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Obesity is associated with many chronic diseases that impair healthy aging and is governed
by genetic, epigenetic, and environmental factors and their complex interactions. This study
aimed to develop a model that predicts an individual’s risk of obesity by better characterizing
these complex relations and interactions focusing on dietary factors. For this purpose, we
conducted a combined genome-wide and epigenome-wide scan for bodymass index (BMI)
and up to three-way interactions among 402,793 single nucleotide polymorphisms (SNPs),
415,202 DNA methylation sites (DMSs), and 397 dietary and lifestyle factors using the
generalized multifactor dimensionality reduction (GMDR) method. The training set consisted
of 1,573 participants in exam 8 of the Framingham Offspring Study (FOS) cohort. After
identifying genetic, epigenetic, and dietary factors that passed statistical significance, we
appliedmachine learning (ML) algorithms to predict participants’ obesity status in the test set,
taken as a subset of independent samples (n � 394) from the same cohort. The quality and
accuracy of prediction models were evaluated using the area under the receiver operating
characteristic curve (ROC-AUC). GMDR identified 213 SNPs, 530 DMSs, and 49 dietary and
lifestyle factors as significant predictors of obesity. Comparing several ML algorithms, we
found that the stochastic gradient boosting model provided the best prediction accuracy for
obesity with an overall accuracy of 70%, with ROC-AUC of 0.72 in test set samples. Top
predictors of the best-fit model were 21 SNPs, 230 DMSs in genes such asCPT1A,ABCG1,
SLC7A11, RNF145, and SREBF1, and 26 dietary factors, including processed meat, diet
soda, French fries, high-fat dairy, artificial sweeteners, alcohol intake, and specific nutrients
and food components, such as calcium and flavonols. In conclusion, we developed an
integrated approach with ML to predict obesity using omics and dietary data. This extends
our knowledge of the drivers of obesity, which can inform precision nutrition strategies for the
prevention and treatment of obesity.
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Clinical Trial Registration: [www.ClinicalTrials.gov], the Framingham Heart Study (FHS),
[NCT00005121].
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INTRODUCTION

Overweight and obesity are primary risk factors for many chronic
diseases and health conditions, including cardiovascular diseases,
type 2 diabetes (T2D), hypertension, and cancers (GBD 2015
Obesity Collaborators, 2017). The prevalence of obesity has
increased greatly over the last decades. According to the
World Health Organization (WHO), 39% and 13% of the
worldwide adult population was overweight and obese,
respectively, in 2016 (World Health Organization, 2021).

Up to this point, studies have shown that obesity is determined by
genetic, epigenetic, and environmental factors, such as diet and
lifestyle, and their complex interactions (Albuquerque et al., 2017).
On one hand, candidate gene approaches that consider physiological
and molecular development of obesity, genome-wide association
studies (GWAS) (Locke et al., 2015), and polygenetic risk scores
(PRS) (Belsky et al., 2013) have been utilized to determine the genetic
predisposition to obesity. On the other hand, diet and lifestyle
behaviors, such as physical activity, are critically modifiable factors
in determining obesity (Hruby et al., 2016) and are used to develop
prevention and treatment strategies. In addition, much nutrigenetics
research has been showing the impact of gene-by-environment (GxE)
interaction studies in candidate genes, GWAS-identified genes
(Corella et al., 2007; Corella, 2009; Parnell et al., 2014), or PRS
(Qi et al., 2012; Casas-Agustench et al., 2014). The overall goals of this
research field are to predict obesity with precision, to identify
modifiable factors that change the risk of obesity, and finally to
develop effective approaches to prevent and treat obesity. Effective
prediction tools are needed to attain these goals.

GxE interaction refers to modification by an environmental factor
of the effect of a genetic variant on a phenotypic trait. GxE interactions
can ameliorate the adverse effects of a risk allele to reduce risk or
exacerbate the genotype-phenotype relationship and increase risk
(Parnell et al., 2014). Incorporating E factors into genetic and
epigenetic studies to explore interactions provides potential
advantages, such as reducing missing heritability (Visscher et al.,
2008; Manolio et al., 2009). GxE research also has highlighted the
individual’s variation in response to interventions by changing
environmental factors to prevent or treat obesity. Perhaps, more
importantly, examining GxE interactions could support the
development of precision medicine. Identifying strategies for
modifying E factors that are tailored to an individual’s specific
genetic background could enhance the effectiveness of
interventions that improve health phenotypes. In addition,
epigenomic markers, such as DNA methylation, can be interpreted
as footprints of environmental exposures (Kadayifci et al., 2018). We
included gene (as genotype)-by-DNA methylation site (DMS)
interactions in the present study because this can be considered as
another type of GxE interactions on a broader scale.

