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Background: Human brain structural connectivity is an important imaging quantitative
trait for brain development and aging. Mapping the network connectivity to the phenotypic
variation provides fundamental insights in understanding the relationship between detailed
brain topological architecture, function, and dysfunction. However, the underlying
neurobiological mechanism from gene to brain connectome, and to phenotypic
outcomes, and whether this mechanism changes over time, remain unclear.

Methods: This study analyzes diffusion-weighted imaging data from two age-specific
neuroimaging cohorts, extracts structural connectome topological network measures,
performs genome-wide association studies of themeasures, and examines the causality of
genetic influences on phenotypic outcomes mediated via connectivity measures.

Results: Our empirical study has yielded several significant findings: 1) It identified genetic
makeup underlying structural connectivity changes in the human brain connectome for
both age groups. Specifically, it revealed a novel association between the minor allele (G) of
rs7937515 and the decreased network segregation measures of the left middle temporal
gyrus across young and elderly adults, indicating a consistent genetic effect on brain
connectivity across the lifespan. 2) It revealed rs7937515 as a genetic marker for body
mass index in young adults but not in elderly adults. 3) It discovered brain network
segregation alterations as a potential neuroimaging biomarker for obesity. 4) It
demonstrated the hemispheric asymmetry of structural network organization in genetic
association analyses and outcome-relevant studies.

Discussion: These imaging genetic findings underlying brain connectome warrant further
investigation for exploring their potential influences on brain-related complex diseases,
given the significant involvement of altered connectivity in neurological, psychiatric and
physical disorders.
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1 INTRODUCTION

Brain structural connectivity is a major organizing principle of
the nervous system. Estimating interregional neural connectivity,
reconstructing geometric structure of fiber pathways, and
mapping the network connectivity to corresponding inter-
individual variabilities provide fundamental insights in
understanding detailed brain topological architecture, function
and dysfunction. A large body of research has been devoted to
extracting and investigating macro-scale brain networks from
diffusion-weighted imaging (DWI) data (Xie et al., 2018; Jiang
et al., 2019; van den Heuvel et al., 2019; Bertolero et al., 2019;
Elsheikh et al., 2020), and various behavioral, neurological and
neuropsychiatric disorders have been linked to the disrupted
brain connectivity (Jiang et al., 2019; van den Heuvel et al., 2019).
As structural changes of brain connectivity are phenotypically
associated with massive complex traits across different categories,
the brain-wide connectome has been extensively studied.

It is worth noting that human brain connectome re-configures
its network structure dynamically and adaptively in response to
genetic, lifestyle, environmental factors (Cohen and D’Esposito,
2016; Cauda et al., 2018), brain development and aging (Sala-
Llonch et al., 2015; Alloza et al., 2018; Varangis et al., 2019).
However, the underlying neurobiological mechanism from gene
to brain connectome, and to cognitive and behavioral outcomes,
and whether this mechanism changes over time, remain unclear.
To bridge this gap, we perform a genetic study of brain
connectome phenotypes on two different age-specific cohorts:
one contains healthy young adults (age: 28.7 ± 3.6), and the other
contains elderly participants (age: 73.8 ± 7.0). Our goal is to
identify genetic factors affecting brain connectivity and examine
their consistency and discrepancy between these two age-specific
groups.

Emerging advances in multimodal brain imaging, high
throughput genotyping and sequencing techniques provide
exciting new opportunities to ultimately improve our
understanding of brain structure and neural dynamics, their
genetic architecture and their influences on cognition and
behavior (Shen and Thompson, 2020). Present studies
investigating direct associations among human connectomics,
genomics and clinical phenotyping are primarily focused on four
aspects: 1) estimating genetic heritability of basic connectome
measures such as number of fibers, length of fibers and fractional
anisotropy (FA) (Jahanshad et al., 2013; Thompson et al., 2013;
Elliott et al., 2018); 2) discovering pairwise univariate associations
between single nucleotide polymorphisms (SNPs) and imaging
phenotypic traits such as above mentioned basic connectome
measures at each edge (Jahanshad et al., 2013; Karwowski et al.,
2019) and white matter properties at each voxel (Kochunov et al.,
2010; Alloza et al., 2018; Guo et al., 2020); 3) discovering pairwise
univariate associations between SNPs and clinical phenotypes
such as cognitive or behavioral outcomes (Jahanshad et al., 2013;
Elsheikh et al., 2020); and 4) discovering pairwise univariate
associations between basic connectome measures and clinical
phenotypes (Jiang et al., 2019; van den Heuvel et al., 2019).

Among the studies mentioned above, there exist two major
limitations. First, these studies were conducted based on basic

connectome measures such as number of fibers, length of fibers
and FA, but the complex-network attributes were overlooked,
which included network segregation, integration, centrality and
resilience and important network components such as hubs,
communities, and rich clubs (Sporns, 2013). These attributes
were extensively adopted to detect network integration and
segregation, quantitatively measure the centrality of network
regions and pathways, characterize patterns of local anatomical
circuitry, and test resilience of networks to insult (Rubinov and
Sporns, 2010). Second, these studies performed analyses by
examining the association between an independent variable
(e.g., SNP) and a dependent variable (e.g., cognitive or
behavioral outcome), without taking into consideration the
mediator(s) linking these variables (Baron and Kenny, 1986).
Mediation analysis can help identify the underlying mechanism
of outcome-relevant genetic effects implicitly mediated by
neuroimaging phenotypes (e.g., connectome measures). Of
note, mediation analysis requires the independent variable to
be significantly associated with both the dependent variable and
the mediator. This makes applying it in brain neuroimaging
studies a challenge due to the modest effect size of an
individual genetic variant on both behavioral and imaging
phenotypes (Saykin et al., 2015; Cong et al., 2018), as well as
limited size of the sample with all diagnostic, imaging and genetic
data available.

With the demand of measuring complex-network attributes, a
few recent genome-wide association studies (GWAS) (Bertolero
et al., 2019; Elsheikh et al., 2020) recognized the first problem
mentioned above and adopted quantitative measurement
approaches for complex-network attributes, and treated the
attributes as neuroimaging traits for the explorations of
complex imaging genomic associations. They successfully
identified a number of loci susceptible for Alzheimer’s disease
(Elsheikh et al., 2020), and demonstrated the associations
between loci and segregated network patterns, which may be
involved in brain development, evolution, and disease (Bertolero
et al., 2019). However, a notable limitation is that these studies
only focus on the brain networks of either young or elderly
participants, as a result, their study outcomes are lack of
validations in multiple data sets. Since there is an age-related
discrepancy for genetic effects on human connectome alterations
across lifespan (Varangis et al., 2019), it remains an under-
explored topic to examine genetic consistency and discrepancy
for complex-network attributes among cohorts different in age.
Another factor that may cause discrepancy in the network
architecture is the hemispheric asymmetry (Jiang et al., 2019),
and the hemispheric asymmetry of network organization has
been linked to development processes (Zhong et al., 2017) and
neuropsychiatric disorders (Sun et al., 2017). It remains a
challenge to understand the genetic basis for the network
attributes of two hemispheres as they may be distinctively
correlated to cognition level, physical and psychological
development.

