimental atherosclerosis. Demethylation
of the DNA encoding the transcription factor forkhead box P3
(FOXP3) was found to be essential for the stable maintenance of
the suppressive properties of Tregs. Lei et al. (Jia et al., 2013)
demonstrated that reduction in Treg cells is associated with ACS
in atherosclerotic patients. Epigenetic suppression of FOXP3
might lead to down-regulation of Treg cells, and in turn
increase the risk of ACS. The Notch pathway plays a key role
in stimulating mammalian cardiomyocyte proliferation during
development and in the early postnatal life; Analysis of Notch-
responsive promoters in adult cardiomyocytes showed marks of
repressed chromatin and irreversible CpG DNA methylation
(Felician et al., 2014). Wang et al. (2015) proved the
correlation between aberrant hypermethylation at CpG sites in
animal models in ALDH2 promoter upstream sequence and
myocardial ischaemia injury that possibly lead to ALDH2
downregulation after MI. The modulative effects of DNAm on
cardiac function, carcinogenesis, and recovery after ischaemic
injury, thrombosis, and altered endothelial function in patients
with MI have also been investigated. DNA methylation
significantly changes following MI. The gene expression proves
the correlation of cardiac injury-related epigenetic changes with
branched-chain amino acid metabolism (Ward-Caviness et al.,
2018). Mathias et al. (Rask-Andersen et al., 2016) observed more
than a hundred significant genes for MI pathogenesis or recovery.
Similarly, Farzana et al. (Yousuf et al., 2020) reported that
hypermethylation of the ABO gene promoter seemingly
increases the AMI risk in the hospitalised MI population.
Otherwise, gestational diabetes mellitus induced offspring
cardiac oxidative stress and DNA hypermethylation, resulting
in an epigenetic down-regulation of Sirt1 gene and aberrant
development of heart ischemia-sensitive phenotype, which
suggests that Sirt 1-mediated signaling is the potential
therapeutic target for the heart ischemic disease in offspring
(Chen et al., 2019). Not only that, Diabetes increases the
vulnerability of STEMI patients to post-MI HF by down-
regulating SLN promoter methylation, which further regulates
SERCA2a activity via increasing cardiac SLN expression (Liu Z.
et al., 2020). Interleukin-6 (IL-6) is implicated in the pathogenesis
of coronary heart disease, and IL-6 expression has associated with
the level of DNAmethylation of its gene promoter. There are two
findings suggest that an increase in IL-6 gene expression and its

DNA hypomethylation promoter are associated with acute
myocardial infarction and CABG surgery patients (Zuo et al.,
2016; Mohammadpanah et al., 2020).

Studies have revealed the complementary expression patterns
of lipid metabolism, calcium regulation, and methylation of
related genes in peripheral blood leucocyte samples of patients
with MI (Agha et al., 2019). These CpGs sites and genes stress the
correlation of ion regulation, lipid metabolism, and inflammation
in the MI biological mechanisms (Fernández-Sanlés et al., 2021).
Thus, the new DNA methylation sequencing technology can
identify potential target sites related to the aberrant epigenetic
regulation of MI (Koseler et al., 2020). Additionally, the sites
stated by two studies (Guarrera et al., 2015; Nakatochi et al., 2017)
are candidates for further assessment as underlying MI
biomarkers. These results exhibited that DNA methylation
could be used as a major molecular process linking genetic
variations to MI susceptibility.

3 HISTONE MODIFICATIONS AND HDACS
IN MI

Histone modification is the primary mechanism in epigenetic
regulation, including post-transcriptional modifications, and the
most common modifications are phosphorylation, acetylation,
methylation, and ubiquitination (Tingare et al., 2013). Such post-
transcriptional modifications exert vital biological functions on
multiple cellular processes such as cell cycle and metabolism
control, DNA repair, and gene transcription (Tang and Zhuang,
2019). Histone deacetylases (HDACs) belonging to
transcriptional regulators can serve as a post-translational
modifier with different cardiac pathophysiology roles. The
basic experiment exhibited that HDAC inhibitors benefit
against arrhythmia, MI, cardiac remodelling, hypertension, and
fibrosis (Eom and Kook, 2014). Additionally, HDACs are
strongly associated with other vascular disorders such as
neointima formation, atherosclerosis, and vascular calcification
(McKinsey, 2011). Zhang L. et al. (2018) reported acute HDAC
effects as positive and negative regulators for pathological cardiac
remodelling. Wang J. et al. (2020) uncovered the histone
modification profile in the early stage of MI of mice and
proved that the modulation of histone modifications could
involve inflammation and angiogenesis through adjusting
promoters and super enhancers and joining cardiac
remodelling pathological processes.