The evolution of omics technology and data, such as GWAS
(Locke et al., 2015) and epigenome-wide association studies (EWAS)

(Sayols-Baixeras et al., 2017;Wahl et al., 2017), not only has generated
a vast amount of data but also deepened our characterization of
complex diseases, including obesity and its related traits.
Furthermore, applying machine learning (ML) methods to large-
and high-dimensional data provided an opportunity to explore the
complex data patterns and structure and to predict disease
phenotypes (Degregory et al., 2018; Dogan et al., 2018), and such
research is still emerging. Thus, this study aimed to develop an
integrated ML approach to incorporate omics data, lifestyle features
with consideration of their interactions, i.e., GxG and GxE, to predict
any individual’s overweight and obesity status using data collected in
exam 8 of the Framingham Heart Study Offspring (FOS) cohort.

MATERIALS AND METHODS

Study Samples: Framingham Offspring
Study (FOS) Exam 8 Cohort
The Framingham Heart Study (FHS) has been described at http://
www.framinghamheartstudy.org/about/milestones.html. The FHS
is a community-based longitudinal study; it recruited participants,
who self-identified as having European ancestry, in Framingham,
MA, beginning in 1948 (Dawber et al., 1951). In 1971, the FOS then
recruited the original FHS participants’ children and spouses
(Kannel et al., 1979) and re-interviewed them about every
4–8 years thereafter. In the current study, we utilized data from
participants who attended the eighth examination cycle
(2005–2008) of the FOS (Generation 2). Participants completed
dietary and health assessment questionnaires at that time. These
data were obtained from dbGaP (https://dbgap.ncbi.nlm.nih.gov,
study accession: phs000007.v25.p9 and phs000007.v28.p10;
downloaded on September 27, 2017). The age used was the age
of an individual at exam 8.

Genome-Wide Genotype Data
Genome-wide single nucleotide polymorphism (SNP) genotype
and imputed data from FHS were downloaded from dbGaP
(accession: phs000342.v18.p11) with initial quality control
(QC). In brief, ∼500,000 SNPs were genotyped on the
Affymetrix GeneChip® Human Mapping 500K Array (Santa
Clara, CA) and filtered at the sample and SNP level. QC steps
have been described in detail (Liu et al., 2020). SNP IDs, loci, and
allelic information were annotated using the 1,000 Genomes
Phase 3 downloaded from dbSNP (downloaded date: April 13,
2018) and human genome build GRCh37/hg19. After these QC
steps, 1,967 individuals and 402,793 SNPs remained. Data were
processed using PLINK 1.9 (URL: www.cog-genomics.org/plink/
1.9/) and 2.0 (URL: www.cog-genomics.org/plink/2.0/) (Chang
et al., 2015) and Golden Helix®, and genotypes were coded as 0, 1,
or 2. The dosages of imputed SNPs were also categorized as tertile
categories and coded as 0, 1, and 2 when used as input data during
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the feature selection step, i.e., generalized multifactor
dimensionality reduction (GMDR). For ML model training
and testing, we used original values.

