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Pulmonary arterial hypertension (PAH) is a disease leading to right heart failure and death
due to increased pulmonary arterial tension and vascular resistance. So far, PAH has not
been fully understood, and current treatments are much limited. Gene expression profiles
of healthy people and PAH patients in GSE33463 dataset were analyzed in this study.
Then 110 differentially expressed genes (DEGs) were obtained. Afterward, the PPI network
based on DEGs was constructed, followed by the analysis of functional modules, whose
results showed that the genes in the major function modules significantly enriched in
immune-related functions. Moreover, four optimal feature genes were screened from the
DEGs by support vector machine–recursive feature elimination (SVM-RFE) algorithm
(EPB42, IFIT2, FOSB, and SNF1LK). The receiver operating characteristic curve
showed that the SVM classifier based on optimal feature genes could effectively
distinguish healthy people from PAH patients. Last, the expression of optimal feature
genes was analyzed in the GSE33463 dataset and clinical samples. It was found that
EPB42 and IFIT2 were highly expressed in PAH patients, while FOSB and SNF1LK were
lowly expressed. In conclusion, the four optimal feature genes screened here are potential
biomarkers for PAH and are expected to be used in early diagnosis for PAH.
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INTRODUCTION

According to the classification of pulmonary hypertension (PH) of the World Health Organization
(WHO), pulmonary arterial hypertension (PAH) arising from pulmonary vascular diseases is the
first type of PH. The clinical symptoms of PAH mainly include fatigue dyspnea, chest distress, chest
pain, syncope, and right heart failure (Galiè et al., 2015, 2016). In accordance with statistics, 11–50
people out of one million suffer from PAH worldwide (Lau et al., 2017). Common PAH types
encompass idiopathic PAH (IPAH), heritable PAH (HPAH), drug and toxicant–associated PAH,
disease-associated PAH, PAH with long-term calcium channel blocker, pulmonary vein–/blood
capillary–involved PAH, and persistent PH of the newborn PAH (Rosenzweig et al., 2019).

Currently, the diagnosis of PAH includes initial screening through Doppler echocardiography,
followed by the classification of patients by hemodynamics diagnosis, and etiological diagnosis
through ventilation/perfusion scan and nighttime blood saturation determination (Thenappan et al.,
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2018). Risk stratification should be performed on PAH patients
before treatment to evaluate the severe degree. Treatment
measures often vary among patients with different types and
severe degrees, mainly including general measures (rehabilitation
training, vaccination, contraception, etc.), supportive treatment
(anticoagulant, diuretic, etc.), and specific therapy targeting four
PAH-related molecular pathways (Thenappan et al., 2018; Galiè
et al., 2019). However, these treatments can only retard disease
progression, instead of completely healing. With advancement in
PAH diagnostic technology and treatment methods, patients’ 1-
and 3-year survival rates have been remarkably increased (Lau
et al., 2017). However, as shown in a survey on PAH patients
during 2001–2012 in the United States, despite a decrease in

PAH-related hospitalizations, the in-hospital mortality rate
remained the same and the treatment expense increased
dramatically (Anand et al., 2016). Hence, finding an efficient
and economical diagnostic method is helpful to tackle the
problems faced currently and to improve people’s
understanding of the pathogenesis of PAH.

Because of the gradual mature of sequencing technology, gene
sequencing has been widely applied in PAH research. A study
analyzed gene expression profiles of pulmonary tissue and found
different characteristics in gene expression among pulmonary
fibrosis patients with and without PH (Mura et al., 2012). Other
than pulmonary tissue, researching gene expression profiles of the
PAH patients’ peripheral blood is of great utility. For instance,

FIGURE 1 | Technical route in this study.

TABLE 1 | Primer sequence of optimal feature genes.

