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Colorectal cancer (CRC) is a common, multifactorial disease. While observational studies
have identified an association between lower vitamin D and higher CRC risk,
supplementation trials have been inconclusive and the mechanisms by which vitamin D
may modulate CRC risk are not well understood. We sought to perform a weighted gene
co-expression network analysis (WGCNA) to identify modules present after vitamin D
supplementation (when plasma vitamin D level was sufficient) which were absent before
supplementation, and then to identify influential genes in those modules. The
transcriptome from normal rectal mucosa biopsies of 49 individuals free from CRC
were assessed before and after 12 weeks of 3200IU/day vitamin D (Fultium-D3)
supplementation using paired-end total RNAseq. While the effects on expression
patterns following vitamin D supplementation were subtle, WGCNA identified highly
correlated genes forming gene modules. Four of the 17 modules identified in the post-
vitamin D network were not preserved in the pre-vitamin D network, shedding new light on
the biochemical impact of supplementation. These modules were enriched for GO terms
related to the immune system, hormone metabolism, cell growth and RNA metabolism.
Across the four treatment-associated modules, 51 hub genes were identified, with
enrichment of 40 different transcription factor motifs in promoter regions of those
genes, including VDR:RXR. Six of the hub genes were nominally differentially
expressed in studies of vitamin D effects on adult normal mucosa organoids: LCN2,
HLA-C, AIF1L, PTPRU, PDE4B and IFI6. By taking a gene-correlation network approach,
we have described vitamin D induced changes to gene modules in normal human rectal
epithelium in vivo, the target tissue from which CRC develops.
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INTRODUCTION

Colorectal cancer (CRC) is common, with over 40,000 incident
cases and over 15,000 deaths associated with the disease per year
in the United Kingdom (Cancer Research UK, 2019). In case-
control and prospective cohort studies, higher plasma 25(OH)D
level and higher dietary intake of vitamin D are associated with
lower CRC risk (Jenab et al., 2010; Theodoratou et al., 2012;
Theodoratou et al., 2014). Potential co-causality of CRC risk and
vitamin D status (e.g. socioeconomic status, diet, physical
exercise) and reverse causation (CRC or its treatment affecting
serum vitamin D concentration) mean these observational
studies may be confounded. Supplementation trials have been
inconclusive, with randomised-controlled trials (RCTs) failing to
show effect on CRC or adenoma (precursor lesion) incidence
(Wactawski-Wende et al., 2006; Baron et al., 2015; Manson et al.,
2019; Scragg, 2019). However, these supplementation studies are
themselves confounded by short duration of follow up and
vagaries in genetic, environmental, ethnic, dietary and
ecological factors such as latitude, weather and sunlight
exposure, with many participants in both control and
intervention arms starting trials replete in vitamin D, and/or
taking low-dose vitamin D supplementation. Whether vitamin D
supplementation reduces risk of CRC therefore remains an open
question. In addition, recent studies have suggested a beneficial
effect for vitamin D supplementation on CRC mortality (Keum
et al., 2019; Vaughan-Shaw et al., 2020).

The mechanisms by which vitamin D may modulate CRC risk
and survival are not well understood (Alleyne et al., 2017).
Potential mechanisms include induction of cell differentiation
and apoptosis or inhibition of cell growth and proliferation
(Lamprecht and Lipkin, 2003; Feldman et al., 2014).
Understanding of vitamin D transcriptional responses in the
colon and rectum has primarily come from studies in
transformed cancer cell lines, which may not represent
responses in normal healthy tissue (Mapes et al., 2014), hence
it is advantageous and timely to prioritise human studies to
explore potential mechanisms in the normal target tissue.

Gene co-expression networks are used to describe the pairwise
relationships of a large number of gene expression variables
(Zhang and Horvath, 2005). Genes related by high correlation
coefficients are thought to be functionally related, members of the
same pathway and/or co-regulated. Weighted gene co-expression
network analysis (WGCNA) is one of the most widely used
network methods, whereby gene correlations are raised by a
soft-thresholding power to form a scale-free network. The
advantage of this method is that all correlations are included
for analysis. Methods that apply a hard-threshold (e.g. r > 0.7
being arbitrarily biologically relevant) lose connections below
that threshold for further analysis (Zhang and Horvath, 2005).
Highly connected genes within each module identified by
WGCNA are defined as hub genes, with such genes thought to
play key biological roles in that particular module or in regulation
of a particular trait (Zhang and Horvath, 2005; Kogelman et al.,
2014; Drag et al., 2017; Bakhtiarizadeh et al., 2018). By comparing
differences in network structures (e.g. whether gene modules are
preserved between conditions), it is possible to assess how groups

of genes are perturbed by a certain condition (such as vitamin D
supplementation) (Langfelder et al., 2011). This method has been
successfully used to discover genes involved in endometriosis
(Bakhtiarizadeh et al., 2018) and multiple cancer types (Sun et al.,
2017; Zhang et al., 2018; Zhu et al., 2019).