Genome-Wide DNA Methylation Data
Genome-wide DNA methylation was profiled using Illumina
Infinium® HumanMethylation450 BeadChip (San Diego, CA) in
whole blood DNA. DNA methylation data were downloaded from
dbGaP (accession: phs000724.v9.p13). Raw IDAT files were
processed for QC as described (Lai et al., 2018). A β score
(proportion of the total methylation-specific signal) was used to
measure the methylation signal at each methylation site, and the
detection p-value was the probability that the total intensity for a
given probe fell within the background signal intensity. We
excluded any CpG probe with a detection p-value > 0.01 and
missing sample percentage >1.5% or >10% of samples lacking
sufficient intensity. We adjusted batch effects across samples and
normalized the β scores using the ComBat function in the ChAMP
package in R (Morris et al., 2014). To account for the heterogeneity
of different cell types across samples, β scores of all filtered
autosomal CpG sites were used to calculate principal
components, using the prcomp function in R (v12.12.1), and the
first five principal components were used in all subsequent analyses.
This method was used and is similar to a previous study (Irvin et al.,
2014). After these QC steps, 1,967 individuals and 415,202 DMSs
remained. The normalized β scores of all DMSs were categorized as
tertile categories and coded as 0 (lowest), 1, and 2 (highest) when
used as input data during the feature reduction step, i.e., GMDR.
For ML model training and testing, we used original values. The
annotation was based on human genome build GRCh37/hg19.

BMI and Categorization of Weight Status
We used body mass index (BMI) to classify overweight and
obesity in adults. It is defined as a person’s weight in
kilograms divided by the square of the height in meters (kg/
m2). BMI ≥25 kg/m2 was defined and coded as overweight or
obesity (n � 1,403; 71% of n � 1,967) and BMI ≥30 kg/m2 as
obesity (n � 591; 30% of n � 1,967).

Dietary and Other Lifestyle Factors
Measurement
Usual dietary intake for the previous year was assessed among
2,245 adult men and women in the FOS. Foods and nutrients were
derived from the 126-itemmodifiedWillett semi-quantitative food
frequency questionnaire (FFQ) at exam 8 of the FOS (Dawber et al.,
1951; Rimm et al., 1992; Feskanich et al., 1993). The FFQ allowed
participants to name ≤4 extra food items that were essential parts
of their diets but were not offered among the 126 items. Energy
intake was considered implausible and excluded if a participant
reported energy intake was <2.51MJ/day (600 kcal/day) for men
and women or >16.74MJ/day (4,000 kcal/day) for women and
>17.57MJ/day (4,200 kcal/day) for men or if >12 food items were
left blank, consistent with the criteria as previously published in the
FHS. The energy composition for macronutrients (% from total
energy intake) was calculated, and the food itemswere summarized
into 31 food groups. Three diet quality indices were calculated to

capture dietary patterns: (1) the Alternate Healthy Eating Index
(AHEI) score identified by factor analysis, (2) the Mediterranean
diet score (MDS), and (3) the Dietary Approaches to Stop
Hypertension (DASH) diet score. All lifestyle factors, such as
alcohol drinking, smoking, and physical activity [through a
standard exercise questionnaire (Kannel and Sorlie, 1979)], were
available on individuals at exam 8 of the FOS. A total of 397 dietary
and lifestyle variables were converted into tertile categories and
coded as 0 (lowest), 1, and 2 (highest) as input data during the
feature reduction step, i.e., GMDR. For ML model training and
testing, we used original values.

Machine Learning
We used supervised binary classificationMLmodels to predict an
outcome variable (e.g., overweight or obese yes or no; obese yes or
no). The overall flowchart of ML procedures applied in the
present study is illustrated in Figure 1.

Training and Testing Data Sets
We derived a final analytic data set of 1,967 Caucasian participants
(45% women), aged 40–92 years, who participated in the eighth
examination visit of the FOS and had complete data for related
demographic, anthropometric, clinical, genetic, epigenetic, dietary,
and other lifestyle [alcohol, smoking, and physical activity (Kiely
et al., 1994)] variables and covariates. Missing values for some
variables were filled using median imputation. Samples were split
into a training set (80%) and a test set (20%) by applying systematic
random sampling. The PROC SURVEYSELECT procedure and
METHOD � SYS (SAS 9.4 for Windows, SAS Institute Inc., Cary,
NC, USA) were used to control values of BMI and age within the
sex ratio, T2D, and use of lipid-lowering medication. The
demographics of individuals included in the training and testing
data sets in this study are summarized in Table 1.