Additionally, the protective effect and therapeutic potential of
HDACs were verified by cardiac disease pathogenesis, including
suppressing cardiac fibrosis; enhancing angiogenesis; preventing
electrical remodelling; and regulating apoptosis, autophagy, and
cell cycle arrest (Chun, 2020). Studies exhibited that HDAC
enzyme suppression has become a potential candidate for
decreasing reperfusion impairment (Xie et al., 2019). Ting
et al. (Zhao et al., 2007) reported the use of trichostatin A
(TSA) as an efficient HDAC inhibitor to imitate early
pharmacologic preconditioning. TSA significantly improved
post-ischaemic ventricular function recovery and reduced
infarct size during early and delayed preconditioning.
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The vital role of HDACs in CVD was greatly emphasized in
the past. However, few studies have focused on the association
between MI and HDACs (Chen X. et al., 2020). Several studies
described the effect of HDACs on vascular dysfunction and MI.
Although HDAC could prevent the pathological process of MI in
most cases, some HDACs might exacerbate it. Thus, the present
study summarised the mechanism and treatment with HDACs,
discussed the use of available medicine, and suggested a direction
for future clinical studies. The fundamental mechanisms of
HDAC action include induction of cardiomyocyte autophagy,
augmentation of cardiac remodelling, enhancement of
myocardial repairs, and improvement of myocardial ischaemic
injury. HDAC inhibitor prevented post-MI cardiac remodelling
and depended upon the recovery of autophagosome processing
for cardiac fibroblasts. Both clinical trials and animal studies
indicated that the HDAC inhibitor TSA could reverse hypoxia-
induced impaired autophagic flux and resulted in a 40%
reduction in cell death (Wang Y. et al., 2018). Another
anticancer, HDAC inhibitor SAHA decreased the myocardial
infarct size in an animal model by autophagic flux induction (Xie
et al., 2014). HDAC suppression facilitated cardiac repairs and
neovascularisation of the infarcted myocardium. Zhang et al.
(2012a) proved that c-kit + cardiac stem cell (CSC)
preconditioning through HDAC inhibition with trichostatin
could substantially increase c-kit + CSC-derived myocytes and
microvessels and reinforce in vivo functional recovery of MI.
However, it is still unclear if specific HDAC4 suppression can
modulate CSCs to promote myocardial repair and maintain
cardiac performance. HDAC inhibition facilitated c-kit + CSCs
to be differentiated into cardiac lineage commitments in vitro,
whereas HDAC4 overexpression weakened c-kit + CSC-derived
cardiogenesis (Zhang et al., 2014).

Additionally, some studies reported that gut microbiota
possibly affected the post-MI acetylation levels and tissue
repair by influencing butyric acid production (Song et al.,
2021). These results prove the role of HDAC4 inhibition in
promoting CSC-derived cardiac regeneration and improving
cardiac function recovery. Zhang et al. (2018c) demonstrated
for the first time that transgenic HDAC overexpression is crucial
for the regulation of cardiac function and remodelling.

Although HDAC activation could serve as a regulator of
cardiac function in MI, activated HDAC overexpression
augmented remodelling. Santhosh et al. (Mani et al., 2015)
proved that HDAC inhibition could stimulate myogenesis
and angiogenesis under an incubated embryonic stem cell
model. HDAC inhibition prevents cardiac remodelling
through the stimulation of endogenous regeneration.
Additionally, HDAC inhibition improved post-MI
myocardial functional recovery through the prevention of
myocardial remodelling and a decrease in myocardial and
serum tumour necrosis factor α (Zhang et al., 2012b). Thus,
HDAC inhibition maintains cardiac performance and
relieves myocardial remodelling through the simulation of
endogenous cardiac regeneration. Lin et al. (2020) proved
that HDAC inhibition could stimulate proteasome-
dependent degradation of HDAC4, which may be related
to HDAC4 sumoylation to provoke such protective effects.

Du et al. (2015) discovered that HDAC inhibition avoids cell
death, promotes cell-viability, and decreases ROS production
and apoptosis of cardiomyocytes under exposure to H/R.
These studies offer a novel understanding of the molecular
mechanism of HDAC inhibition and the potential
development of specific HDAC inhibitors as new MI
therapies.

4 NON-CODING RNAS AND MI

Although more than 90% of human genomes cannot encode
proteins, they exhibit high transcriptional activity and generate a
broad spectrum for non-coding RNAs having regulatory and
structural functions (Mattick et al., 2010). MicroRNAs
(miRNAs), small interference RNAs (siRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs) exert
regulatory functions or diagnostic potential against CVDs (Poller
et al., 2018). All non-coding RNAs are MI biomarkers (Wang and
Jing, 2018). The present study also analysed these ncRNAs and
associated interactions in regulating cardiomyocyte apoptosis,
inflammation, angiogenesis, and fibrosis following the acute
setting to understand their potential in acute MI treatment
(Guo Y. et al., 2017; Poller et al., 2018). The present review
summarises the latest advances and future applications for non-
coding RNAs as MI biomarkers and focuses on the diagnostic
value, prognostic potential and therapeutic effect in such RNAs.
Several animals and clinical studies demonstrated the diagnostic
value, prognostic potential and therapeutic effect for MI
associated miRNAs.