Among a large number of complex-network attributes, it has
been well documented in recent literatures (Cohen and
D’Esposito, 2016; Xie et al., 2018) that segregation of neural
information such as modularity, transitivity, clustering
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coefficients and local efficiency represent the connectivity of local
network communities that are intrinsically densely connected
and strongly coupled. A converging evidence (Cohen and
D’Esposito, 2016; Karwowski et al., 2019) is shown that local,
within-network communication is critical for motor execution,
whereas integrative, between-network communication is critical
for measuring connectome (Bertolero et al., 2019). Thus, network
segregation is thought to be essential for describing and
understanding of complex neural connectome systems

(Sporns, 2013). In addition, segregation measures are highly
reliable and heritable network attributes (Xie et al., 2018), and
these measures have been linked to the disruption of neural
network connectivity in brain development, evolution, disease
(Cohen and D’Esposito, 2016; Mak et al., 2016; Bertolero et al.,
2019), and immunodeficiency (Bell et al., 2018). Given the
importance of network segregation, in this study, we first
focus on quantifying measures of network segregation,
analyzing heritability of segregation measures and performing

FIGURE 1 | Flowchart of brain connectome GWAS design. Abbreviations: SNPs, single nucleotide polymorphisms; ADNI, Alzheimer’s disease neuroimaging
initiative; HCP, human connectome project; dbGaP, database of genotypes and phenotypes; QC, quality control; ROI, region of interest; iQT: imaging quantitative trait;
BMI, body mass index.
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genetic association analyses by treating them as neuroimaging
traits. Then, our next priority is to explore the genetic basis for the
rest of the complex-network attributes (e.g. integration, centrality
and resilience).

To overcome the challenges mentioned above, this study aims
to develop and implement computational and statistical strategies
for a systematic characterization of structural connectome
optimized for imaging genetic studies, and to determine
genetic basis of structural connectome. Specifically, the
framework is organized and described in Figure 1, and the
primary goals are to address the following six critical issues: 1)
construction of basic network connectivity with diffusion
tractography, 2) systematic extraction of complex-network
attributes, 3) heritability analysis of complex-network
attributes, 4) genome-wide association studies of quantitative
endophenotypes, 5) examination of mediation effect that
intermediately bridges genes and outcomes, and 6)
identification of outcome-relevant neuroimaging biomarkers.
Given the enormously broad scope of brain connectome, our
focus is on studying 1) static tractography-based structural
connectome and complex-network attributes characterizing
segregation, integration, centrality and resilience; 2) genetic
consistency and discrepancy for complex-network attributes
among cohorts different in age; and 3) mediation effects of
network attributes on outcome-relevant genetics.

The major contributions of this study are fivefold:

• New challenges in human connectome: we elucidate the
neurobiological pathway from SNPs to brain connectome,
and to phenotypic outcomes. By integrating connectomics
and genetics, this study provides new genetic mechanism
insights into understanding detailed brain topological
architecture, and encoding (or mapping) inter-regional
connectivity in the genome.

• New genetic insights for brain phenotype: we validate the
study outcomes by examining genetic consistency and
discrepancy for complex-network attributes between
young adult cohort and elderly adult cohort, which
illustrates the genetic basis for human connectome in
different life stages.

• Biological findings: we treat network segregation measures
as imaging quantitative traits (iQT), and demonstrate that
body mass index [BMI, which is related to multiple complex
diseases (Emmerzaal et al., 2015; Stenholm et al., 2017)] is
influenced by a locus rs7937515 with network segregation
attributes (e.g., clustering coefficient and local efficiency)
measured at the left middle temporal gyrus as mediators,
which reveals the intermediate effects of brain connectivity
in the pathway of outcome-relevant genetics.

• Biological findings: we discover network segregation as an
important neuroimaging biomarker for BMI and weight-
related disorders, and illustrate the importance of the left
middle temporal gyrus for BMI.

• Biological findings: we demonstrate the hemispheric
asymmetry of structural network organization in genetic
association analyses and outcome-relevant studies.

2 MATERIALS AND METHODS

2.1 Study Datasets
With the purpose of examining genetic consistency and
discrepancy for complex-network attributes between young
and elderly adults, and illustrating genetic basis for human
connectome in different life stages, our analysis was
respectively conducted on Human Connectome Project (HCP)
database for young adults and Alzheimer’s disease Neuroimaging
Initiative (ADNI) database for elderly adults.

2.1.1 HCP Young Adult Dataset
HCP (Van Essen et al., 2013) is a major endeavor to map
macroscopic human brain circuits and their relationship to
behavior in a large population. It aims to reveal the neural
pathways that underlie brain function and behavior, by
acquiring and analyzing human brain connectivity from high-
quality neuroimaging data in healthy young adults. The HCP
datasets serve as a key resource for the neuroscience research
community, as it provides valuable resources for characterizing
human brain connectivity and function, their relationship to
behavior, and their heritability and genetic underpinnings,
which enables discoveries of how the brain is wired and how
it functions in different individuals.

2.1.2 ADNI Elderly Adult Dataset
Alzheimer’s disease Neuroimaging Initiative (ADNI) database
was initially launched in 2004 as a public-private partnership, and
led by the Principal Investigator Michael W. Weiner, MD. One
primary aim of ADNI has been to examine whether serial
imaging biomarkers extracted from MRI, positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early AD.
For up-to-date information, see www.adni-info.org.

2.2 Demographics
We initially downloaded 981 subjects from HCP database,
including a part of twin subjects, then one individual from

TABLE 1 | Participant characteristics in HCP and ADNI genetic association
analyses.