Feature Selection Using the Generalized Multifactor
Dimensionality Reduction (GMDR) Method
The GMDR method (GMDR software, Windows version) (Xu
et al., 2016; Luo et al., 2017) was applied to the training data set to
perform a genome-wide and epigenome-wide scan to detect main
effects and three-way GxG and GxE interactions for determining
BMI. The GMDR training stage searched attribute combinations
with the highest training accuracies. Furthermore, this training
performed permutation tests for selected attribute combinations
and calculated p values based on testing accuracies. This method
was implemented to reduce high-dimensional features for
subsequent ML steps (10-fold cross-validation (CV), n < 1,000,
permutation testing p < 0.001). Genotype, DNA methylation, and
dietary and other lifestyle data were coded as 0, 1, and 2 as discrete
input features to predict the BMI (as a continuous variable) using
age, sex, and the first five principal components for DNA
methylation as covariates. We ran this procedure five times and
collected the union of selected features for the following ML steps.

Phenotype Prediction Using Machine Learning
Methods
Three sampling-based supervised ML classification algorithms
were used to evaluate performance in classifying overweight and
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obesity: boot-strapped trees (treebag), random forest (ranger),
and stochastic gradient boosting machines (gbm). These
algorithms were used to generalize the relationship between
input features and the labeled examples (output) from the
training data and to apply this learning to the prediction of
class labels of unseen samples in the test set.

Using the same training data set, we built, tuned, and compared
the following models using the caret package and other required
packages in RStudio (version 1.3). Caret-automated parameter
tuning was used for selecting hyperparameters to establish for
each classifier, and a grid of tuning parameters was defined using
the expand.grid function. For ranger, mtry, min.node.size, and
splitrule were used to set tuning parameters in an optimal range;
for gbm, n.trees, interaction.depth, shrinkage, and n.minobsinode
were set to search for the best model in the training set. Under-
sampling, over-sampling, or synthetic minority oversampling
technique (SMOTE) sampling methods were also introduced to
address class imbalance. Five repeats of 10-fold CV were set for
building the model.

The best predictive models from each algorithm were assessed
using the area under the curve of the receiver operating
characteristic curve (ROC-AUC). We compared different
learning algorithms by using the resamples function using the
training data set. We then applied the best model to predict the
binary overweight or obesity status in the test data set. The
confusion matrix was used to present the overall accuracy,
sensitivity, and specificity observed in the testing set samples,
which then evaluates the performance of each prediction model.
Accuracy is the total proportion of correct predictions of all the
predicted data. Sensitivity is the proportion of real positives that
are predicted as positives; specificity is the proportion of real
negatives that are predicted as negatives. The sensitivity was
plotted against 1-specificity to generate the ROC curve.

Network and Pathway Enrichment Analysis
To identify the enriched pathways of nearby genes of selected
SNPs and DMSs, the web-based protein association database
STRING (version 11.5) (Szklarczyk et al., 2021) was used to
explore possible functionalities of the GMDR-selected features.
This tool includes Gene Ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses.

RESULTS

Cohort Characteristics
Overall, 71.3% of the FOS study participants were either
overweight or obese; 30% of study participants were obese in
both training (n � 1,573) and test sets (n � 394) (Table 1). The
prevalence of obesity-related phenotypes was matched between
the two data sets (Table 1). For environmental factors, there were
no statistically significant differences in the total energy intake
and physical activity score (Table 1).

Features Selected Using the GMDRMethod
We used the GMDR method in the training set to conduct a
combined genome-wide and epigenome-wide scan for main
effects and up to three-way interactions (∼5.5 × 1017

combinations) among all pre-filtered 402,793 SNPs, 415,202
DMSs, and 397 dietary and lifestyle factors. The GMDR
method identified 213 SNPs, 530 DMSs, and 49 dietary and
lifestyle factors that were significant predictors of obesity
(permutation testing p < 0.001). The complete list of selected
features is presented in Supplementary Table S1.

Among 213 GMDR-selected SNP features, there were 131
independent clumped loci based on the PLINK 1.9 clumping
function using the greedy algorithm for clumping with linkage

FIGURE 1 | Phenotype prediction data analysis procedure (pipeline).
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disequilibrium (LD) (r2 < 0.5) and physical distance (>250 kb). A
total of 45 independent SNPs located in or near genes, such as
STXBP6, BBX, PLXDC2, PCDH15, TPH2, PCDH15, CALN1,
FGF14, LRRN1, ACTBP2, RBMXP1, and ZNF32, were
previously reported to be associated with several obesity-related
phenotypes and anthropometrics (Locke et al., 2015; Buniello et al.,
2019). Among 533 GMDR-selected DMS features, 520 were
considered independent signals based on the physical distance
and signal correlation. A total of 60 DMS features were found to be
associated with BMI and obesity-related phenotypes in other
studies (Supplementary Table S1) (Battram et al., 2021). Some
DMSs were in proximity to genes, such as CPT1A, ABCG1,
SLC7A11, RNF145, and SREBF1, (Mendelson et al., 2017; Wahl
et al., 2017; Dhana et al., 2018; Lai et al., 2020) reported to be related
to metabolic phenotypes.