4.1 miRNAs and MI
4.1.1 miRNAs as Diagnostic Biomarkers of MI
Despite the difference in sensitivity and accuracy among
circulating miRNAs, some new circulating miRNAs
containing unique release kinetics can be used as
promising candidates for acute MI diagnostic biomarkers.
Most of the circulating miRNAs could function as diagnostic
biomarkers of acute MI (In Table2). In AMI patients, the
upper levels of miR-19a (Mansouri and Seyed
Mohammadzad, 2020), miR-22-5p,miR-122-5p (Wang Y.
et al., 2019), miR-23b (Zhang J. et al., 2018), miR93-5p (O
Sullivan et al., 2016), miRNA-124 (Guo ML. et al., 2017),
miR-134-5p, miR-186-5p (Wang et al., 2016), miR-139-5p
(Wang C. et al., 2021), miR-181a (Zhu et al., 2016),miR-208b,
miR-499 (Agiannitopoulos et al., 2018),miR-328, miR-492
(Guo LL. et al., 2020), miR-1291and miR-663b (Peng et al.,
2014) were significantly correlated with the increased serum
levels of CK-MB and cTnI. On the contrary, the level of miR-
99a (Yang SY. et al., 2016), miR-379 (Yi and An, 2018),
miR6718 and miR-4329 (Chen S. et al., 2021) had a
negative correlation with cTnI level and CK-MB in the
AMI patients. Besides, miR-139-5p inhibited endothelial
cell viability of AMI by inhibiting VEGFR-1, and increased
miR-139-5p expression in AMI patients has high diagnostic
value for AMI screening (Wang C. et al., 2021). Correlation
analysis showed that plasma miR-181a was positively
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correlated with coronary Gensini score and negatively
correlated with left ventricular ejection fraction. Relative
miR-181a levels in AMI patients were positively correlated
with the concentrations of the creatine kinase-MB fraction
and cardiac troponin I (Zhu et al., 2016). The over-expression
of miR-208a in myocardial infarction tissue and the high
levels of this miRNA in the serum, may be involved in the
process of myocardial infarction by influencing the cAMP-
PKA signaling pathway in myocardial cells (Feng et al., 2016).
At the same time, some circulating miRNAs were used for
ischaemic risk stratification (He et al., 2017; Hromadka et al.,
2021) prediction of the major adverse cardiovascular events
after AMI future occurrence rate of MACE (Liu et al., 2017;
Guo X. et al., 2020) or prognostic value of left ventricular
(LV) dysfunction and symptoms of heart failure following
acute MI (Maciejak et al., 2018). These results verified that
constructing a complete network for circulating miRNAs
after MI allows rapid MI diagnosis and opens novel
therapeutic opportunities of MI, thus providing
personalised therapies for patients at MI risk (Wang and
Jing, 2018).

4.1.2 The Prognostic Value of MI Associated miRNAs
The prognosis prediction of myocardial infarction is beneficial to
delay the progression of heart failure, reduce the mortality of
cardiovascular events, and prolong the survival time of patients.
We found that mRNAs could be used not only as an independent
factor of cardiovascular risk events, but also as a predictor of the
development of myocardial infarction (In Table 3). According to
the literature, it has been confirmed that miR-1 (Su et al., 2020),
miR-30a-5p (Maciejak et al., 2018), miR-223-3p and miR-126-3p
(Hromadka et al., 2021) can be used to predict AMI prognosis
after MI. Numerous clinical researches in MI patients identified
miR-30e (Su et al., 2018), miR-142 (Guo X. et al., 2020), miR-184
(Liu et al., 2017) and miR-221-3p (Coskunpinar et al., 2016), in
particular, as the most significantly changing miRNAs in MI,
miR-142 and miR-184 over-expression analysis showed that
aberrant their levels effect the future occurrence rate of MACE
and the function of cardiovascular. Furthermore, miR-145
(Zhang et al., 2017), miR-155 (Zhang B. et al., 2019) and miR-
365 (WuH.-B. et al., 2021) expression also could be used to assess
the severity of the patients with HF and prognosticate cardiac
function and the risk to develop heart failure.

TABLE 2 | The diagnostic value of MI associated miRNAs.

Author NcRNAs Research
types

Clinical value

Mansouri and Seyed
Mohammadzad (2020)

miR-19a Clinical research The upper levels of miR-19a were significantly correlated with the increased serum levels
of CK-MB, CTn I and creatinine

Wang et al. (2019b) miR-22-5p, miR-
122-5p

Clinical research Plasma miR-122-5p levels is significantly elevated in AMI patients, while plasma miR-22-
5p levels were significantly decreased. In addition, significant correlations between miR-
22-5p and miR-122-5p, miR-122-5p and creatine kinase isoenzyme were detected

Zhang et al. (2018a) miR-23b Clinical research Circulating miR-23b as a novel biomarker for early risk stratification after ST-elevation
myocardial infarction

O Sullivan et al. (2016) miR-93-5p Clinical research It was the strongest predictor for CAD following the adjustment of conventional risk
factors, showing underlying diagnostic utility

Yang et al. (2016b) miR-99a Clinical research The expression of miR-99a was significantly downregulated in patients with AMI. In the
AMI patients, miR-99a level had a negative correlation with cTnI level and CK-MB.

Guo et al. (2017a) miR-124 Clinical research MiRNA-124 expression in experimental group was significantly elevated in peripheral
blood of AMI patients

Wang et al. (2016) miR-134-5p Clinical research Levels of plasma miR-19b-3p, miR-134-5p and miR-186-5p were significantly increased
in early stage of AMI. In addition, all three miRNAs were positively correlated with cTnI

Wang et al. (2021a) miR-139-5p Clinical research miR-139-5p inhibits endothelial cell viability of AMI by inhibiting VEGFR-1, and increased
miR-139-5p expression in AMI patients has high diagnostic value for AMI screening

Zhu et al. (2016) miR-181a Clinical research Relative miR-181a levels in AMI patients were positively correlated with the
concentrations of the creatine kinase-MB fraction and cardiac troponin I.And plasma
miR-181a was positively correlated with coronary Gensini score and negatively correlated
with left ventricular ejection fraction

Feng et al. (2016) miR-208a Animal
experiment

The over-expression of miR-208a in myocardial infarction tissue and the high levels of this
miRNA in the serum, may be involved in the process of myocardial infarction by
influencing the cAMP-PKA signaling pathway in myocardial cells

Agiannitopoulos et al. (2018) miR-208b Clinical research miR-208b and miR-499 displayed similar properties with the established AMI biomarker
cTnTmiR-499

Wang et al. (2011) miR-328 Clinical research There was a correlation between circulating miR-133 or miR-328 levels and cardiac
troponin I

Yi and An, (2018) miR-379 Clinical research Studies demonstrated the miR-379 was negatively correlated with CK-MB and cTns in
study subjects.Function assay in vitro further indicated miR-379 inhibited cell proliferation
and induced cell cycle G0/G1 arrest in VSMCs

Guo et al. (2020a) miR-492 Clinical research Serum miRNA-499 and miRNA-210 were associated with MI within 3 h of symptom
onset.