Primer Forward (5’–39) Reverse (5’–39)

EPB42 CCCCATGGATTTGAAGTGCC AGTGTGACCAGCCTTCCTAGA
IFIT2 AAGCACCTCAAAGGGCAAAAC TCGGCCCATGTGATAGTAGAC
FOSB GTGAGAGATTTGCCAGGGTC AGAGAGAAGCCGTCAGGTTG
SNF1LK GTCCCTCGGAAGGAACTAGC CTCGCGTTTTTCCTTAGCTG
β-actin GTGGGGCGCCCAGGCACCT CTTCCTTAATGTCACGCACGATTG
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Hemnes et al. (Hemnes et al., 2015) unearthed mRNAs to
distinguish vasodilator-responsive PAH (VR-PAH) and
vasodilator–non-responsive PAH (VN-PAH) in the peripheral
blood. Construction of a disease classifier based on patients’ gene
expression data through the machine learning method has been a
hot spot in recent years (Camacho et al., 2018). At present, machine
learning has been widely applied in clinical diagnosis of
cardiovascular diseases, such as coronary artery calcium scoring
(Al’Aref et al., 2019). Integration of key mRNAs and traditional
diagnostic methods may increase the accuracy of the latter. In this
study, we posited that healthy people and PAH patients possess
different characteristics at gene expression level. The dataset of
peripheral blood gene expression of healthy people and PAH
patients was downloaded from the Gene Expression Omnibus
(GEO) database. A support vector machine–recursive feature
elimination (SVM-RFE) machine learning algorithm was applied
to screen feature genes that could identify healthy people and PAH
patients. Afterward, the diagnostic performance of the feature gene-
based SVM classifier was analyzed via receiver operating
characteristic (ROC) curve. Finally, gene expression was tested in
the collected clinical samples. Feature genes in this study can be used
for diagnosis and work as potential biomarkers, providing a
reference for the subsequent research of PAH mechanism.

MATERIALS AND METHODS

Data Source and Technical Route
The gene expression data of the GSE33463 dataset were
accessed from GEO database (http://www.ncbi.nlm.nih.
gov/geo) on 4th April, 2020 (platform No.: GPL6947).
The gene expression data of 41 healthy samples and 72
PAH patients were used in the present study. 72 PAH
patients included 30 IPAH and 42 systemic
sclerosis–associated pulmonary arterial hypertension (SSc-
PAH). In the previous context, the technical route in this
study is shown in Figure 1.

Identification of Differentially Expressed
Genes
To analyze gene expression changes of PAH patients, differential
expression analysis was undertaken on PAH samples with healthy
samples as the control. R package Limma was employed (Ritchie
et al., 2015), and DEGs were screened with |log2FC| > 1, FDR <
0.05 as threshold values.

Enrichment Analyses and Construction of
Protein–Protein Interaction Network
To explore DEG-involved biological functions, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed with R package
clusterProfiler (Yu et al., 2012). A p value < 0.05 and q value
< 0.05 were used to screen significantly enriched items.
Meanwhile, the STRING database (version: 11.0) was used to
build a PPI network of PAH DEGs (Szklarczyk et al., 2019). The

STRING database contains the interaction of known or predicted
proteins/genes. The interaction network between the DEGs was
predicted with an interaction score >0.4 as the threshold value in
this study. The predicted results were visualized through
Cytoscape software (Shannon et al., 2003). MOCODE (a
plugin in Cytoscape) was applied to screen major functional
modules in the PPI network (Chen et al., 2019).

SVM-RFE Analysis
SVM-RFE is a backward feature elimination method (Guyon
et al., 2002; Lin et al., 2017). First, all input features were
taken as a feature set F. A classifier model was built based on
the SVM algorithm, and the model performance was
validated using leave-one-out cross validation (LOOCV).
Meanwhile, the weight |w| of each feature gene in feature set
F was calculated according to the support vector on the SVM
classifier hyperplane. The feature gene ranking the last in weight
was deleted in the next round of SVM-RFE training, and the
remaining feature genes constituted a new feature gene set for re-
ranking in the next training. The step was repeated until the feature
gene set F was 0. Feature genes were sequenced and selected among
PAH DEGs by using the python package sklearn (Pedregosa et al.,
2012). The key parameters were set as follows: estimator selecting
linearSVC, kernel � “linear.” The performance of the PAH classifier
was evaluated by four indexes based on the confusion matrix:
sensitivity, specificity, accuracy, and MCC.