When using a combined gene list of GMDR-selected SNPs and
DMSs for predicting BMI to analyze pathway and network
enrichments, protein-protein interaction enrichment was
significant (p � 2.65 × 10–5; p � 0.00118 when using the top
gene list from features of the best-performing model) based on
the STRING database (Supplementary Figure S1). Significant
KEGG pathways, GO terms, and annotated keywords (UniPort)
included Ras signaling pathways, Rap1 signaling pathways, and
alternative splicing (Benjamini–Hochberg-adjusted p < 0.05).
Analyses of the data also showed associations between selected
genes with the blood lipid and glucose metabolism that were
identified in previous studies. This is entirely plausible because
obesity very often coexists with dysregulation of blood lipids and
glucose.

Overweight and Obesity Prediction Using
Different Machine Learning Algorithms/
Classifiers
We used GMDR-selected features to build ML classification
models using three different algorithms: boot-strapped trees
(treebag), random forest (ranger), and stochastic gradient
boosting machines (gbm). After obtaining the best model in
each algorithm, we recorded 50 model objects and compared
the performance of these three algorithms using ROC, sensitivity,
and specificity. Overall, the stochastic gradient boostingmachines
(gbm) repeatedly showed the best performance for both
overweight + obesity and obesity outcomes no matter which
approaches were used to deal with class imbalance. In general, the
mean ROC value for stochastic gradient boosting machines
(gbm) was ∼0.8 compared to ∼0.75 for random forest (ranger)
and ∼0.70 for boot-strapped trees (treebag) in the training set.
Figure 2 shows the differences in the distribution of performance
of 50 models among ML algorithms/classifiers when applying
under-sampling for the obesity status.

Finally, we evaluated the overweight and obesity prediction
models constructed using various machine learning algorithms in
the test set using ROC-AUC, accuracy and sensitivity, and
specificity. The stochastic gradient boosting machines (gbm)
remained the best model to predict overweight and obesity
status in the separate test data set, with ROC-AUC and
accuracy values of 0.72 and 0.67, respectively (Table 2 and

Figure 3). Depending on different sampling methods used to
address class imbalance, the overall accuracy of all models
was ∼70%.

Important Ranking and Annotation of Top
Predictors of the Best-Performing Model
Top predictors of the best-fit model included both genetic and
diet-related factors. Compared to SNPs, DMS features
predominantly contributed to the best-performing model. In
this example, 16 DMSs in genes, such as CPT1A (Mendelson
et al., 2017; Wahl et al., 2017; Dhana et al., 2018), ABCG1
(Mendelson et al., 2017; Wahl et al., 2017; Dhana et al., 2018),
SLC7A11 (Mendelson et al., 2017; Wahl et al., 2017), RNF145
(Mendelson et al., 2017; Wahl et al., 2017), and SREBF1
(Mendelson et al., 2017; Wahl et al., 2017; Dhana et al.,
2018) were reported to be associated with obesity-related
phenotypes. Important diet-related factors were processed
meat, diet soda, French fries (potato), high-fat dairy, artificial
sweeteners, alcohol intake, and specific nutrients and food
components, such as calcium and flavonols. We present the
top 50 predictors for determining the overweight and obesity
status in the test set using the best model of the stochastic
gradient boosting machines algorithm (Table 3). In the
presence of individual foods and nutrients, dietary pattern
variables did not emerge on top.

Prediction Using Simulated Data
We further created simulated individual data with different levels
of top dietary predictors to observe whether the prediction
changes the status of overweight and obesity and at what level
of critical predictors switches the prediction class. By changing
five key dietary factors individually, we observed 1.5–19.6% of
subjects showing responses in changing obesity risk (Table 4).
Processed meat showed the greatest response and followed by
high-fat dairy and calcium intake. Overall, about 21.5% of
subjects showed responses to at least one dietary change based
on simulation.