Cohort HCP ADNI p

Number 275 178 —

Gender (M/F) 137/138 108/70 3.02E-02
Age 28.69 ± 3.64 73.76 ± 6.95 5.56E-175
Education 15.14 ± 1.64 16.03 ± 2.78 1.41E-04
MMSE 29.09 ± 1.04 27.37 ± 2.54 2.28E-15
Weight 77.70 ± 17.06 77.71 ± 15.92 1.00
BMI 25.99 ± 4.73 27.28 ± 5.24 8.87E-03
clus coef ROI 087 0.51 ± 0.05 0.29 ± 0.13 1.41E-55
loc effi ROI 087 0.52 ± 0.05 0.39 ± 0.17 1.20E-18

p-values were assessed because of significant differences among diagnosis groups,
and were computed using one-way ANOVA (except for gender using χ2 test). The p
values < 0.05 are shown in bold. HC � healthy control; EMCI � early mild cognitive
complaint; LMCI � late mild cognitive complaint; AD � Alzheimer’s disease.
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each family was randomly selected and excluded. As a result, 275
unrelated participants were selected for further population-based
genetic analyses. ADNI data were collected by selecting the
participants who had both genotype data and baseline DWI
data at their first visit, family relationship was also removed in
the same way as described above for HCP data filtration. Detailed
characteristic information and the number of subjects in each
data cohort are shown in Table 1. In this study, we analyzed a
total of 275 participants (age: 28.7 ± 3.6; gender: 137 male, 138
female; education: 15.1 ± 1.6) from the HCP database, and a total
of 178 participants (age: 73.8 ± 7.0; gender: 108 male, 70 female;
education: 16.0 ± 2.8) from the ADNI database. This study was
approved by institutional review boards of all participating
institutions, and written informed consent was obtained from
all participants or authorized representatives.

2.3 Genotyping Data Acquisition and
Processing
2.3.1 HCP Young Adults Dataset
HCP samples were genotyped usingMEGA array with PsychChip
and ImmunoChip content. 1,141 genotype data was downloaded
from dbGAP. Quality control was performed in PLINK v1.90
(Purcell et al., 2007) using the following criteria: 1) call rate per
marker ≥ 98%, 2) minor allele frequency (MAF) ≥ 5%, 3) Hardy
Weinberg Equilibrium (HWE) test p ≤ 1.0E-6, and 4) call rate per
participant ≥ 98%. Variants with no “rs” number, and samples
with evidence of identity-by-descent (IBD) ≥ 0.25 or
heterozygosity rate ±3 standard deviations from the mean
were further excluded. Following quality control process, the
number of samples with genotype data reduced to 327, we then
checked the missing data by matching subjects information
between phenotype and genotype data. As a result, this study
comprised a total of 327 unrelated subjects and 515,956 SNPs.

2.3.2 ADNI Elderly Adults Dataset
Genotyping data were obtained from the ADNI database (adni.
loni.usc.edu). They were quality-controlled as described in (Cong
et al., 2020; Yao et al., 2020). We then performed imputation to
maximize the number of overlaps between HCP GWAS findings
and ADNI SNPs, see (Yao et al., 2019) for details. Briefly,
genotyping was performed on all ADNI participants following
the manufacturer’s protocol using blood genomic DNA samples
and Illumina GWAS arrays (610-Quad, OmniExpress, or
HumanOmni2.5-4v1) (Saykin et al., 2010). Quality control was
performed in PLINK v1.90 (Purcell et al., 2007) using the
following criteria: 1) call rate per marker ≥ 95%, 2) minor
allele frequency (MAF) ≥ 5%, 3) Hardy Weinberg Equilibrium
(HWE) test p ≤ 1.0E-6, and 4) call rate per participant ≥ 95%. In
total, 5,574,300 SNPs were included for further targeted genetic
association analysis.

2.4 Tractography andNetwork Construction
2.4.1 Tractography
We downloaded high spatial resolution DWI data and genotype
data from both HCP and ADNI databases. DWI data from HCP
was processed following the MRtrix3 guidelines (Tournier et al.,

2012), detailed procedures have been previously reported (Xie
et al., 2018) and are briefly described below: 1) generating a tissue-
segmented image; 2) estimating the multi-shell multi-tissue
response function and performing the multi-shell multi-tissue
constrained spherical deconvolution; 3) generating the initial
tractogram and applying the successor of Spherical-
deconvolution Informed Filtering of Tractograms (SIFT2)
methodology (Smith et al., 2015); and 4) mapping the SIFT2
output streamlines onto the MarsBaR automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) with 90
ROIs to produce the structural connectome with edge value
equal to the mean fractional anisotropy (FA).

DWI data from ADNI was acquired following the scanning
protocols described in (Elsheikh et al., 2020), and processed
following the procedures discussed in (Yan et al., 2018).
Tractography was performed in Camino (Cook et al., 2006)
based on white matter fiber orientation distribution function
(ODF). As Camino adopted a deterministic approach,
streamlines were modeled with a multi-tensor modeling
approach (voxels fitted up to three fiber orientations, this way
accounting for most of the fiber-crossings) of the ODF data. To
generate a comparable tractography, the streamlines were also
mapped onto AAL atlas with 90 ROIs to produce the structural
connectome with edge value equal to the mean FA.

2.4.2 Network Construction
Network was created and defined by connectivity matrixMwhere
Mij stores the connectivity measure between ROIs i and j. As
described in the previous section, we considered FA for defining
Mij. Since the diffusion tensor is a symmetric 3 × 3 matrix, it can
be described by its eigenvalues (λ1, λ2 and λ3) and eigenvectors
(v1, v2 and v3) for tractography analysis. FA at edge-level is an
index for the amount of diffusion asymmetry within a voxel,
defined in terms of its eigenvalues:

FA �
����������������������������
λ1 − λ2( )2 + λ2 − λ3( )2 + λ1 − λ3( )2

2 λ21 + λ22 + λ23( )
√

. (1)

Thus, mean FA is a normalized measure of the fraction of the
tensor’s magnitude due to anisotropic diffusion, corresponding to
the degree of anisotropic diffusion or directionality.

2.5 Complex-Network Attributes
With an undirected and weighted connectivity matrixM (defined
in Section 2.4.2), we assessed a comprehensive set of network
features such as segregation (e.g., transitivity, clustering
coefficients, local efficiency and modularity), integration (e.g.,
global efficiency), centrality (e.g., eigen centrality) and resilience
(e.g., assortativity) of the structural connectome using Brain
Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010).
Given the importance and priority of segregation measures in
this study, we only introduced the definitions of segregation
measures, and the definitions of the rest complex-network
attributes were explained in (Rubinov and Sporns, 2010).