Analysis of Classifier Performance and
Feature Gene Expression
To validate the diagnostic performance of the optimal feature
genes, the ROC curve analysis was performed with R package
timeROC. First, all healthy samples and the PAH samples
were randomly shuffled. Afterward, the predictive efficiency
of the single optimal feature gene and SVM model based on
the optimal feature gene set was validated by the LOOCV.
Finally, the ROC curve was established, and the area under
the curve (AUC) was calculated. The AUC value is one of the
indexes to assess the predictive performance of the model.
Besides, the Wilcoxon test was used to detect the expression
differences of optimal feature genes in healthy samples and
PAH samples. A p value less than 0.05 was considered
statistically significant.

Clinical Sample Collection
This study included 10 PAH patients who received treatment
in Wuxi Huishan District People’s Hospital from February
2020 to February 2021. PAH patients met the following
criteria: in the resting state, mean pulmonary arterial
pressure (mPAP) ≥25 mmHg, pulmonary capillary wedge
pressure (PCWP) ≤15 mm Hg, and pulmonary vascular
resistance (PVR) ≥3 wood units (McLaughlin et al., 2009).
Meanwhile, 10 healthy people without pulmonary disease,
autoimmune disease, or other disease history were recruited
as healthy control. Samples in this study have been approved
by the ethics committee of this hospital. All patients have
signed the informed consent.
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FIGURE 2 | DEGs of PAH patients and DEG functional annotation and enrichment analyses. (A) Volcano plot of differential expression analysis of PAH samples
relative to healthy samples (red dots: significantly highly expressed genes; green dots: significantly lowly expressed genes). (B) PPI network based on PAH DEGs (red
nodes: differentially upregulated genes; blue nodes: differentially downregulated genes); node size represents connectivity of this gene in the PPI network. The larger the
node, the higher is the connectivity, and the smaller the node, the less is the connectivity. (C,D) The major function modules in the PPI network; (E,F) GO function
enrichment analysis for the genes in the top one major function module.
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Determination of Optimal Feature Gene
Expression of Clinical Samples
Peripheral bloodmononuclear cells (PBMCs) were isolated from the
collected peripheral blood samples through human monocyte
separation solution (Axis-Shield, Norway). Following the
manufacturer’s instructions, total RNAs of PBMCs were extracted
with an RNeasy Mini Kit (Qiagen, German). The concentration of
extracted RNA was detected by a NanoDrop One (Thermo Fisher,
USA). Afterward, RNA was reverse-transcribed to obtain cDNA
with the QuantiTect Reverse Transcription Kit (Qiagen, German)
according to the manufacturer’s instructions. Thereafter, two-step
RT-qPCR was performed with the QuantiNova SYBR Green PCR
Kit (Qiagen, German) to detect the expression of optimal feature
genes. Gene primer sequences are listed inTable 1. β-actin was taken
as the internal control. The 2−ΔΔCtmethodwas applied to analyze the
relative expression of target genes. Three groups of biological
replicates were set in each experiment.

Statistical Analysis
After clinical experimental data were obtained, GraphPad
Prism 6.0 was used for analysis. The expression differences of
genes in the control group and experimental group were
tested by using the t test. A p value less than 0.05
indicated statistically significant.

RESULTS

Identification of DEGs in PAH Patients and
Screening of Major Function Modules
Differential expression analysis was undertaken on the gene
expression profiles of healthy samples and PAH samples. A total
of 110DEGswere obtained (61 upregulatedDEGs, 49 downregulated
DEGs) (Figure 2A), whose functions were then predicted by the GO

and KEGG enrichment analyses (Supplementary Figure S1). A PPI
network of DEGs was constructed by using the STRING database
(interaction score >0.4). A total of 81 nodes and 300 interacting pairs
were obtained (Figure 2B). Then, we usedMCODE to screen top two
major functional subsets in the PPI network (Figures 2C,D). In top
one major functional subset, the TLR7, CXCR4, and CX3CR1 genes
were relevant to PAH according to Marasini et al. (2005); Zhang
et al. (2020); Zhang et al., (2021). Functional enrichment analysis
was undertaken on genes in this subset, and it was found that genes
in this subset were mainly enriched in interleukin-2 production,
type I interferon signaling pathway, neuroinflammatory response,
and the regulation of glial cell migration (Figures 2E,F).