TABLE 1 | General characteristics of the FOS.

FOS Training set Testing set

N 1,573 394
Men/women, n (% in women) 700/873 (55.5%) 178/216 (54.8%)
Age, y 66.3 ± 8.9 66.5 ± 8.7
BMI, kg/m2 28.1 ± 5.3 28.0 ± 5.2
Overweight and obesity, n (%) 1,122 (71.3%) 281 (71.3%)
Obesity, n (%) 473 (30.1%) 118 (30.0%)
Smoker, n (%) 115 (7.3%) 26 (6.6%)
Drinker, n (%) 1,205 (76.6%) 321 (81.5%)
Type 2 diabetes, n (%) 210 (13.4%) 53 (13.5%)
Hypertension, n (%) 858 (54.5%) 221 (56.1%)
Type 2 diabetes medication, n (%) 160 (10.2%) 39 (9.9%)
Hypertension medication, n (%) 756 (48.1%) 196 (49.7%)
Lipid-lowering medication, n (%) 682 (43.4%) 171 (43.4%)
Total energy intake, kcal/d 1,873 ± 629 1,875 ± 636
Physical activity score 37.7 ± 6.4 37.6 ± 5.8

All continuous variables were presented as mean ± SD.
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DISCUSSION

We present an ML-based predictive method using genome-wide
SNPs, DMSs, and dietary information including up to three-way
interactions among these elements to predict obesity. Among
ML algorithms, the stochastic gradient boosting model provided
the best prediction accuracy for obesity in the training set and
overall accuracy of 70% and ROC-AUC of 0.72 in the test set. In
each model, predictors of overweight and obesity were
identified.

To our knowledge, this is the first study to predict obesity
using ML approaches that integrate omics and dietary
information in the field of nutrigenetics. While previous
studies have used genomics and/or epigenomics to predict
obesity or other diseases (Dogan et al., 2018; Cho et al., 2021),
we further integrated lifestyle data with genomic and DNA
methylation epigenomic data and considered their interactions
by applying the GMDR method. By identifying the predictors,
our results extend our knowledge about the etiology of obesity.
More importantly, selected lifestyle features can inform precision

FIGURE 2 | Receiver operating characteristic (ROC) curves and their corresponding AUC values for different machine learning algorithms using 50 sample model
objects for obesity status in the training data set of the FOS (n � 1,573). All models were based on continuous input variables and under-sampling approach.

TABLE 2 | Performance metrics of overweight and obesity prediction models constructed using various machine learning algorithms in the test data set of the FOS.

Model/algorithm ROC-AUC Sensitivity Specificity Accuracy

Overweight and obesity
Boot-strapped trees (treebag) 0.65 0.64 0.62 0.63
Random forest (ranger) 0.68 0.63 0.64 0.63
Stochastic gradient boosting machines (gbm) 0.72 0.65 0.71 0.67

Obesity
Boot-strapped trees (treebag) 0.65 0.63 0.62 0.62
Random forest (ranger) 0.66 0.53 0.65 0.61
Stochastic gradient boosting machines (gbm) 0.67 0.51 0.68 0.63

All models were based on continuous input variables and under-sampling approach.
The best metrics in each column are shown in bold.
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nutrition strategies for the prevention and treatment of obesity
by offering options for lifestyle improvement that can be tailored
to the individual. We illustrated this concept using simulated
data (Table 4). Our results suggested that individuals would
respond to different treatment approaches depending on the
individuals’ genetic and epigenetic background. With this in
mind, it is conceivable that by modifying these top potential
“obesogenic” predictors tailored to the individual’s genome and
epigenome, the risk of obesity can be reduced at the level of the
individual.