Peng et al. (2014) miR-1291 Clinical research The levels of miR-133, miR-1291 and miR-663b are associated with AMI.
Chen et al. (2021a) miR-6718-5p and

miR-4329
Clinical research The expression of miR6718 and miR-4329 in patients with myocardial infarction was

significantly lower than that in normal people
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4.1.3 The Therapeutic Application of MI Associated
miRNAs
Cardiac injury was accompanied by dynamic changes in the
expression of miRNAs (In Table 4). Related studies have
successively reported on the therapeutic effect of MI in
patients with myocardial infarction. Li S. et al. (2018) found
that downregulation of phosphatase and tensin homolog (PTEN),
by the PTEN inhibitor bpV, increased miRNA-23a expression
and suppressed the Bax/Bcl-2 protein expression ratio, caspase-3
activity level and p53 protein expression. It indicated that the
expression of miRNA-23a may regulate AMI through targeting
PTEN in patients and in vitro. Studies (Bonauer et al., 2009) have
shown that the miR-17approximately92 cluster is highly
expressed in human endothelial cells and that miR-92a, a
component of this cluster, controls the growth of new blood
vessels. Besides, miR-92a appears to target mRNAs
corresponding to several proangiogenic proteins, including the
integrin subunit alpha5. It may serve as a valuable therapeutic
target in the setting of ischemic disease.

In animal and cell experiments, there are three miRNAs have
been shown to potentially treat MI, including miR-144, miRNA-
532 andmiR-539 (Bayoumi et al., 2017; Hui et al., 2017; Li J. et al.,
2018). Interestingly, miR-144 provides potent acute
cardioprotection in an ischemia/reperfusion injury model and
Intravenous miR-144 has potent effects on post-MI remodeling.
MiRNA-532 protects the heart in acute myocardial infarction,

and represses prss23, a positive regulator of endothelial-to-
mesenchymal transition. Overexpression of miR-539 plays a
role in the degree of myocardial infarction. The results of
experiments demonstrated an increase in the expression of
miR-539 and a decrease in the expression of MEK, which led
not only to suppressed proliferation but also to apoptosis and
autophagy of H9C2 cells. Although other miRNAs also have been
proposed to have anti-myocardial infarction effects, it still needs
further experimental verification (Xiang and Yang, 2020; Zhu
et al., 2021b; Hu et al., 2021).

4.2 Regulation of Fibrosis in Infarct Regions
by MiRNAs
Major processes leading to post-infarction injury and following
remodelling responses are controlled by miRNAs. For example,
miRNAs may assist or prohibit cardiomyocyte cell necrosis,
modulate post-ischaemic neovascularisation, and control
cardiac fibrosis (In Figure 2A).

Some non-beneficial miRNAs regulate cardiac fibrosis to
promote remodelling. miR-21, miR-22, miR-24, miR-133,
miR-181a, and miR-195 can be upregulated in response to MI
and are involved in cardiac fibrosis by tumour growth factor-β
(TGF-β) signalling pathway (Hong et al., 2016; Chen et al., 2017;
Yuan et al., 2017, 7; Chen P. et al., 2018; Yu et al., 2019; Wang
DM. et al., 2020). On the other hand, miR-29a, miR-101a, and

TABLE 3 | The prognostic value of MI associated miRNAs.

Author NcRNAs Clinical value

Su et al. (2020) miR-1 miR-1 is an independent risk factor for the prognosis of AMI and can be used to predict AMI prognosis
Maciejak et al. (2018) miR-30a-5p miR-30a-5p as a prognostic biomarker of left ventricular dysfunction after acute myocardial infarction
Su et al. (2018) miR-30e Association of miRNA-30e with a no-reflow phenomenon in STEMI patients receiving primary coronary intervention
Cortez-Dias et al. (2016) miR-122-5p/

133b
The miR-122-5p/133b ratio is a new prognostic biomarker for the early identification of STEMI patients at a higher risk of
developing major adverse events after undergoing PCI intervention

Hromadka et al. (2021) miR-126-3p The miR-223-3p and the miR-126-3p are promising independent predictors of thrombotic events and can be used for
ischemic risk stratification after AMI.miR-223-3p

Guo et al. (2020b) miR-142 Predictor of the major adverse cardiovascular and cerebrovascular events (MACCE) in AMI patients
Zhang et al. (2017) miR-145 Prognosticate cardiac function and the risk to develop heart failure
Zhang et al. (2019a) miR-155 miR-155 expression could be used to assess the severity of the patients with HF.
Liu et al. (2017) miR-184 Related to ventricular remodelling indexes and the future occurrence rate of MACE
Coskunpinar et al. (2016) miR-221-3p miR-221-3p has a high discriminative value and significant relations with left ventricular systolic function
Horváth et al. (2020) miR-331 It may be associated with plaque rupture

miR-151-3p
Wu et al. (2021a) miR-365 Heart failure with reduced ejection fraction following myocardial infarction

TABLE 4 | The therapeutic application of MI associated miRNAs.