For the following sub-sections, we define N as the set of all
nodes in the network, n as the number of nodes, ti as geometric
mean of triangles around node i (ti � 1

2∑j,h∈N(MijMihMjh)1/3),
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ki as weighted degree of i (ki � ∑j∈NMij), aij as the connection
status between i and j aij � 1 when link (i, j) exists, aij � 0
otherwise), dij as shortest weighted path length between i and
j(dij � ∑auv∈gi-j

f(Muv), where f is a map from weight to length
and gi-j is the shortest weighted path between i and j).

2.5.1 Transitivity
Transitivity measures the ratio of triangles to triplets in the
network. By following the definition in (Newman, 2003):

T � ∑i∈N2ti∑i∈Nki ki − 1( ), (2)

where T is the transitivity measured at network level.

2.5.2 Clustering Coefficient
Clustering coefficient measures the degree to which nodes in a
network tend to cluster together by evaluating the fraction of
triangles around a node and is equivalent to the fraction of node’s
neighbors that are neighbors of each other. By following the
definition in (Onnela et al., 2005):

C � 1
n
∑
i∈N

Ci � 1
n
∑
i∈N

2ti
ki ki − 1( ), (3)

where Ci is the clustering coefficient of node i and C is the
clustering coefficient measured at network level.

2.5.3 Local Efficiency
Local efficiency measures the efficiency of information transfer
limited to neighboring nodes by evaluating the global efficiency
computed on node neighborhoods. By following the definition in
(Latora and Marchiori, 2001):

Eloc � 1
n
∑
i∈N

∑j,h∈N,j≠i MijMih djh Ni( )[ ]−1( )1/3

ki ki − 1( ) , (4)

where Eloc is the local efficiency of node i, and djh(Ni) is the
length of the shortest path between j and h, that contains only
neighbors of i.

2.5.4 Modularity
Modularity measures network segregation into distinct networks,
and it is a statistic that quantifies the degree to which the network
may be subdivided into such clearly delineated groups (Newman,
2006):

Q � 1
l
∑
i,j∈N

Mij − kikj
l

[ ]δmi,mj, (5)

where Q is the modularity measured at network level, mi is the
module containing node i, and δmi,mj � 1 if mi � mj, and 0
otherwise.

2.6 Heritability Analysis
Heritability analysis focused on identifying highly heritable
measures of structural brain networks, and it was a
commonly adopted and critical measurement to describe

properties of the inheritance of iQT. An iQT such as
network attributes must be heritable, which was defined as
the proportion of phenotypic variance due to genetic
differences between individuals (Jørstad and Næevdal, 1996).
In this study, we estimated heritability of four segregation
measures from twin subjects in the HCP young adult cohort
(N � 350, 232 mono-zygotic twins, 118 di-zygotic twins) and
SOLAR-Eclipse software (Kochunov et al., 2015) was employed
for this task. The inputs to this software included phenotype
traits, covariates measures and a kinship matrix indicating the
pairwise relationship between twin individuals. A maximum
likelihood variance decomposition method was applied to
estimate the variance explained by additive genetic factors
and environmental factors respectively. The output from
SOLAR-Eclipse included heritability (h2), standard error and
the corresponding significance p-value for each feature. We
estimated the heritability of connectomic features, including
transitivity, clustering coefficients, local efficiency and
modularity. Since many previous studies had reported the
effect of age (linear nonlinear), gender and their interactions
on structural brain connectivity (Burzynska et al., 2010; Gong
et al., 2011; Lopez-Larson et al., 2011; Zhao et al., 2015), all
heritability analyses were performed with age, age2, sex, age×sex
and age2×sex as covariates. In addition, we extracted the total
variance explained by all covariate variables.

2.7 Brain Connectome Genetic Association
Analysis
2.7.1 HCP Cohort
GWAS on the brain network segregation measures of the 90 ROIs
were performed using linear regression under an additive genetic
model in PLINK v1.90 (Purcell et al., 2007). Age, gender and
education were included as covariates. Our GWAS was focused
on analyzing the following network segregation measures: 1)
modularity and transitivity, which were network-level
measures; and 2) clustering coefficient and local efficiency,
which were node-level measures. As a result, in total, we have
2 + 90 × 2 � 182measures. Our post-hoc analysis used Bonferroni
correction for correcting the genome-wide significance (GWS)
for the number of quantitative traits (i.e., 5E-8/182 � 2.75E-10).

2.7.2 ADNI Cohort
Genetic findings of the segregation measures from HCP young
adult dataset were treated as genotypic candidates and
segregation measures at specific ROIs as phenotypic
candidates, we further examined in ADNI elderly adult dataset
regarding their associations. Apart from including age, gender
and education as covariates, we also added diagnostic status into
the linear regression model, as a large part of ADNI participants
suffered from cognitive disorders. By validating the genetic
findings from HCP data using ADNI participants, we
examined genetic consistency and discrepancy for network
segregation attributes between young and elderly adults, which
illustrated the consistency and discrepancy of genetic basis for
human connectome in different life stages.
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In addition, the validated genetic findings were used to further
explore connectivity variances with all important complex-
network attributes excepting segregation measures such as
integration (e.g., global efficiency and network density),
centrality (e.g., eigen centrality) and resilience (e.g.,
assortativity), and we examined the targeted genetic basis on
certain brain ROIs (e.g., middle temporal gyrus). As previously
stated, linear regression models were used. In particular, we
applied additive genetic models implemented in PLINK v1.90,
with age, gender, education as covariates.

2.8 Mediation Analysis
To examine the causal assumption, we followed the Baron-Kenny
procedure (Baron and Kenny, 1986) to perform standard
mediation analysis to identify the mediated effect, and we
treated iQTs (e.g., network segregation measures) as mediating
variables, which intermediately linked the pathological path from
genetic findings to clinical phenotypes. Specifically, we
constructed a set of candidate SNPs which were found
significantly associated to segregation measures in both young
and elderly participants, and we constructed a set of candidate
clinical phenotyping information by extracting overlapped
clinical outcomes collected in both HCP and ADNI databases.
We then employed the mediation model to detect the indirect
effect of loci on clinical outcomes via iQT.

Specifically, mediation analysis was performed using the non-
parametric bootstrap approximation with the R “mediation”
package developed by Imai et al. (2010). Let y be the
dependent variable which was a clinical outcome in our study,
x be the independent variable which was a candidate SNP, z be the
covariates (age, gender and education), and M be the mediating
variable which was brain iQT. The mediation analysis was
conducted in 3 steps:

1) fit a linear model to regress the mediating variable M against
SNP x while controlling for z;

2) fit a linear model to regress the clinical outcome y against SNP
x while controlling for z;

3) adopted the non-parametric bootstrap approximation to
estimate the direct effect, mediation effect, proportion of
total effect via mediation, their 95% confidence intervals
(CI) and p values, by conducting 1,000 simulations.