Genome-wide association and gene–lifestyle interaction
studies made it clear that genetic factors predispose individuals
to obesity, but such susceptibility can be attenuated by healthy
lifestyle choices. In the current study, we have identified diverse
diet-related factors that contribute to predicting the overweight or
obesity status. Some factors such as processed meat, high-fat

dairy, and diet soda (Mozaffarian et al., 2011) have been
investigated for their relationship with obesity; while other
factors such as the plant-based compounds flavanols or
anthocyanins require further research to define how these
factors orchestrate with human genome and epigenome to
contribute to obesity. However, due to the larger number of
loading features, the nature of complex interactions, and ML
approaches used in the present study, further analyses in ML
techniques are needed to define the roles of modifiable lifestyle
predictors when developing a prevention strategy to mitigate
obesity. This type of research will eventually contribute to
precision nutrition strategies to maintain healthy weight
through controlling diet and lifestyle behaviors.

In this study, individual food items and nutrients appeared to
be more important than dietary pattern features. This aligns with
the concept of personalized nutrition. The same level of dietary

FIGURE 3 | Receiver operating characteristic (ROC) curve of the overweight and obesity prediction model using stochastic gradient boosting machine learning
algorithms in the test data set of the FOS (n � 394). This model was based on continuous input variables and under-sampling approach.
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TABLE 3 | Top 50 predictive features of the best-performing model for predicting overweight/obesity status in the FOS.

Importance Feature Chr Position Gene

100.00 Food group—processed meat servings

69.43 cg06690548 4 139162808 SLC7A11

52.17 cg17061862 11 9590431 NA

40.14 cg15754660 7 34699393 NPSR1

40.03 cg00574958 11 68607622 CPT1A

36.52 Nutrient value—calcium

35.51 cg27243685 21 43642366 ABCG1

33.83 cg06560379 6 44231305 NFKBIE

32.88 Food group—diet soda servings

28.66 cg11024682 17 17730094 SREBF1

28.62 Nutrient value—proanthocyanidin, monomers USDA, 2007

28.49 cg05201185 6 30459139 HLA-E

28.19 Physical activity

28.00 cg17501210 6 166970252 RPS6KA2

25.80 cg26403843 5 158634085 RNF145

25.37 Food—low-calorie Cola, no caffeine

25.24 cg11998932 7 3901843 SDK1

24.77 cg26278103 7 124404244 GPR37

24.76 cg08677140 6 30582241 PPP1R10

23.40 Food group—high-fat dairy servings

22.75 cg01881899 21 43652704 ABCG1

22.34 rs1740322

22.20 cg26376241 2 65594021 SPRED2

21.62 rs4974985 4 38961449 TMEM156

20.35 cg03572859 8 22409634 SORBS3

18.97 cg00174508 12 107774298 BTBD11

18.86 cg06500161 21 43656587 ABCG1

18.02 cg14476101 1 120255992 PHGDH

17.88 cg18222913 12 128846838 TMEM132C

17.22 cg16341269 6 150213172 RAET1E

16.63 Nutrient value—proanthocyanidin, dimers USDA, 2007

16.58 Sex

16.02 cg06460869 10 17270094 VIM

15.75 cg22650271 22 39760165 SYNGR1

15.30 cg10426084 17 1640472 WDR81

15.21 cg08766211 15 79118175 NA

15.13 Nutrient value—isorhamnetin, flavonol USDA, 2003

14.77 cg11963676 1 76540110 ST6GALNAC3

13.61 cg19978312 5 179634688 RASGEF1C

13.58 cg04582365 10 59155846 NA

13.52 Nutrient value—epicatechin, flavan-3-ol USDA, 2003

13.24 cg07052041 10 135092104 NA

12.92 cg17901584 1 55353706 DHCR24

12.67 cg18034719 5 176860863 GRK6

12.51 Food—French fries

12.44 cg15448990 4 88411497 SPARCL1

12.30 cg02508743 8 56903623 LYN

(Continued on following page)
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score could be achieved by many ways of dietary intake, and our
research suggested paying attention to individual food items or
specific nutrients which fit each person’s genetic and epigenetic
background. Our data showed that processed meat and animal fat
playedmore important roles than a certain dietary pattern or total
fat intake in predicting obesity, but which food items to use in
recommendations would depend on each individual. Clinical
trials are warranted to validate our findings; in other words, to
test the complex interactive relationships between genetic
background by changing diet (or lifestyle) according to model
outputs. The eventual goal of our research is to understand an
individual’s susceptibility to obesity and his or her responsiveness
to personalized interventions in a clinical setting that utilizes such
results to develop useful prediction and preventive or therapeutic
strategies for obesity.