Author NcRNAs Research types Therapeutic action

Li et al. (2018b) miR-23a Clinical research The expression of miRNA-23a may regulate AMI through targeting PTEN in patients and in vitro
Zhu et al. (2021b) miR-26b Clinical research A novel therapeutic target of MI
Bonauer et al. (2009) miR-92a Animal experiment As a valuable therapeutic target in the setting of ischaemic disease
Xiang and Yang, (2020) miR-135b Clinical research As a potential therapeutic target in the treatment of MI
Hu et al. (2021)
Li et al. (2018a) miR-144 Animal experiment As a therapeutic agent after MI
Bayoumi et al. (2017) miR-532 Animal experiment Be suitable for therapeutic intervention in ischaemic heart disease
Hui et al. (2017) miR-539 Animal experiment Possibly a potential therapeutic target for myocardial infarction
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miR-370 inhibition protect against cardiac injury following MI
(Xiao et al., 2017; Yuan and Gao, 2017). Similarly, miR-29b-3p
degraded the pro-fibrosis effect from TGF-β1 through FOS
targeting, which provided a promising therapy for post-MI
cardiac fibrosis (Xue et al., 2020). CTGF expression was
possibly inhibited by MiR-30a through direct combination
with the 3′-UTR site of CTGF following MI, reducing collagen
generation in myocardia, inhibiting myocardial fibrosis, and
improving cardiac function (Chen L. et al., 2018). Yuan et al.
(Yuan et al., 2019) discovered the involvement of miR-144 in
extracellular matrix remodelling after MI, in which its loss results
in enhanced myocardial fibrosis and damaged functional
recovery. In animal experiments, miR-29b and miR-199b-5p
have been inhibited myocardial fibrosis and cardiac
hypertrophy by activating the Notch signaling pathway and
protected myocardium against myocardial infarction (Duygu
et al., 2017; Liu et al., 2019). Additionally, miR-143-3p and
miR-494 promoted fibrosis through different signalling
pathways such as ERK, JNK, and Wnt pathways (Li C. et al.,
2019; Su et al., 2019). The regulation of these miRNAs can
provide novel therapies for MI.

4.3 miRNAs in Cardiomyocyte Apoptosis
The relevant miRNAmechanisms in cardiomyocyte apoptosis are
summarised in In Figures 2B. TheWnt/β-catenin and PI3K/AKT
pathways constitute two major signalling pathways to inhibit
apoptosis, which can be constantly activated by activating the

pro-apoptotic pathway following acute MI. Some miRNAs
protect cardiomyocytes from apoptosis following acute MI
through activation of Wnt/β-catenin and PI3K/AKT pathways
and their downstream regulators. MiR-30b-5p participates in
myocardial cell proliferation and apoptosis by modulation of
the Wnt/β-catenin signalling pathway, possibly providing the
new underlying target to diagnose MI in the clinic (Chi et al.,
2020). MiR-34a affects myocardial cell apoptosis by regulating the
activation and inactivation of the Wnt/β-catenin signalling
pathway (Li JH. et al., 2019). The miR-148b inhibition
reinforced the antioxidative capacity and myocardial cell
survival to inhibit apoptosis by activating the Wnt/β-catenin
signalling pathway, improving myocardial I/R injury (Yang
et al., 2019). Moreover, miR-154 can activate the Wnt/
β-catenin signalling pathway, eventually promoting myocardial
apoptosis (Sun HY. et al., 2019). Additionally, miR-23a-5p-PI3K/
Akt axis regulated apoptosis in MI. Thus, the new axis was
incorporated as an underlying indicator for detecting
ischaemic heart disease and therapeutic intervention (Huang
J. et al., 2020). Furthermore, the apoptosis-associated protein
expression levels rose significantly in H9c2 cells transfected with
miR-145-5p mimic. MiR-145-5p may inactivate the PI3K/Akt
pathway to assist MI cell apoptosis (Huangfu et al., 2020). Other
miRNAs can also promote or inhibit myocardial apoptosis after
acute MI via different pathways and relevant targets. The
miRNA-21 expression experienced upregulation in the serum
of elderly patients with acuteMI, which suppressed TNF-a caused

FIGURE 2 | The diagnostic value, prognostic potential and therapeutic effect for MI associated miRNAs. Schematic representation of the activated pathway
program in MI. The regulation mechanism of miRNAs networks in MI. (Red and green labels correspond with induced or repressed molecules in MI, respectively).
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apoptosis in HCM through activation of the JNK/p38/caspase-3
signalling pathway (Wang Z.-H. et al., 2017). MiR-26a activates
the GSK-3β signalling pathway to inhibit myocardial cell
apoptosis after acute MI (Lu and Lu, 2020). MiRNA-145
suppresses myocardial infarction-induced apoptosis through
autophagy-related to the Akt3/mTOR signalling pathway in
vivo and in vitro (Yan et al., 2018). MiR-214 and miR-203
have abilities to alleviate MI-caused injury on myocardium
tissues and reduce mitochondria-mediated apoptosis, which
might be a possible mechanism in protecting against AMI
injury (Yang X. et al., 2016; Zhang J. et al., 2019). Exosomal
miR-338 can inhibit cardiomyocyte apoptosis and improve
cardiac function in rats suffering MI by regulating the
MAP3K2/JNK signalling pathway (Fu et al., 2020).