2.9 Outcome-Relavent Brain Connectome
Association Analysis
To discover the outcome-relevant biomarkers which mapped
brain connectivity alterations to cognitive or behavioral
outcomes, we performed pairwise univariate association
analysis between network segregation attributes and outcome
data. We selected BMI and Mini-Mental State Examination
(MMSE) as outcomes as they were not only measures available
in both HCP and ADNI cohorts but also important quantitative
traits related to complex diseases such as weight-related disorders
as well as neurological and psychiatric disorders. We used linear
regression to regress the phenotypic outcomes against network
segregation measures for both HCP and ADNI datasets, and

explored outcome-relevant brain neuroimaging biomarkers. By
comparing young and elderly participants, we illustrated the
consistency and discrepancy of human brain connectome in
different ages regarding on BMI and MMSE variations.

3 RESULTS

3.1 Heritability of Network Segregation
As illustrated in Figure 1, we examined segregation measures
estimated at both network-level and node-level prior to GWAS.
All of the segregation measures such as clustering coefficients
(node-level), local efficiencies (node-level), transitivity (network-
level) and modularity (network-level) showed significantly high
heritability after Bonferroni correction
(p<0.05/182�2.75E − 04). The mean (±std) heritability of 182
segregation measures (h2 score) was 0.81 (±0.05), and more
detailed results of heritability analysis were listed in
Supplementary Table. We included all 182 segregation
measures in the subsequent GWAS analysis.

3.2 GWAS of Network Segregation in HCP
Young Adults
In the HCP cohort, genome-wide associations between 515, 956
SNPs and 182 structural network segregation measures were
assessed under the additive genetic model and controlled for
age, gender and education. GWAS identified 20 significant
associations between 10 SNPs and 7 segregation measures
(Table 2), after correcting the genome-wide significance
(GWS) for the number of phenotypes using Bonferroni
method (i.e., p<5E − 08/182�2.75E − 10). Respectively shown
in Figure 2 were Manhattan plots of GWAS results of clustering
coefficient and local efficiency measured in left middle temporal
gyrus. GWAS of HCP data showed high consistency for clustering
coefficient and local efficiency, where nine SNP-ROI associations
were discovered for these two segregation measures. After
Bonferroni correction, there was no significant finding for the
network level segregationmeasures (i.e., transitivity andmodularity).

3.3 Targeted Genetic Association of
Segregation in ADNI Elderly Adults
Given the list of significant findings from the aforementioned
GWAS of HCP segregation measures, we further examined their
statistical significance in the ADNI cohort to identify brain
network relevant genetic variants which were consistent for
brain aging. We assessed the associations of 15 out of 20 HCP
GWAS findings in ADNI cohort, as three SNPs (rs4841664,
rs1461192 and rs147446959 are corresponding to 5
associations in Table 2) were not included in ADNI
genotyping data. Associations of rs7937515 with clustering
coefficient and local efficiency measured in left middle
temporal gyrus were duplicated and validated in ADNI cohort
with p values of 1.63E-03 and 1.34E-03, respectively, where the
Bonferroni corrected significant level p < 0.05/15�3.33E − 03
was applied (Table 2).

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7829537

Cong et al. Genetic Influence Underlying Brain Connectivity

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The minor allele G of rs7937515 (rs7937515-G) was associated
with lower level of both clustering coefficient and local efficiency,
compared to its major allele A (Figure 3). We will discuss the risk
effect of rs7937515-G on brain function and dysfunction in the
discussion section.

3.4 Mediation Analysis
According to the genetic association results from the HCP and
ADNI subjects, we identified a common genetic finding SNP
rs7937515, which was associated with two segregation measures
in left middle temporal gyrus (e.g., clustering coefficient and local
efficiency). In addition, we extracted two common behavioral and
cognitive outcome measures (e.g., BMI and MMSE) by
comparing the outcome evaluation methods across the HCP
and ADNI databases. Thus, in this section, we had two major
focuses: 1) exploring the genetic effect of SNP rs7937515 on
outcomes including BMI andMMSE, and gaining deeper insights
to the molecular mechanisms of the identified genetic variant,
and 2) examining the mediated effect of iQTs (e.g., segregation
measures) and illustrating their implicit effects in Eq. 1.

To achieve those two goals, mediation analysis of outcome was
performed for evaluating both the direct and implicit effects of
rs7937515 on outcomes (i.e., BMI andMMSE) through segregation
measurements in left middle temporal gyrus. Mediation analysis
required the independent variable (i.e., rs7937515) to be
significantly associated with both the dependent variable
(i.e., BMI or MMSE) and the mediator (i.e., segregation

measurements). Below we respectively reported the mediation
results analyzed from both HCP and ADNI data.

For the first focus, the minor allele G of rs7937515 was
significantly associated with the increased BMI in HCP cohort
(p � 1.62E-03; Figure 4A). The same increasing trend was also
observed from the ADNI data, although the association between
rs7937515 and BMI was not significant (p � 0.22; Figure 4B). For
the second focus, Figure 5 illustrated the results of mediation
analysis with BMI as an outcome measure, from which both
clustering coefficient and local efficiency of the left middle
temporal gyrus demonstrated the significant intermediate roles
between rs7937515 and BMI, with mediation effects of 0.98 (95%
CI � [0.06, 2.29], p � 3.60E-02) and 0.99 (95%CI � [0.02, 2.11],
p � 4.60E-02), respectively. There was no significant association
between rs7937515 with MMSE in the HCP young adult dataset,
so no mediation analysis regarding MMSE was performed. In the
ADNI elderly adult dataset, there were no significant associations
observed between rs7937515 with BMI nor MMSE; therefore it
was not necessary to further examine mediation effects.

Since the brain can be viewed as a predictor, a mediator, or
outcome of a health condition (e.g., obesity) (Lowe et al., 2019), it
is unclear whether the brain regulates the condition (e.g.,
structural connectome alteration considered as a mediator for
a physical condition such as BMI), or, conversely, brain is affected
by the condition. For completeness, we also explored the potential
reciprocal relationship from the other direction. The above
experiment was repeated with BMI as a mediator and

TABLE 2 | Significant associations between SNPs and segregation measures: statistics in the HCP and ADNI cohorts.