Comparing our performance of predicting overweight and obesity
with previous research, our ROC value ∼0.70 is not greater than that
of previous research (Mukhopadhyay et al., 2015; Montanez et al.,
2017; Ferdowsy et al., 2021; Thamrin et al., 2021). We wish to
emphasize that we did not include any anthropometric and clinical
phenotypes as predictive features and simply used genome-wide
genotype and DNA methylation data in combination with dietary
and a few other lifestyle factors without any pre-selection based on
prior knowledge. We consider our approach to be an agnostic scan.
Additionally, we incorporated interactionswithmodifiable features in
model building, providing insights into developing strategies for the
prevention and treatment of obesity.

DNA methylation is an epigenetic process that regulates gene
expression without changing the DNA sequence. Genetic factors,
modifiable environmental factors (diet and lifestyle), and biological
status (considered as an internal environment, such as adiposity
status) are believed to influenceDNAmethylation regulation, which
can regulate gene expression and molecular and biological
phenotypes. Thus, it is not surprising that 230 DMSs were
assessed as important contributors to the best-performing model
for predicting obesity, vastly outnumbering the contribution from
SNPs at just 21. Notably, this concept can be further supported by
our analyses that the functional enrichment was contributed mostly

by nearby genes of selected DMSs instead of SNPs. Interestingly,
from those selected features, the enriched function in alternative
splicing parallels observed correlations between DNA methylation
and alternative splicing (Zhang et al., 2020). This enrichment in
alternative splicing indicates a potential regulatory mechanism
between the genome and environment through DNA
methylation (Lev Maor et al., 2015; Gi et al., 2020), possibly
acting via recognition of energy intake (Rhoads et al., 2018).

Obesity is a complex disease that is caused by a combination of
genetic, biological, socioeconomic, cultural, environmental, and
behavioral determinants, and that complexity highlights some of
the limitations and challenges in this study. First, we presented
one method to integrate different data types in this study, and the
development of methods of how to effectively integrate diverse
data sets is a focus of ongoing research. Our findings suggest that
further investigation is needed in order to integrate multi-omics
and modifiable lifestyle factors and to select features to avoid
over-fitting from high-dimensional data. Some of those factors
are known or potential determinants of obesity, including
microbiome data, which were not included in the current
research due to a lack of information in our study population.
To develop more advanced prediction approaches, a more
systematic study design is needed, one that collects data from
the individual, environmental, and societal levels. Second, the
blood-derived DNA methylation profiles may not be perfectly
correlated to expression levels in tissues more relevant to the
phenotype under study, such as adipose tissue. Third, although
the current work was performed cross-sectionally, this method
can be applied to longitudinal data and used to predict the risk of
developing obesity. In addition, this methodology can be used in
future research to validate our approach of providing
personalized nutrition and/or lifestyle recommendations using
clinical trials.

In conclusion, we report an integrated approach to predict
obesity status using omics and dietary information and ML.
Results such as these can inform further development of
approaches for prediction models and applying precision
nutrition strategies for the prevention and treatment of

TABLE 3 | (Continued) Top 50 predictive features of the best-performing model for predicting overweight/obesity status in the FOS.

Importance Feature Chr Position Gene

12.29 cg26722769 4 170328730 NEK1

12.27 cg25999015 19 44037866 ZNF575

11.86 cg00945735 7 41982767 NA

TABLE 4 | Predicted responses in overweight and obesity status of subjects with simulated dietary feature changes in the test data set of the FOS (n � 260).

Original status

Modifying feature Overweight or obese Not overweight or obese Total

Food group—processed meat servings 28 (10.8%) 23 (8.8%) 51 (19.6%)
Food group—high-fat dairy servings 15 (5.8%) 3 (1.2%) 18 (6.9%)
Food—French fries 0 4 (1.5%) 4 (1.5%)
Nutrient value—calcium 8 (3.1%) 6 (2.3%) 14 (5.4%)
Nutrient value—animal Fat 5 (1.9%) 1 (0.4%) 6 (2.3%)
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obesity. We suggest that this current work can be further used to
predict other health outcomes and inform modifiable features to
improve the status of health and diseases.
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