Conversely, parts of miRNAs could promote myocardial
apoptosis. MiR-96 facilitated acute MI progression by directly
targeting XIAP and suppressing XIAP anti-apoptotic function,
providing a new therapeutic target to treat acute MI (Wang
J. et al., 2021). A mice model exhibited an increase in MI by
miR-467a-5p through ZEB1 expression regulation (Huang et al.,
2021). miR-665 downregulation protected from cardiomyocyte
ischaemia/reperfusion injury-induced ROS accumulation and
apoptosis by activating Pak1/Akt signalling of MI (Liu C.
et al., 2020).

4.3.1 MiRNAs in Angiogenesis and Endothelial Injury
Numerous clinical studies have attempted to stimulate
angiogenesis to combat ischaemic pathologies and tissue
injury. These studies have primarily focused on the intra-
arterial introduction of a range of angiogenic growth factors
such as VEGF (Yang F. et al., 2016), insulin-like growth factor 1
receptor (IGF) (Geng et al., 2020), and HGF (Fan et al., 2018) to
promote neovascularisation and tissue perfusion in subjects with
MI. Additionally, Liao et al. (Liao et al., 2021) observed that
cardiac telocyte suppressed cardiac microvascular endothelial cell
apoptosis by exosomal miRNA-21-5p-targeted Cdip1 silencing to
ameliorate angiogenesis of MI. Another study from China
demonstrated that miR-134-5p silencing facilitated myocardial
angiogenesis and suppressed myocardial apoptosis through
KDM2A upregulation in MI mice (Li X. et al., 2020). MiR-93
may promote angiogenesis and weaken remodelling by
inactivating the Hippo/Yap pathway through Lats2 targeting
(Ma et al., 2020). Endothelial injury is crucial for numerous
physiological processes and is closely related to tissue repair and
recovery after an injury caused by pathological conditions (Icli
et al., 2020). Cellular and molecular mechanisms can assist the
formulation of novel cardiac cell therapies for the functional and
structural regeneration of impaired myocardium. (In Figure 2C).

4.3.2 MicroRNAs Regulate Inflammation and
Autophagy
Autophagy is a well-organised homeostatic cellular process
responsible for removing damaged organelles and
intracellular pathogens. Furthermore, it can modulate the
innate and adaptive immune systems and suppress gene
expression by targeting messenger RNAs for translational
repression. The present study summarised the regulation of

different non-coding RNAs in autophagy and other
mechanisms (In Figure 2D). Several studies indicated that
miRNAs regulate autophagy through different pathways and
exhibit a significant influence on MI treatment. Li Q. et al.
(2020) referred to MI attenuated by miR-101 induced injury
through targeting DDIT4 to modulate autophagy, which
implicated miR-101 or DDIT4 as targets for MI. Likewise,
miR-126 downregulation will lead to the overactivation of
myocardial autophagy induced by Beclin-1, an autophagy-
related protein (Shi et al., 2020). MiR-21 suppresses the
inflammatory responses in the early phase of MI through
targeting KBTBD7 and attenuating MKK3/6 activation of
immune cells, thus avoiding excessive scar formation and
improving cardiac function (Yang et al., 2018, 7). One study
found that miR-26b alleviates inflammatory response and
myocardial remodelling in mice with MI by suppressing the
MAPK pathway by binding to PTGS2 (Ge et al., 2019). These
inflammatory and autophagy miRNAs might be potent
therapeutic targets in the setting of MI.

4.4 LncRNA/circRNA–miRNA-Mediated
Interaction
The development of human genome sequencing and annotation
technologies has indicated that the human genome comprises
numerous non-coding lncRNA regions (Castellanos-Rubio and
Ghosh, 2019). lncRNAs refer to RNA molecules over 200 bp in
length without protein-coding potential (Beermann et al., 2016).
Additionally, the new regulatory mechanism for lncRNA/
circRNA, miRNA, and mRNA has aroused concerns (Hansen
et al., 2013; Schmitz et al., 2016). The interaction of lncRNAs and
circRNAs with miRNAs influences related mRNA expression. As
we know, lncRNAs and circRNAs both contain complementary
binding sites to miRNAs and act as endogenous miRNA sponges;
miRNAs in turn interact with mRNAs, serving as negative
regulators of protein expression. Therefore, LncRNAs and
circRNAs function as molecular regulators by determining
gene expression.

lncRNAs take up a large proportion of genes that have
differential expression in response to different stress stimuli.
After being induced, lncRNAs will regulate downstream
cellular processes such as feedback regulation for essential
stress response proteins (Valadkhan and Valencia-Hipólito,
2016). Although the significance of lncRNA molecules during
various biological processes has been recognised, several details
remain unclear. Presently, experiments concerning the functional
role of lncRNAs were performed under experimental animal
models or by in vitro assays. Some studies revealed the active
role of lncRNAs in cell autophagy (Liang et al., 2020; Zhang and
He, 2020; Li J. et al., 2021), apoptosis (Zhu et al., 2018; Gong et al.,
2019; Zhang D. et al., 2019, Zhang M. et al., 2019, Zhang Y. et al.,
2019; Zhou et al., 2019; Huang L. et al., 2020; Liao et al., 2020; Lv
et al., 2020; Yan et al., 2020; Zhang Y. et al., 2020; Zhou et al.,
2020; Chen Y. et al., 2021; Liu et al., 2021; Zhu et al., 2021a, 1),
cardiac fibrosis (Wang X. et al., 2018, 30; Huang et al., 2019; Sun
F. et al., 2019; Zhang JC. et al., 2019, 21; Lang et al., 2021; Zhang
H. et al., 2021, 155–5), cardiac remodelling (Liu B. et al., 2020;
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Zhang B.f. et al., 2020), inflammation, and angiogenesis (Chen
ZL. et al., 2020; Zhao et al., 2020) (In Figure 3).