Segregation measure ROI CHR SNP BPa Closest geneb HCP ADNI

Beta p Beta Pc

Clustering coefficient FMidO_R 6 rs6930337 148788006 — −0.36 1.25E-10 −0.10 1.65E-01
18 rs1940608 5927441 TMEM200C −0.39 8.00E-12 0.09 2.15E-01
18 rs4798416 5930979 TMEM200C −0.39 7.52E-12 0.09 2.15E-01

FMedO_R 10 rs2104994 5273767 AKR1C4 −0.37 7.71E-11 −0.10 1.98E-01
TPMid_L 4 rs9994092 66436 114 — −0.37 1.51E-10 −0.05 4.71E-01

4 rs10032124 66485 112 — −0.39 8.26E-12 −0.04 5.68E-01
8 rs4841664 11859 985 DEFB134/DEFB135/ −0.38 7.16E-11 — —

DEFB136
11 rs7937515 71841 325 ANAPC15/LRTOMT/ −0.37 1.09E-10 −3.20 1.63E-03

FOLR3/LAMTOR1
11 rs1461192 130043580 ST14 −0.40 5.54E-12 — —

Local efficiency FMidO_R 6 rs6930337 148788006 — −0.38 4.68E-11 −0.07 3.51E-01
18 rs1940608 5927441 TMEM200C −0.39 7.75E-12 0.10 2.02E-01
18 rs4798416 5930979 TMEM200C −0.39 7.36E-12 0.10 2.02E-01

FMedO_L 10 rs2104994 5273767 AKR1C4 −0.37 1.56E-10 −0.11 1.33E-01
FMedO_R 10 rs2104994 5273767 AKR1C4 −0.38 1.86E-11 −0.11 1.62E-01
TPMid_L 4 rs9994092 66436 114 — −0.38 6.84E-11 −0.05 4.82E-01

4 rs10032124 66485 112 — −0.40 3.71E-12 −0.04 5.71E-01
8 rs4841664 11859 985 DEFB134/DEFB135/ −0.38 5.98E-11 — —

DEFB136
11 rs7937515 71841 325 ANAPC15/LRTOMT/ −0.38 4.22E-11 −0.24 1.34E-03

FOLR3/LAMTOR1
11 rs1461192 130043 580 ST14 −0.39 1.74E-11 — —

21 rs147446959 29291 173 — −0.37 2.72E-10 - —

aBuild 37, assembly hg19.
bGenes located ±100 kb of the top SNP.
cp value reaching the Bonferroni corrected threshold (0.05/20 � 2.25E-03) is shown in bold.
Abbreviations: F � frontal, TP � temporal pole, Mid � middle, Med � medial, O � orbital, L � left, R � right.
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connectivity measures as outcomes. No significant findings were
identified, and thus no evidence was observed for BMI as a
significant mediator between gene and brain connectivity.

3.5 Outcome-Relevant Neuroimaging
Biomaker Discoveries
On one hand, for the HCP cohort, we respectively identified
significantly negative associations (p<0.05/4�1.25E − 02)
between BMI with clustering coefficient (p � 3.92E-05) and
local efficiency (p � 4.57E-05) measured in left middle
temporal gyrus. On the other hand, for the ADNI cohort, we
examined the associations between BMI and the above
mentioned segregation measures in a pair-wise manner, but
there was no significant findings satisfying the corrected p
threshold. Regarding the relationship between cognitive score
(e.g., MMSE) and network segregation measures, there was no
significant associations identified for both HCP and ADNI
cohorts.

3.6 Targeted Genetic Association of Other
Important Network Attributes in the Left
Middle Temporal Gyrus
To review the genetic effect of SNP rs7937515 from different
aspects of network connectivity attributes of the left middle

temporal gyrus, we assessed the relationship between rs7937515
and additional node-level measures on reported brain ROI (i.e., left
middle temporal gyrus) as well as network-level measures in both
HCP and ADNI datasets. Table 3 showed association statistics of
rs7937515 with segregation, integration, centrality and resilience
measures. After correcting for the number of examined network
measures (i.e., p< 0.05/9�5.56e − 03), both HCP and ADNI
identified significant associations between the targeted SNP with
global efficiency (integration) and transitivity (resilience), together
with our previous finding that rs7937515 was associated with
segregation measures such as clustering coefficient and local
efficiency, our results showed the consistent genetic effect of
rs7937515 on brain structural network segregation, integration
and resilience across aging. Besides the common findings
between young and elderly adults, rs7937515 was associated
with several other node-level and network-level attributes
including network density (integration) and eigenvector
centrality (centrality) in HCP data, but not in ADNI. Our
results suggested the possible genetic discrepancy for certain
brain connectivities in different life stages.

3.7 Hemispheric Asymmetry of Brain
Connectome
In this study, we noticed a hemispheric asymmetry of
outcome-relevant brain connectivity alterations in the left

FIGURE 2 |Manhattan plot of GWAS results in the HCP dataset. (A,B) show the GWAS results of clustering coefficient and local efficiency on left middle temporal
gyrus, respectively. Red and blue lines correspond to the p-value of 5E-08 and 2.75E-10, respectively.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7829539

Cong et al. Genetic Influence Underlying Brain Connectivity

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


and right middle temporal gyrus (Table 3). Due to two brain
regions (e.g., left and right MTG), two segregation measures
(e.g., clustering coefficient and local efficiency) and one
outcome measure (e.g., BMI), we applied a Bonferroni
corrected p threshold in this section
(p <5E − 02/8�6.25E − 03). In the HCP young adult cohort,
for the left MTG, we respectively identified significant
associations of BMI with clustering coefficient (p � 3.92E-
05), and with local efficiency (p � 4.57E-05); for the right
MTG, even though there were no significant associations of
BMI with clustering coefficient (p � 2.24E-02), and with local
efficiency (p � 2.90E-02), both clustering coefficient and local
efficiency in left and right MTG showed negative associations
with BMI. In the ADNI cohort, as reported in the previous
section, network segregation was not associated with BMI, so it
was not necessary and proper to conduct analyses regarding
ADNI data in this section.