In this study, we aimed to determine effects of vitamin D on
normal rectal epithelium by assessing gene expression before and
after 12 weeks of vitamin D supplementation in human subjects.
We first assessed vitamin D effects on the expression of single
genes, and then constructed a weighted correlation network to
assess effects of vitamin D on groups of genes, and to identify hub
genes in modules emerging after supplementation. We sought to
functionally annotate genes and gene modules using Gene
Ontology (GO) pathway analysis and to determine
transcription factor binding sites common to hub genes in
emergent modules. Finally, we sought to validate expression
changes of hub genes in adult normal colorectal mucosa
organoids treated with vitamin D. These organoid models are
isolated from many of the vagaries in heterogeneity of the human
population, yet maintain the genetic architecture and 3D-cell
arrangement present in the parent tissue.

MATERIALS AND METHODS

Human Vitamin D Supplementation Study
In the Scottish Vitamin D (SCOVID) study, rectal normal
mucosa biopsies (via rigid sigmoidoscopy) and blood were
collected after informed consent from a cohort of human
subjects free from colorectal cancer (n � 50, 49 whose samples
passed QC). Demographic information is provided in Table 1,
while the study protocol has been described elsewhere (Vaughan-
Shaw et al., 2021). The study had approval from NHS Research
Ethics Committee (REC No 13/SS/0248) and local Research and
Development Committee (R&D Project ID 2014/0058).
Participants received 3200IU daily oral vitamin D (Fultium-
D3), with resampling at 12 weeks. Biopsy samples were stored
immediately in RNA Later (Invitrogen) and kept for 48 h at 4°C
before RNA extraction.

Plasma 25(OH)D was assayed from blood by mass
spectrometry. Plasma extracted from blood taken in lithium
heparin tubes was immediately frozen at −40°C and
subsequently submitted to the Clinical Biochemistry
department, Glasgow Royal Infirmary, United Kingdom for
measurement of 25(OH)D.

To extract RNA, human biopsy samples transferred to 2 ml
Eppendorf tubes and homogenised in Trizol. RNA was then
extracted by Ribopure Kit (Invitrogen) according to the
manufacturer’s protocol. RNA samples from 49 subjects
passed QC and were submitted to the Edinburgh Genomics
facility, with sequencing on the Illumina HiSeq 2,500 in “rapid
mode” with 150 bp paired-end reads as described in Supp
Methods.

Analysis
Transcript quantification from RNAseq was conducted using
Salmon v0.11 (Patro et al., 2017) using Ensembl version
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GRCh38, March 2017, Ensembl 88. Gene level counts were
generated by R packages txiimport (Soneson et al., 2015) and
annotated using biomaRt (Durinck et al., 2005; Durinck et al.,
2009). Expression was normalised using a TMM algorithm based
on gene expression thresholds of >0.1 Transcripts Per Million
(TPM) and ≥6 reads in ≥20% of samples. Trimmed mean of
M-values (TMM) between-sample normalisation was applied to
the counts, as per the GTEx (v7) protocol. Effects of vitamin D on
gene expression were assessed using edgeR v3.32.1 (Robinson
et al., 2010). Following dispersion estimation, a quasi-likelihood
negative binomial generalized log-linear model was fitted to the
count data. Differential expression was assessed by quasi-
likelihood F-test, with the parent-tissue anonymous identifier
included as a covariate in the model as per a paired-design.
Significance was determined as FDR corrected p value < 0.05. GO
pathway analysis was carried out by clusterProfiler (Yu et al.,
2012).