Further research on the role of lncRNA in MI and
cardiovascular events can deepen the understanding of the
lncRNA network, contributing to the regulation of gene
expression changes underlying MI, and assist the development
of specific therapies based on the interference of miRNAs and
lncRNA vital to MI.

4.5 CircRNAs and MI
CirRNAs are crucial for the physiology and pathology of
biological systems and are involved in disease development.
CircRNAs refer to a type of non-coding RNAs with higher
stability than linear RNAs because they form a covalently
closed continual loop with resistance against RNase R activity
(Gao et al., 2015). Non-coding RNAs were optimal regulators of
the cardiovascular system, and circRNAs were associated with
CVDs (Wang W. et al., 2019).

Under component derivation, circRNAs can be usually
classified into three categories, namely exon-derived circRNA
(ecircRNA), lariat intron-derived circRNA (ciRNA), and
exon-derived circRNA with retained introns (EIciRNA) (Li
et al., 2015). Most known circRNAs originate from exons (Bei
et al., 2018). CircRNAs maintain high stability and are

abundantly expressed, making them better biomarkers
relative to linear RNAs (Zhou et al., 2018). Simultaneously,
with progress in bioinformatics and high-throughput
sequencing technology, circRNAs have become a research
direction for multiple biological functions and provide novel
diagnostic methods and therapies for CVDs (Sun J.-Y. et al.,
2020).

The present study addresses the regulatory role and functions
of circRNAs, discusses the latest studies, and investigates the role
and the regulatory mechanism of circRNAs in MI. Moreover, the
roles of circRNAs in multiple MI such as myocardial apoptosis
(Wang K. et al., 2017; Cai et al., 2019; Chai et al., 2020; Liu X. et al.,
2020, 29; Wang Y. et al., 2020; Zhai et al., 2020; Chen T.-P. et al.,
2021; Wu Y. et al., 2021; Zhang J. et al., 2021; Zhao B. et al., 2021;
Zhu Y. et al., 2021), autophagy regulation, inflammatory response
(Hu et al., 2020; Zhu Y. et al., 2020; Bian et al., 2021; Cai et al.,
2021, 3), improvement of fibrosis (Zhu et al., 2019; Li F. et al.,
2020; Sun L.y. et al., 2020; Si et al., 2020), and effects of ventricular
remodelling (Garikipati et al., 2019; Cheng et al., 2020) (Gao et al.,
2020; Zhang M. et al., 2020; Tan et al., 2021, 4; Zhao Q. et al.,
2021) have been summarised (Figure 3). circRNAs mediate the
fundamental physiological and pathological MI processes.
Furthermore, since their dynamic changes can exhibit various
disease stages, they are defined as ideal biomarkers. Thus, the

FIGURE 3 | LncRNA/circRNA–miRNA-mediated interaction. (LncRNAs/circRNAs interact with miRNAs to modulate cardiomyocyte apoptosis, cardiac fibrosis,
anglognesis, immunity and autophagy. Pro-factor lncRNAs/circRNAs are marked in blue. Anti-factor lncRNAs/circRNAs are marked in red.) (The left side of the dashed
line represents circRNA, and the right side represents LncRNA).
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present study also summed up the latest development of the role
of circRNAs in MI and for convenience of reference.

5 THE NEW TECHNIQUES AND TARGET
DRUGS OF MI IN EPIGENETICS

The advent of high throughput epigenome mapping technologies
has ushered in a new era of multi-omics where powerful tools can
now delineate and record different layers of genomic output.
Epigenetics play a central role in the regulation of many
important biological processes. Despite significant
technological advances for epigenetic profiling, there is still a
need for a systematic understanding of how epigenetics shapes
biological pathway, and disease pathogenesis (Angarica and Del
Sol, 2017). DNA methylation and histone modifications and
numerous techniques had been invented to analyze epigenetic
processes not only at the level of specific genes, but also to analyze
epigenetic changes that occur in defined regions of the genome as
well as genome-wide. These technologies that are currently
driving the field of epigenetics will greatly facilitate continued
expansion of this exponentially growing discipline of genetics. A
major breakthrough in the analysis of DNAmethylation occurred
with the development of bisulfite methylation sequencing (Wang
and Chang, 2018). It used to be a gold-standard for detection of
DNA methylation largely because it allows identification of 5-
methylcytosine. This leading method of DNA methylation
analysis has led to numerous subsequent methods such as
Methylation Specific PCR and so on. Many proteins interact
with RNA to modulate RNA-based epigenetic processes.
Reaserches usually used the tools available to detect direct and
indirect interactions between specific proteins and RNA in vivo.
This is best achieved through the RNA immunoprecipitation
technique (RIP). The uses of the RIP technique are vast and may
be applied to epigenetics to help unravel the increasingly
appreciated role of RNA in epigenetic processes (Tollefsbol,
2011). Beside, with the rapid development of technology, a
number of epigenetic tests have emerged, such as Infinium
Methylation450/850 BeadChips (450/850K), Methylated DNA
immunoprecipitation-sequencing (MeDIP-Seq), Methylation-
specificPCR (MSP),Pyrosequencing; Reduced representation
bisulfite sequencing (RRBS), EWAS and so on (Feng and Lou,
2019). Researches should strictly choose appropriate detection
methods according to the research direction. The availability of
ultra-deep sequencing of genomic will transform the medical in
analysis of the causes of disease, development of new drugs and
diagnostics fields in the near future (Pareek et al., 2011).