4 DISCUSSION

As summarized in Figure 1, prior to GWAS, we first performed
heritability analysis for network attributes screening, and only
heritable measures of network segregation were treated as iQT for
GWAS. Based on experimental outcomes, all of the segregation
measures were highly heritable: transitivity and modularity were
heritable at network level, clustering coefficient and local
efficiency were heritable at all nodes, which suggested
segregation measures were suitable for genetic analyses. Then,
we performed GWAS of segregation attributes in 275 HCP
subjects, and identified several pairwise associations between
SNPs and iQTs as listed in Table 2. These GWAS findings
were validated in 178 ADNI subjects. As a validation result,
we identified several genetic consistency and discrepancy patterns
for human connectome in different life stages (as shown in
Table 2). As common findings in both HCP young adult and

FIGURE 3 | Association of rs7937515 on clustering coefficient and local efficiency of the left middle temporal gyrus. (A,B)Mean clustering coefficient with standard
errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG) for the HCP and ADNI cohorts, respectively. (C,D)Mean local efficiency with standard
errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG) for the HCP and ADNI cohorts, respectively. p values are calculated from GWAS (HCP)
and targeted analysis (ADNI), and significant p values are marked in bold.
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ADNI elderly adult cohorts, rs7937515 was negatively associated
with clustering coefficient and local efficiency respectively
measured at left middle temporal gyrus. To the best of our
knowledge, this was among the first GWAS of human brain
high-level network measures across both young and elderly
participants. As shown in Figures 3A,C, the minor allele G of
rs7937515 was associated with decreased clustering coefficient
and local efficiency of the left middle temporal gyrus in both
young and elderly participants. As concluded in (Rudie et al.,
2013; Keown et al., 2017; Karwowski et al., 2019; Varangis et al.,
2019), the weakness of segregated network connectivity (e.g.,
modularity, clustering coefficient, and local efficiency) was linked
to multiple brain disorders such as age-related cognitive declines
and autism spectrum disorder. Thus, our GWAS findings for
HCP young adults demonstrated that rs7937515 played a risk

effect on human network segregation. This neurorisk effect was
also confirmed in a targeted genetic association analysis for ADNI
elderly participants (as shown in Figures 3B,D), these common
discoveries between HCP and ADNI datasets suggested a
consistent genetic risk effect across young and old life stages.

This study was further conducted by performing several post-
hoc analyses in the following three aspects (shown as bottom
sections in Figure 1): 1) examining genetic mechanisms for
common outcome measures in the HCP and ADNI studies,
and elucidating the mediated effect of iQTs for such outcome-
relevant genetic association, 2) discovering outcome-relevant
imaging biomarkers, and 3) exploring the genetic mechanisms
of other important complex-network attributes.

For the first aspect, our goal was to elucidate the
neurobiological pathway from SNPs to brain connectome, and

FIGURE 4 | Association of rs7937515 on BMI in the HCP and ADNI cohorts. (A) Mean BMI with standard errors are plotted against the rs7937515 genotype
groups (i.e., AA, AG and GG) for the HCP cohort. (B) Mean BMI with standard errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG) for the
ADNI cohort. p values are calculated from mediation analysis, and significant p values are marked in bold.

FIGURE 5 |Direct andmediation effect of rs7937515 on BMI through left middle temporal gyrus. (A,B) illustrate the effect size, 95%CI and p value from rs7937515
mediation analysis of BMI via left middle temporal clustering coefficient. (C,D) illustrate the effect size, 95% confidence interval and p value from rs7937515 mediation
analysis of BMI via left middle temporal local efficient. TE � total effect; DE � direct effect; ME � mediation effect; CI � confidence interval.
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to phenotypic outcome. In addition, we aimed to discover the role
of iQTs in the outcome-relevant genetic associations by
performing mediation analyses in both HCP and ADNI
datasets. For the HCP young participants, we identified that
BMI was positively associated with rs7937515 in the first step
of mediation analysis, demonstrating a risk effect. rs7937515
located in the regions of FAM86C1/FOLR3 was previously
discussed in literatures (Gao et al., 2015; Gao, 2017) and
positively linked to waist circumference in the meta-analysis
based on the Insulin Resistance Atherosclerosis Family Study
(IRASFS) (Palmer et al., 2015), which was designed to investigate
the genetic and environmental basis of insulin resistance and
adiposity. FAM86C1 (Family With Sequence Similarity 86
Member C1) and FOLR3 (Folate Receptor Gamma) had been
reported for their associations with various weight-related
phenotypes such as bone mineral density (Li et al., 2019) and
BMI (Hair, 2014; Mrozikiewicz et al., 2019), which closely related
to osteoporosis (Li et al., 2019; Mrozikiewicz et al., 2019) and
obesity (Gómez-Ambrosi et al., 2004). In the second and third
steps of mediation analysis, we illustrated that BMI was indirectly
influenced by rs7937515 (Figures 4, 5), and iQTs such as
clustering coefficient and local efficiency measured at the left
middle temporal gyrus respectively played a mediating role. We
also examined the genetic association with MMSE, but no
evidence indicated any genetic associations to MMSE. In
contrary, for the ADNI elderly participants, neither significant
associations between rs7937515 and BMI nor MMSE were
identified in the first step of mediation analysis, so there was
not a necessary to examine mediated effect in this dataset. Our
results demonstrated a disappearance of outcome-relevant
genetic effect in the elderly participants, this discrepancy from
young to elderly participants might due to the dominated
influences from life style, environment or other non-genetic
factors.

For the second aspect, recent studies (Lowe et al., 2019;
Azevedo et al., 2019) showed that structural changes in brain
tissues could affect food consumption behaviors and mediate
BMI, which implied connectome alteration could be a causal
agent and a promising imaging biomarker in this study. Thus, our

goal was set to reveal the mapping between connectivity
alterations and phenotypic outcome, and discover outcome-
relevant imaging biomarkers. For young adult participants,
segregation measures (e.g., clustering coefficient or local
efficiency measured at left middle temporal gyrus) previously
demonstrated their potential to play a mediating role in genetic
association discoveries, in this step, we focused on examining
their direct associations to the outcomes. Thus, we performed a
targeted association analysis between the mentioned segregation
measures and the common outcomes (e.g., BMI or MMSE)
evaluated in both HCP and ADNI studies (Table 2) by
employing linear regression models. For the young
participants, clustering coefficient and local efficiency
measured at left middle temporal gyrus were negatively
associated with BMI. Similar observation was obtained in
(Chen et al., 2018) which linked lower structural network
segregation to obesity (higher BMI). Our findings suggested
that there was a mapping between brain network segregation
attributes and human physical conditions, and segregation
features of the left middle temporal gyrus showed their
potential as neuroimaging biomarkers to detect BMI-
associated complex diseases such as dementias (Emmerzaal
et al., 2015), cardiovascular disease, cancer, respiratory disease
and diabetes (Stenholm et al., 2017). For elderly adult
participants, no significant associations were identified
between segregation measures and any outcomes, which
suggested an interesting topic for further explorations.