Normalised counts were first log transformed before
proceeding to correlation analysis by WGCNA. To minimise
the biological noise from genes not functionally related to
vitamin D and to limit the dataset for computational
analysis, the top 25% most variable genes after vitamin D
supplementation (determined by logFC) were taken forward
for analysis. WGCNA analysis is sensitive to the presence of
outliers (Horvath, 2011), therefore samples with a standardized
connectivity score of less than −5 were removed. The
goodSamplesGenes function was then used to remove
samples and genes with missing entries (more than 50%
missing entries) and genes with zero variance.

Vitamin D supplementation achieved a 25(OH)D
concentration which might be termed “healthy” whereas
the pre-supplementation samples were depleted in 25(OH)
D, and could be termed the “disease” state. Based on the
assumption that modules present after vitamin D
supplementation but not present before would be of
interest in discerning vitamin D activity, the post-vitamin
D samples were considered as the reference set for module

derivation. Module preservation analysis was then undertaken
in the pre-vitamin D samples. Using WGCNA, we created a
signed weighted gene co-expression network based on normal
gene expression data. A weighted network was created from
the pairwise biweight midcorrelation coefficients between
genes using the blockwiseModules function, with module
merge cut height of 0.25 and a minimum module size of 30
genes (Song et al., 2012; Bakhtiarizadeh et al., 2018). A
weighted adjacency matrix was formed by raising
correlations to the power of 7, which was chosen using the
scale-free topology criterion (Zhang and Horvath, 2005;
Horvath, 2011). The relationship between the power (β)
and R2 for a scale-free network is demonstrated along with
sample dendrograms and their trait relationships in
Supplementary Figure S1.

Age, gender and body mass index (BMI) have been
reported to be associated with vitamin D concentration
(Lagunova et al., 2009; Muscogiuri et al., 2019) and hence
to assess association of those traits with identified gene
modules, we assessed trait correlations to module
eigenvectors (first principal component of each module).
Each module eigenvector represents the expression profiles
of all genes within that module.

To assess the preservation of post-vitamin D network modules
in the pre-vitamin D dataset, the modulePreservation function in
the WGCNA package was applied. We then applied Zsummary
and medianRank (with 200 permutations) to detect module
preservation. A module was considered as non-preserved if it
had Zsummary<5 or medianRank≥8 (Langfelder et al., 2011).

To identify hub genes, intramodular connectivity (kIM) and
module membership (kME) measures were used. Intramodular
connectivity measures the degree of co-expression of a given gene
with respect to the genes of a particular module. This was
determined for both post- and pre-supplementation networks
from the respective matrices of log transformed normalised
counts using the intramodularConnectivity.fromExpr function
(using pairwise biweight midcorrelation coefficients, power 7,

TABLE 1 | Demographic and clinical information of SCOVID study participants.

Factor

Age Median years (IQR) 66 (58–72)
Gender F/M 23/26
BMI Median kg/m2 (IQR) 26.21 (23.66–31.64)
Current CRC N/Y 49/0
Past History CRC N/Y 31/18
Pre-supplementation
Plasma 25(OH)D Median nmol/l (IQR) 86 (23–54)

n < 25 nmol/l 15
n 25–50 nmol/l 20
n > 50 nmol/l 14

Post-supplementation
Plasma 25(OH)D Median nmol/l (IQR) 89 (71–109)

n < 25 nmol/l 0
n 25–50 nmol/l 1
n > 50 nmol/l 48
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a signed network and using the module labels identified above).
Module membership was determined similarly by the signedKME
function, which determines the correlation between the
expression profile of a gene and the module eigengene (first
principal component of a particular module). Genes were kME
≥0.7 or kIM ≥0.7 were considered as hub genes to the respective
module (Horvath, 2011).

Validation of Gene Modules in the STRING
Dataset
We sought to validate gene modules identified byWGCNA in the
STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) curated database of protein-protein interactions
(https://string-db.org/). The STRING database collects, scores
and integrates publicly available sources of protein–protein
interaction information, and can be used to assess if groups of
genes identified by the user are enriched for protein-protein
interactions in those sources (Szklarczyk et al., 2019). HGNC
gene names within each module were uploaded to the STRING
web-browser, and interactions assessed across all seven of the
STRING “interaction sources”.

Investigation of Common Transcription
Factor Binding Sites
We were interested to assess if hub genes in non-preserved
modules may be regulated by common transcription factors.
As per Bakhtiarizadeh et al. (2018), the
“TRANSFAC_and_JASPAR_PWMs” section of the Enrichr
tool (Chen et al., 2013) (https://amp.pharm.mssm.edu/Enrichr/
) was applied to determine common transcription factor binding
sites in promoter regions of such genes.