All in all, PAH patients had certain changes in the gene
expression level compared with healthy people. The analysis
exhibited that the major function modules in the PPI network
constructed by DEGs may play a part in immune-related
biological functions.

PAH Feature Genes Screened Using
SVM-RFE Analysis
In a bid to screen feature genes that could be used for the PAH
patients’ diagnosis and prognosis prediction, we screened DEGs
using SVM-RFE. The accuracy of the classifier reached 0.938 as
the number of feature genes � 4, 107, 108, and 109, as shown in
Figure 3. The generalization ability of the model declined as the
feature number increased. Therefore, four feature genes (EPB42,
IFIT2, FOSB, and SNF1LK) were finally selected as the optimal
ones. Some data on the four gene-based classifiers are given as
follows: sensitivity (0.927), specificity (0.944), accuracy (0.938),
and the Matthews correlation coefficient (MCC) value (0.867).

Analyses of ROC and Optimal Feature Gene
Expression
For further validation of the diagnostic performance of the four
optimal feature genes, here, we compared the predictive effect of four
optimal feature genes alone and their combined SVMclassifier. ROC
analysis showed that the AUC value of four feature gene-based SVM
classifiers was 0.95, significantly higher than that of four feature
genes alone (Figure 4A). The expression of the four genes was
analyzed based on the GSE33463 dataset to probe their expression in
PAH patients. As demonstrated by Figures 4B–E, EPB42 and IFIT2
were significantly highly expressed in PAH patients, while FOSBwas
remarkably lowly expressed. No marked difference was found in
SNF1LK expression in healthy people and PAH patients. From the
previous results, a combination of the four optimal feature genes
dramatically elevated the diagnostic performance of the model.
Moreover, EPB42, IFIT2, and FOSB expression levels had
marked differences between healthy people and PAH patients.

Validation of the Expression of Optimal
Feature Genes in Clinical Samples
The expression of optimal feature genes was further validated in the
peripheral blood mononuclear cells of PAH patients by collecting

FIGURE 3 | Results of SVM-RFE feature gene selection. X-axis refers to
the number of feature genes in RFE analysis. Y-axis refers to the accuracy of
the model. Blue broken line refers to the tendency of accuracy with the
number of feature genes. Red vertical line refers to the number of optimal
feature genes as the accuracy was the largest.
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clinical samples. The analysis exhibited that the expression of EPB42
and IFIT2 was significantly upregulated in PAH patients while the
expression of FOSB and SNF1LK was markedly downregulated
(Figures 5A–D). The results coincided with the analysis results in
the GSE33463 dataset.

DISCUSSION

In recent years, personalized medicine has become increasingly
popular for evaluating the patients’ prognosis or therapeutic
effect by determining specific disease biomarkers in tissue or

FIGURE 4 | Analyses of ROC and optimal feature gene expression. (A) The diagnostic performance of the four optimal feature genes alone and their combination
evaluated by ROC analysis. (B–E) The expression differences in EPB42, IFIT2, FOSB, and SNF1LK in GSE33463 between normal samples and PAH samples.
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blood (Savoia et al., 2017). It is practicable to apply this method
for disease diagnosis. For example, four potential diagnostic genes
for IPAH were obtained by analyzing the mRNA sequencing data
of lung tissue, as evidenced by Zeng et al. (2021). However, the
transcriptome analysis of blood samples is more feasible than that
of tissue samples in actual clinical diagnosis. Therefore, this work
downloaded gene expression profiles of healthy people and PAH
patients in the GEO database and established the PAH classifier
via a series of bioinformatics analyses.