Multiple regression analyses demonstrated that middle
temporal gyrus was linked to weight-related issues. For
example, Veit et al. (2014) and Gómez-Apo et al. (2018)
revealed that BMI, visceral fat and age were negatively
associated with cortical thickness of the left middle temporal
gyrus, Ou et al. (2015) indicated that greater adiposity was
associated with lower gray matter (GM) volumes in the
middle temporal gyrus, Yokum et al. (2012) found positive
correlation between BMI and white matter (WM) volume in
the middle temporal gyrus, Rapuano et al. (2016) illustrated left
middle temporal gyrus was detected significantly greater
activation in response to food commercials than to non-food

TABLE 3 | Associations between rs7937515 and brain network measures.

Class QT ROI or Global HCP ADNI

Beta p Beta p

Segregation Clustering coefficient TPMid_L −0.37 1.09E-10 −0.24 1.63E-03
Clustering coefficient TPMid_R −0.20 3.53E-04 −0.22 3.94E-03
Local efficiency TPMid_L −0.38 4.22E-11 −0.24 1.34E-03
Local efficiency TPMid_R −0.22 7.05E-05 −0.22 2.92E-03
Transitivity Global −0.23 3.65E-05 −0.24 1.17E-03
Modularity Global 0.20 5.32E-04 −0.12 9.32E-02

Integration Global efficiency Global −0.29 1.63E-07 −0.24 1.48E-03
Density Global −0.26 2.64E-06 0.03 7.11E-01

Centrality Betweenness centrality TPMid_L −0.09 1.28E-01 −0.05 5.28E-01
Betweenness centrality TPMid_R −0.06 3.24E-01 −0.03 6.75E-01
Eigenvector centrality TPMid_L −0.32 9.58E-08 −0.13 7.85E-02
Eigenvector centrality TPMid_R −0.20 6.11E-04 −0.03 6.98E-01

Resilience Assortativity coefficient Global 0.10 1.14E-01 0.06 3.95E-01

Abbreviations: TP � temporal pole, Mid � middle, L � left, R � right, QT, quantitative trait. p values reaching the Bonferroni corrected threshold (0.05/9 � 5.56E-03) are shown in bold.
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commercials, Salzwedel et al. (2019) concluded that maternal
adiposity influenced neonatal brain functional connectivity in
middle temporal gyrus, and Peven et al. (2019) identified that
cardiorespiratory fitness was negatively associated with
functional connectivity in the right middle temporal gyrus. To
the best of our knowledge, our investigations for the association
between structural connectivity in the middle temporal gyrus and
BMI was among the first weight-related studies with high-level
imaging features measured from structural network connectivity,
and our results confirmed several previous findings analyzed
from thickness data, T1-weighted MRI data, and fMRI data.

For the third aspect, since there was an emerging interest in
understanding the segregation and the integration of brain
networks (Cohen and D’Esposito, 2016; Mohr et al., 2016) as
well as other important network attributes such as centrality (Zuo
et al., 2012) and resilience (Karwowski et al., 2019), our goal was
to expand our focus on comprehensively discussed segregation
attributes to a more complete set of network attributes including
segregation, integration, centrality and resilience. For both node
level network attributes measured at left and right middle
temporal gyrus and global network attributes, we applied
targeted genetic association analyses on global efficiency and
density (integration, network level), betweeness and
eigenvector centrality (centrality, node level) and assortativity
coefficient (resilience, network level) of the structural
connectivity. We identified several pairwise associations
between rs7937515 and these network attributes in both HCP
and ADNI datasets (Table 3), and noticed a significant
association between rs7937515 and global efficiency in both
datasets, which suggested that rs7937515 was involved into the
dynamic fluctuations of segregation and integration of neural
information. This finding partially answered an elusive question
of revealing genetic basis for brain mechanisms of balancing
network segregation and integration. Another worth noting
finding was that rs7937515 was associationed density and
eigenvector centrality respectively in our targeted analyses,
while such associations were vanished in elderly participants,
which suggested inconsistent genetic influences across different
life stages.

With the awareness of the hemispheric asymmetry of network
organization, a genetic basis to explain the differences in
connectome between two hemispheres were under discovered.
In this work, we identified an obvious inconsistency of genetic
influences on human connectome in different brain hemispheres
(Table 3). As reported in several recent studies (Tian et al., 2011;
Shu et al., 2015; Jiang et al., 2019), the topological organizations of
structural networks were not uniformly affected across brain
hemispheres, which lead to a non-uniformly distributed
destruction on neural network of the left and right
hemispheres. Our finding gave an explanation from the point-
view of genetics, with the potential for further investigations as
many of the destruction on neural network (as iQT) were linked
to cognitive and behavioral functions and dysfunctions, and their
genetic mechanisms were still under discovered.

5 CONCLUSION

In this work, we constructed the structural network connectivity,
extracted complex-network attributes and examined the
heritability of network segregation measures. Then, we
revealed a novel association between the minor allele (G) of
rs7937515 and decreased network segregationmeasures of the left
middle temporal gyrus across HCP young participants and ADNI
elderly participants, which demonstrated a consistent genetic risk
effect on brain network connectivity across lifespan. We
elucidated the neurobiological pathway from SNP rs7937515
and genes FAM86C1/FOLR3 to brain network segregation, and
to BMI. In such pathway, we concluded a genetic risk effect on
BMI due to their positive association, examined the mediated
effect of network segregation measures, and discovered network
segregation of the left middle temporal gyrus as BMI-related
neuroimaging biomarkers by identifying a negative association
between them. We also examined genetic associations of a more
complete set of important network attributes including
integration, centrality and resilience, and demonstrated the
consistency and discrepancy in genetic associations in brain
aging. At last, we illustrated hemispheric asymmetry of
network organization in both datasets in the aspect of genetic
effect.

In sum, with the awareness that BMI is directly and indirectly
associated to multiple complex diseases, this study performed a
systematic analysis that integrated genetics, connectomics and
phenotypic outcome data, with the goal of revealing biological
mechanisms from the genetic determinant to intermediate brain
connectomic traits and to the BMI phenotype at two different life
stages. We identified the genetic effect of rs7937515 on human
brain network segregation in both young and elderly participants
and on BMI in young adult cohort. Our findings confirmed
several previous genetic and imaging biomarker discoveries.
Moreover, we provided outcome-relevant genetic insights in
the aspect of complex-network attributes of human brain
connectome. Similar analytical strategies can be applied to
future integrative studies linking genomics with connectomics,
including the analyses of structural and functional connectivity
measures, additional network attributes, longitudinal or dynamic
connectomic features, as well as other types of brain imaging
genomic data.

6 THE ALZHEIMER’S DISEASE
NEUROIMAGING INITIATIVE

Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or
provided data, but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu.
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