Validation of HubGene ExpressionChanges
in Adult Normal Colorectal Organoids
Fernandez-Barral et al. (2020) undertook differential expression
analysis of adult normal mucosa organoids (FB-ANMO) derived
from six individuals treated for 96 h with 100 nM calcitriol or 1%
ethanol. Normalised counts and anonymised meta-data were
downloaded from GEO (GSE100785; https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc � GSE100785). The same edgeR
pipeline as described above was then used to determine
differentially expressed genes in the FB-ANMO. Gene set
testing was carried out using the geneSetTest function in
limma (Ritchie et al., 2015).

RESULTS

NoGenesWere Differentially Expressed at a
Genome-Wide Level Following Vitamin D
Supplementation
Fultium-D3 supplementation increased plasma 25(OH)D in all
study participants [mean (SD) nmol/l baseline 39.4 (20.4),

12 weeks 92.2 (27.0), p < 0.001; mean increase 52.8 (28.3)].
21,650 genes passed expression filters and were taken forward
for differential expression analysis. 2,492 genes were nominally
differentially expressed (p < 0.05), but none remained significant
after genome-wide FDR correction (FDR p < 0.05,
Supplementary Table S1). 150 GO Biological Process terms
were enriched in nominally differentially expressed genes
including “protein-containing complex localization”, “DNA
conformation change”, and “RNA splicing” (Supplementary
Table S2).

Gene Modules Identified by WGCNA After
Vitamin D Supplementation
Having identified no genes differentially expressed at a
genome-wide significance level, we were interested to
examine if vitamin D changes occurred across groups of
genes by network connectivity analysis. From the total pool
of 21,650 genes, the top 25% (5,412) genes by logFC
(irrespective of direction of effect) were taken forward for
further analysis. This limited analysis to the genes potentially
most responsive to vitamin D supplementation for
computational reasons. No samples had outlying
standardized connectivity score, and no genes were lost by
the goodSamplesGenes function.

FIGURE 1 | Module-trait relationships in the post-vitamin D network.
Pearson correlation of module eigenvector (first principal component) and trait
(along with nominal p-value).
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17 modules were identified in the post-vitamin D network
including the unclassified module (grey). No module eigenvector
was correlated with plasma 25(OH)D or gender (Figure 1,
Supplementary Table S3). The tan and greenyellow module
eigenvectors were nominally significantly correlated with age,
though did not remain significantly correlated after correction for
multiple testing (r � 0.39, p � 0.005, FDR p � 0.09; r � -0.29, p �
0.04, FDR p � 0.38 respectively). The purple, salmon, red and
turquoise module eigenvectors were nominally correlated with
BMI, however again were not significant after accounting for
multiple testing (r � 0.39, p � 0.005, FDR p � 0.09; r � -0.35, p �
0.01, FDR p � 0.13; r � -0.30, p � 0.04, FDR p � 0.16; r � -0.30, p �
0.04, FDR p � 0.16 respectively).

Identification of Treatment-Associated
Modules From the Pre-Vitamin D
Transcriptome
One sample with outlying standardized connectivity score was
removed from the pre-vitamin D network prior to module
preservation analysis. 12 modules from the post-vitamin D
network were strongly preserved in the pre-vitamin D network
(defined as Zsummary statistic >10), i.e. were not associated with
vitamin D treatment, while four modules from the post-vitamin
D network were not preserved in the pre-vitamin D network, and

hence were considered to be treatment-associated modules
(Zsummary statistic <5 and median rank >8 for salmon,
midnightblue and tan modules. Lightcyan module Zsummary
statistic 5.2, Zdensity. pres 4.1 and Zconnectivity 6.3 with median
rank 12). Module preservation statistics are described in
Supplementary Table S4 and their distribution in Figure 2.
GO terms for each module are described in Table 2 and
Supplementary Table S5.

As a means of testing ifWGCNA had identified gene modules
which had also been found to be interacting in other datasets, we
next sought to test if these modules were enriched in the STRING
curated database of protein-protein interactions (PPI). Three of
the four modules which were not preserved in the pre-vitamin D
network were enriched for protein-protein interactions (Table 3).
In addition 11 of the 12 preserved modules were enriched for
protein-protein interactions (Supplementary Table S6).

