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The inhibitory regulators, known as immune checkpoints, prevent overreaction of the immune system, avoid normal tissue damage, and maintain immune homeostasis during the antimicrobial or antiviral immune response. Unfortunately, cancer cells can mimic the ligands of immune checkpoints to evade immune surveillance. Application of immune checkpoint blockade can help dampen the ligands expressed on cancer cells, reverse the exhaustion status of effector T cells, and reinvigorate the antitumor function. Here, we briefly introduce the structure, expression, signaling pathway, and targeted drugs of several inhibitory immune checkpoints (PD-1/PD-L1, CTLA-4, TIM-3, LAG-3, VISTA, and IDO1). And we summarize the application of immune checkpoint inhibitors in tumors, such as single agent and combination therapy and adverse reactions. At the same time, we further discussed the correlation between immune checkpoints and microorganisms and the role of immune checkpoints in microbial-infection diseases. This review focused on the current knowledge about the role of the immune checkpoints will help in applying immune checkpoints for clinical therapy of cancer and other diseases.
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INTRODUCTION
Activation of T cells plays an important role in the process of immunity (Lenschow and Bluestone, 1993). During normal immune response, the process that T cells accept antigen peptides presented by major histocompatibility complex (MHC) on antigen-presenting cells (APCs) via T-cell receptor (TCR) in order to exert its function is called the first signal for T-cell activation. The second signal for T-cell activation is a costimulatory signal which comes from a combination between CD28 on T cells and CD80(B7-1)/CD86(B7-2) on APCs (Lenschow et al., 1996; Nandi et al., 2020). This activation process also requires cytokines such as IL-2 to help. The rightly activated T cells or in tandem with B cells will eliminate threats, while uncontrolled activation of T cells would bring serious consequences such as autoimmune diseases (Takeuchi et al., 2020). Therefore, scientists devoted their lives to shed light on how the immune system regulates itself.
In the last two decades, the understanding of regulatory pathways in immune responses to cancer immunotherapies remains unclear. The enormous progress was made in 1996; Leach and his colleagues (Linsley et al., 1991; Leach et al., 1996) have been validated that blockade of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) could downregulate T-cell responses and enhance antitumor responses in immunocompetent mouse models. In 2000, Gordon J. Freeman identified that CTLA-4 structurally similar protein-programmed death 1 (PD-1) could bind to its ligand PD-L1 and lead to the inhibition of lymphocyte proliferation (Freeman et al., 2000). The binding of B- and T-cell lymphocyte attenuator (BTLA) to its ligand HVEM may lead to decreased T-cell proliferation and cytokine production (Murphy et al., 2006). The binding of T-cell immunoglobulin and mucin domain-containing 3 (TIM-3) to its ligand galectin-9 could result in T helper 1 (Th1) cell death (Zhu et al., 2005). V-domain Ig suppressor of T-cell activation (VISTA) is a potent T-cell suppressor and inhibits T-cell immune response in animal models (Wang et al., 2011). During these processes, the set of costimulatory or coinhibitory molecules, which regulate the activation, effector functions, and interactions among APCs and T lymphocytes, provides a critical checkpoint in the regulation of T-cell immunity and maintenance of immune homeostasis. As their function in the balance of the immune system, these costimulatory or coinhibitory proteins are defined as immune checkpoint proteins (Figure 1, Table 1). A direct consequence of these findings was to reveal the regulatory pathways involved in immune responses in cancer and infectious diseases.
[image: Figure 1]FIGURE 1 | Immune checkpoint receptors and their ligands. Two signals participate in T-cell activation: 1) T cells recognize antigen presented by MHC-II molecules on APCs through TCR; 2) T cells accept costimulatory signals CD80/CD86 through CD28.
TABLE 1 | The expression and mechanism of the immune checkpoints.