DNA methylation, histone modification, nucleosome
remodeling, and RNA-mediated targeting regulate many
biological processes that are fundamental to the genesis of
cancer. Along with the promising clinical and preclinical
results seen with epigenetic drugs against chromatin
regulators, signifies that it is the central role of epigenetics in
cancer (Dawson and Kouzarides, 2012). Most of the drug
research and development carried out from the perspective of
epigenetics are related to tumors (Asano, 2020). At the same time,

dietary intake has also presented significant influence on human
health and disease development and nutritional modifications
have proven important in prevention, but also the treatment of
disease (Lundstrom, 2019). There are many epigenetic drugs have
been identified in the past decade that effectively prevented or
treated atherosclerosis and myocardial ischemia in several
translational animal models, raising the possibility to combat
coronary heart disease by targeting epigenetic processes also in
humans. We have summarized several epigenetic therapy agents
and strategies that may be associated with myocardial infarction
by searching published reviews, including DNMT inhibitors,
TET2 activators, Histone deacetylase inhibitors (Pickell et al.,
2020), Sirtuin activating compounds, EZH2 inhibitors, BET
inhibitor and other target epigenetic processes in
atherosclerosis and associated vascular diseases (Schiano et al.,
2015; Voelter-Mahlknecht, 2016; Xu et al., 2019). Interestingly,
some dietary compounds, including polyphenols, cocoa, and folic
acid, can modulate DNA methylation status, whereas statins may
promote epigenetic-based control in CVD prevention through
histone modifications (Voelter-Mahlknecht, 2016).
Unfortunately, according to our knowledge, no epigenetically
active agents or drugs targeting histone acetylation and/or
methylation have thus far entered clinical trials for MI, nor
have any of the latter been approved by the US Food and
Drug Administration. The complex relationship between
epigenetic regulation and MI development clearly demands
further studies (Voelter-Mahlknecht, 2016).

6 CONCLUSION AND PERSPECTIVES

MI exhibits the maximum morbidity, mortality, and effect on life
quality among CVDs worldwide. Considerable progress has been
attained in the discovery of MI genetic bases. Though the
prospects entailed by understanding and controlling
transcription through studies on histone and DNA
modifications has received extensive attention, the reading of
histone marks once placed shouldn’t been ignored in. executing
gene expression, including bromodomain extra-terminal ((BET)
(Borck et al., 2020). Some studies suggest that BET-containing
family of epigenetic reader proteins, including BRD2, BRD3,
BRD4 and the testis-restricted BRDT, provides a robust
example of how epigenetic reader proteins can orchestrate
transcriptional programs, provide new insight into mechanism
of action and regulating effect and offer potentially novel
therapeutic strategies in cardiovascular (Lin and Du, 2020; Li
L. et al., 2021). Inhibition of BET epigenetic reader proteins might
thus represent a promising therapeutic strategy to prevent
adverse vascular remodelling (Dutzmann et al., 2021). BRD4,
as a BET family member, plays an important role in critical
biological processes. WU et al. found that BRD4 expression was
up-regulated in human and mouse hypertrophied hearts, and
importantly these effects were modulated by reactive oxygen
species generation (Zhu W. et al., 2020). In one study, it has
been reported that BETs are critical effectors of pathologic cardiac
remodeling via their ability to co-activate defined stress-induced
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transcriptional programs in the heart (Auguste et al., 2020).
Taken together, with the in-depth study of epigenetics, the
secrets of related mechanisms will gradually be revealed.

The research onMI genetics contributes to early detection and
the ability to provide personalised medical care. The MI
pathophysiology would be progressively deciphered,
demonstrating that genetics and epigenetics expedited MI
onset and progression, enriching candidate methods
(Nakatochi et al., 2017). Interactions between the genetic,
epigenetic, and environmental factors constitute the critical
factors of MI onset. The emergence of new genetic methods
such as genome wide association analyses (GWAS) avoided some
of these restrictions. GWAS analyses have exhibited that although
different nationalities have different susceptibility genes and
degrees of MI, multiple crucial loci have been identified for
MI by GWAS (Takeuchi et al., 2012; Wakil et al., 2016).
Epigenetic studies in cardiovascular medicine will improve our
understanding of the molecular pathogenesis of MI and most
importantly, facilitate novel biomarker identification, improved
disease prevention, and new therapeutic strategies in managing
MI. Future research should clarify how epigenetic mechanisms

affect the MI process and prognosis to identify new drug targets
and therapeutic strategies for MI. Although there is no specific
drug for the epigenetic action of MI in clinic, currently available
therapies, such as those using statins to promote epigenetic-based
control in cardiovascular disease prevention through histone
modifications, are already moving towards an exploitation of
these mechanisms.
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