Identification of Hub Genes in
Treatment-Associated Modules
The genes with the highest degree of connectivity within a particular
module are considered as hub genes. We were interested to identify
hub genes in treatment-associated (non-preserved) modules, and in
particular those genes which gained or lost hub-status. Hub genes
were defined as those with kME ≥0.7 or with kIM≥0.7. By this

FIGURE 2 |Median rank and Z-summary statistics for preservation of modules from the post-vitamin D network in the pre-vitamin D network. Z-statistic >10 strong
evidence of preservation, 5–10 moderate evidence of preservation, 2–5 weak evidence of preservation and <2 no evidence of preservation (Langfelder et al., 2011).
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definition, eight hub genes were identified in the salmon module, 13
in the midnightblue, 21 in the tan and nine in the lightcyan module
(Supplementary Table S7).

Enrichment of Transcription Factor Binding
Sites in Hub Gene Promoter Regions
Given hub genes are thought to be functionally important
within their respective modules, we next sought to identify
transcription factors common to hub genes in the non-
preserved modules. A total of 40 different transcription
factor motifs were enriched in promoter regions of hub
genes in treatment-associated modules (Supplementary
Table S8). Each of the four treatment-associated modules
included hub genes which contained either VDR:RXR or RXR
binding motifs in their respective promoter regions.

Crossover With Differentially Expressed
Genes in NM Organoids
Finally, we reviewed differential expression of hub genes in a
study of adult normal mucosa organoids treated with
vitamin D. 15 of the 51 hub genes in treatment-associated
modules identified above were present in the FB-ANMO
dataset after gene filters. Those 15 genes were significantly
downregulated on gene set testing in FB-ANMO (p � 0.02).
Six of the 15 hub genes were also nominally differentially
expressed in FB-ANMO, with five remaining significant after
correction for multiple testing (Genome-wide FDR <0.05,
Table 4, Supplementary Table S9). WGCNA is not
recommended on datasets with fewer than 15 samples
(Langfelder and Horvath, 2017), and hence we did not
proceed to network analysis in this organoid dataset (6
samples per condition).

TABLE 2 | Select GO biological process terms in each of the modules present in the post-vitamin D network, with associated statistics for preservation in the pre-vitamin D
network. The top three GO biological process terms for each module (determined by FDR p-value) are shown. Where highly similar terms related to overlapping genes
existed (e.g., purine ribonucleoside binding and purine nucleoside binding) only one term is shown.

Module Module
size

Z
summary

Median
rank

N GO
terms

GO description

Salmon 46 2.0 17 9 Defense response to virus; RNA helicase; GTP binding;
Midnightblue 40 3.47 15 158 viral mRNA export from host cell nucleus; RNA secondary structure unwinding; negative regulation of

DNA damage checkpoint
Tan 51 4.60 14 5 positive regulation of hormone metabolic process; sphingolipid mediated signaling pathway; positive

regulation of nuclear division
Lightcyan 34 5.21 12 49 adaptive immune response based on somatic recombination of immune receptors built from

immunoglobulin superfamily domains; regulation of leukocyte mediated cytotoxicity
Cyan 43 10.83 4 141 ribosome biogenesis; ncRNA processing; nucleocytoplasmic transport
Greenyellow 85 11.19 8 202 homophilic cell adhesion via plasma membrane adhesion molecules; extracellular matrix

organization; smoothened signaling pathway
Black 249 13.48 13 603 extracellular matrix organization; muscle contraction; axonogenesis
Purple 150 13.65 9 112 RNA splicing, via transesterification reactions; cilium organization; RNA transport
Magenta 184 16.64 7 166 positive regulation of viral release from host cell; vacuolar transport; endosome organization
Yellow 348 23.94 8 783 lymphocyte differentiation; regulation of T cell activation; positive regulation of leukocyte cell-cell

adhesion
Blue 521 24.32 11 94 peptidyl-lysine modification; TORC1 signaling; histone modification
Pink 231 28.05 4 100 alcohol metabolic process; cellular response to extracellular stimulus; macroautophagy
Green 311 28.05 5 466 oxidative phosphorylation; cellular respiration; mitochondrial translation
Brown 481 29.54 6 5 apoptotic process involved in morphogenesis
Red 290 37.08 1 375 muscle tissue development; extracellular matrix organization; multicellular organismal signaling
Turquoise 556 47.57 3 445 leukocyte cell-cell adhesion; regulation of T cell activation; lymphocyte proliferation

TABLE 3 | Protein-protein interaction enrichment of genes in non-preserved modules identified in the STRING database. FDR correction for 16 modules tested (grey
unclassified module excluded).