First, 110 PAH DEGs were obtained by differential expression
analysis. The corresponding PPI network analysis revealed a close
interplay between these genes. Afterward, function enrichment
analysis was performed to analyze the potential functions of these
DEGs and the major function modules of the PPI network. The
results of the GO enrichment analysis of the top1 function
module indicated that several immune-related biological
functions were involved in interleukin-2 production, type I
interferon signaling pathway, and neuroinflammatory
response. Interestingly, dysregulation of cytokines is
considered a significant indicator for PAH patients. Likewise,
it was reported that many PAH patients suffer from autoimmune
and inflammatory diseases (Jafri and Ormiston, 2017; Thenappan
et al., 2018), which is consistent with our GO prediction.

After determining the involved biological functions of DEGs
in PAH progression, we screened the optimal feature genes to be
used for PAH diagnosis through SVM-RFE. SVM-RFE is an
algorithm that combines SVM and recursive feature elimination
(RFE) proposed by Guyon (Guyon et al., 2002). This algorithm is

used for gene selection before classification research. The features
are sorted by the SVM classification criteria based on importance
or contribution, gradually eliminating the lowest-scored features,
iterating repeatedly, and obtaining a subset of features that make
the model the most accurate or with the least error (Duan et al.,
2005). This method is widely used for the analysis of various
disease data (Li et al., 2012; Sahran et al., 2018). Four feature genes
were finally acquired: EPB42, IFIT2, FOSB, and SNF1LK. A
bioinformatics study presented that IFIT2 is a key gene to
SSc-PAH and a potential biomarker, and SSc-PAH is a
common PAH relevant to the connective tissue diseases
(Zheng et al., 2020). A study illustrated that FOSB shows a
highly expressed trend in chronic obstructive pulmonary
disease (COPD), while it is lowly expressed in idiopathic
pulmonary fibrosis (IPF) (Villaseñor-Altamirano et al., 2020).
The FOSB expression varies in different pulmonary diseases and
is an underlying biomarker to distinguish COPD-caused PAH
and other types of PAH. The other two genes have been rarely
researched in PAH.We assessed the expression of optimal feature
genes in the GSE33463 dataset and clinical samples. We
discovered high expression levels of EPB42 and IFIT2 and low
expression levels of FOSB and SNF1LK in PAH patients.
According to the above results, four optimal feature genes
were taken as PAH classifier and potential PAH biomarkers.

Overall, a four optimal feature gene-based PAH classifier was
acquired via a series of bioinformatics analyses based on PAH
gene expression data downloaded from the public database. ROC
curve analysis suggested that the diagnostic performance of the

FIGURE 5 | Validation of the expression of optimal feature genes in clinical samples. (A,B) Relative to healthy people, EPB42 and IFIT2 are significantly highly
expressed in the peripheral blood mononuclear cells of PAH patients. (C,D) Relative to healthy people, FOSB and SNF1LK are significantly lowly expressed in the
peripheral blood mononuclear cells of PAH patients. *p < 0.05.
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classifier was favorable and could accurately distinguish healthy
people and PAH patients. The expression of these genes was then
tested via clinical samples. Few studies have showed concern for the
early diagnosis of PAH, while themost common challenge for clinical
diagnosis is to determine whether patients had PH or PAH. Right
heart catheterization is currently required to accurately diagnose PH
and PAH, and the PAH diagnostic–related classifiers built in this
study provide a direction for early diagnosis of PAH and reduce
patient pain. Clinically, early diagnosis and active intervention can
not only slow the progression of PAH but also reduce the fatality rate
of disability and may even achieve early cure. However, limitations
still exist in this study. For instance, clinical samples were fairly few.
Thus, ROC analysis and other subsequent analyses based on these
samples are not convincing. In addition, we did not exclude the
possibility of other diseases in patients, which may affect the results.
We expect to validate the model in more clinical samples and to
further explore the feasibility of the model in clinical diagnosis by
comparing with the existing methods.
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