Module N genes
in string
database

N genes
in module

Number of
connections

PPI enrichment
p value

PPI enrichment
FDR p
value

Salmon 19 46 13 1.12e-05 1.28E-05
Midnightblue 22 40 12 5.14e-07 6.85E-07
Tan 38 47 6 0.093 0.099
Lightcyan 24 28 29 <1.0e-16 <2.67E-16
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DISCUSSION

In this study, we have demonstrated that while vitamin D
supplementation does not affect the expression of any single
gene at a genome-wide level of significance, it does induce
changes in the inter-correlated expression patterns across
genes, reflected in modules. 16 gene modules were identified
after vitamin D supplementation (a state which reflects those
individuals having a sufficient level of vitamin D for health). 14 of
the 16 identified modules were also noted to be significantly
enriched for protein-protein interactions in the STRING curated
database, suggesting that WGCNA is able to identify modules
which may have functional relevance.

Setting these results in context, other studies have similarly
found no or few differentially expressed single genes following
vitamin D supplementation (Hossein-nezhad et al., 2013;
Munro, 2016; Pasing et al., 2017), however pathway
analyses have identified effects on fatty acid metabolism
and PPAR signaling (Munro, 2016), MAPK signaling, NF-
kappa B signaling, T cell receptor signaling and prostate
cancer (Hossein-nezhad et al., 2013). No study has
previously investigated effects of vitamin D
supplementation by the gene-correlation network approach.
We were particularly interested to identify four treatment-
associated modules that were not observed before vitamin D
supplementation (a state of vitamin D insufficiency).
Functional terms enriched in those modules included
multiple GO terms related to the immune system, along
with terms related to hormone metabolism, cell growth and
RNA metabolism. Enrichment of GO terms associated with
immunity is of particular note given the general interest in
vitamin D and the immune system, in particular with risk of
conditions such as multiple sclerosis and inflammatory bowel
disease being associated with lower serum vitamin D (Munger
et al., 2006; Limketkai et al., 2017; Fletcher et al., 2019).
Vitamin D has also been postulated to favourably benefit
the immune response in severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) (Martineau and Forouhi, 2020).
Mechanistically, an excess of VDR binding variants identified
by ChIP-exo has been reported to overlap with genomic
variants associated with autoimmune disorders such as
inflammatory bowel disease, Crohn’s disease and
rheumatoid arthritis (Gallone et al., 2017).

Hub genes represent the most connected genes within a
module, and are thought to be functionally important.

Interestingly each of the non-preserved modules contained
hub genes which contained VDR:RXR or RXR motifs in their
respective promoter regions. Vitamin D signaling occurs
principally following the binding of the active form of vitamin
D, 1,25(OH)2D, to the Vitamin D Receptor (VDR) (Kliewer et al.,
1992). VDR forms a heterodimer complex with Retinoid X
Receptor (RXR) to bind DNA via VDR-responsive elements
(VDRE) largely characterized by the VDR-RXR motif (Kliewer
et al., 1992; Zhang et al., 2011). While the presence of a motif does
not indicate actual transcription factor binding in-vivo, it does
add further support to the notion that these genes are central to
the vitamin D response in normal rectal epithelium.

Finally, when the list of hub-genes in non-preserved
modules was cross-referenced with a separate study of
vitamin D response in adult normal mucosa organoids, a
number of interesting candidate genes were identified
including LCN2, HLA-C and IFI6. LCN2, found to have a
RXR motif in its promoter region, is expressed by macrophages
and epithelia in response to inflammation (Dahl et al., 2018)
and inhibition of LCN2-modulated NF-kB pathway activation
by vitamin D has been noted to promote cisplatin sensitivity of
oral squamous cell carcinomas (Huang et al., 2019). LCN2 acts
in a bacteriostatic fashion (Dahl et al., 2018), which is
noteworthy given the potential role of the gut microbiota in
development of CRC (Saus et al., 2019). Human leukocyte
antigens have been reported to be a major target of vitamin D
physiological activity (Carlberg, 2019), with HLA-C being
differentially expressed in peripheral blood mononuclear
cells (PBMCs) following vitamin D supplementation of
adult humans (Neme et al., 2019). Interferon alpha-
inducible protein 6 (IFI6), also known as G1P3 has been
shown to contribute to hyperplasia, tamoxifen resistance
and poor outcomes in breast cancer (Cheriyath et al., 2012).
It was one of the top differentially expressed genes (log FC
-3.04) following vitamin D treatment of airway smooth muscle
cells derived from individuals following a fatal asthma episode
(Himes et al., 2015).

It is worthy of note that no module eigenvector was
correlated with plasma 25(OH)D. The relationships between
vitamin D and gene expression may not be linear, and instead
sigmoidal or U-shaped relationships may exist (Mizunashi et al.,
1995; Ross et al., 2011; Macdonald et al., 2018). Assessing the
relationships between plasma 25(OH)D and gene modules may
therefore fail to show effects in individuals sufficient in vitamin
D, as was the case following vitamin D supplementation in this

TABLE 4 | Hub genes in non-preserved modules which are also differentially expressed in adult normal mucosa organoids from re-analysis of Fernandez-Barral et al. (FB-
ANMO).

Gene Module logFC
SCOVID

Pvalue kME post kME pre kIM post kIM pre logFC
organoid

Pvalue
organoid

FDR organoid

LCN2 Tan 0.20 1.17E-01 0.47 0.57 0.75 0.85 -0.62 1.51E-04 2.27E-03
AIF1L Tan 0.12 4.79E-02 0.44 0.40 0.58 0.71 -0.70 1.38E-03 1.03E-02
HLA-C Lightcyan 0.14 4.30E-01 0.82 0.80 0.86 0.89 0.22 2.92E-03 1.31E-02
PTPRU Tan 0.21 8.56E-02 0.64 0.61 0.94 0.92 -0.28 3.49E-03 1.31E-02
PDE4B Tan 0.12 2.39E-01 0.50 0.63 0.72 0.92 0.88 8.90E-03 2.67E-02
IFI6 Salmon 0.17 1.60E-01 0.34 0.55 0.33 0.74 -0.33 3.38E-02 8.45E-02
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study. In addition, plasma vitamin D may not be an accurate
measure of vitamin D in the target tissue of interest (in this case
the rectal epithelium), with previous studies reporting a marked
discrepancy between serum and tissue concentrations
(Martinaityte et al., 2017).

This study represents a novel approach to assessing vitamin D
effects. Unlike many of the large randomised-controlled trials of
vitamin D effects (Wactawski-Wende et al., 2006; Baron et al.,
2015; Manson et al., 2019; Scragg, 2019), the majority of
participants were deficient in vitamin D at the start of the
study period (n � 39 baseline plasma 25(OH)D < 50 nmol/l).
The effects of vitamin D were also assessed directly in the target
tissue of interest, the rectum, as opposed to assessing effects in
blood which may have been technically easier to sample. This
study is larger thanmany of the published studies assessing effects
of vitamin D supplementation on gene expression (Hossein-
nezhad and Holick, 2013; Gerke et al., 2014; Ryynänen et al.,
2014; Protiva et al., 2016). Limitations of this study have been
discussed elsewhere (Vaughan-Shaw et al., 2021). This study may
have been too small to achieve sufficient power to assess
individual gene significance. Individuals taking part in the
study were not selected on the basis of initial plasma 25(OH)
D; supplementation may have a sigmoidal or U-shaped
relationship with gene expression (Mizunashi et al., 1995; Ross
et al., 2011; Macdonald et al., 2018) and hence failing to select
participants based on initial 25(OH)D could blunt the observed
effect of supplementation. Finally sampling after 12 weeks of
supplementation may not adequately capture early or later
gene expression changes, however more frequent or delayed
sampling would provide additional practical and ethical
challenges.

SUMMARY

By taking a gene-correlation network approach, we have
described vitamin D-induced changes to groups of genes in
normal human rectal epithelium. By reviewing treatment-
associated modules before and after vitamin D
supplementation, we have identified hub genes which may
play a key role in modulating vitamin D actions in normal
rectal epithelium. This provides novel understanding of the
mechanisms by which vitamin D may have beneficial effects
on CRC risk and survival.
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