[image: Table 1]Immune checkpoint proteins have been playing a significant role in inflammatory reactions and cancer immunotherapy. A number of immune checkpoint proteins were shown to be dysregulated in cancers and infectious diseases, including PD-1/PD-L1, CTLA-4, lymphocyte activation 3 (LAG-3), TIM-3, VISTA, and Indoleamine-2,3 dioxygenase 1 (IDO1). These immune checkpoints and other regulatory cells, such as regulatory T cells (Tregs), myeloid-derived suppressors cells (MDSCs), M2 macrophages, and cytokines, are often enhanced during infections and cancers (Pauken and Wherry, 2015). Pathogens can develop immune checkpoints to limit host-protective antigen-specific immune response (Dyck and Mills, 2017). The cancer cells can disrupt the immune response and cleverly escape from immunity by dysregulating immune checkpoint signaling. Many similarities exist between cancer and infectious disease (Hotchkiss and Moldawer, 2014). They can utilize similar receptors to detect damage-associated molecular patterns (DAMP) and pathogen-associated molecular patterns (PAMPs), respectively (Vance et al., 2017). In the meantime, persistent stimulation of the immune system and induction of T-cell-mediated inflammation can be aroused. In pathogen-infected diseases, with elevated expression of the immune checkpoint molecules on T cells as it is in cancer, the immune checkpoint blockade therapy may bring favorable consequences (Wykes and Lewin, 2018). So, agonists of costimulatory signals or antagonists of inhibitory signals function as good ways for cancer therapy and also could help to reverse the state of immune suppression in chronic infection. Some antibodies that targeted immune checkpoint molecules to reverse the suppression of the immune system have been applied in the clinical treatment of cancer (Remon and Besse, 2017; Chen et al., 2019). However, the unexpected events of an immune checkpoint inhibitor (ICI) have emerged as frequent complications at the same time.
Here, we review the mechanisms, functions, and adverse events of common immune checkpoints in cancer and infectious diseases. We also discuss the impact of the bacterial microbiome on the relationship between cancer therapy and the immune system.
BIOLOGY OF IMMUNE CHECKPOINT PROTEINS
PD-1/PD-L1
PD-1 is a 288 amino acid protein that is encoded by the PDCD1 gene and belongs to the immunoglobulin superfamily (Tavares et al., 2018). PD-1 can be expressed on T cells, B cells, natural killer cells (NKs), dendritic cells (DCs), macrophages, and monocytes (Ahmadzadeh et al., 2009). T cells inducibly express PD-1 after activation (Han et al., 2020), while different from other members of the CD28 superfamily, which has Src homology (SH2) binding motifs and/or SH3 binding motifs in their cytoplasmic tail, the cytoplasmic tail of PD-1 possesses a sequence that can form an immunoreceptor tyrosine-based inhibition motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM) that can recruit Src homology 2 domain-containing protein tyrosine phosphatases (SHP-2), resulting in the inhibitory function (Neel et al., 2003; Patsoukis et al., 2020).
The two ligands of PD-1, PD-L1 (also known as B7-H1) and PD-L2 (B7-H2), differ in expression patterns (Panjwani et al., 2018). PD-L1 is expressed on many cells, including B cells, T cells, macrophages, tumor cells, and other tissue cells such as vascular endothelial cells (Ritprajak and Azuma, 2015; Dermani et al., 2019). Ligation of PD-1 and PD-L1 can lead to T-cell dysfunction and anergy, helping PD-L1 expressing tumor cells escape from cytotoxic T-cell-mediated cell death (Ritprajak and Azuma, 2015; Dermani et al., 2019).
PD-1/PD-L1 blockade not only facilitates T-cell function but also restores NKs antitumor response (Hsu et al., 2018). PD-L1 expression on cancer cells resulted in the generation of more aggressive tumors in vivo. Depleting NKs before PD-L1 expressed or not tumor cell implantation resulted in similar growth of tumors and mortality. However, no such effect occurring with depletion of CD4+ and CD8+ T cells indicates that NKs take a vital position in immune checkpoint blockade (Hsu et al., 2018).
It is reported that several signaling pathways would participate in the PD-1/PD-L1 axis. For example, PD-1−PD-L1+ regulatory B cells must exert their immunosuppressive function through activation of the PI3K/AKT/NF-κB signaling pathway in breast cancer (Liu et al., 2021). PTEN is a critical inhibitor of the PI3K/AKT signaling pathway. In microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) gastrointestinal tumors, mutation of PTEN, especially in the phosphatase domain, could be negative predictors of PD-1 blockade treatment (Chida et al., 2021). Blockade of MAPK pathway through MEK1 and two inhibitors prevented the expression of PD-L1 in lung adenocarcinoma cells (Stutvoet et al., 2019), whereas inhibition of ERK could improve the anti-PD-L1 checkpoint blockade effect in preclinical pancreatic ductal adenocarcinoma (Henry et al., 2021). What we have listed above indicates that MAPK pathway activity could also severely influence the PD-L1 axis despite the PI3K pathway. Similarly, using inhibitors of the JAK/STAT pathway, which was reported to suppress PD-L1 upregulation, showed that it can also take part in regulating the PD-L1 axis (Doi et al., 2017).
CTLA-4
CTLA-4 is a 223 amino acid protein, which belongs to the immunoglobulin superfamily and consists of an IgV domain, a transmembrane region, and a cytoplasmic tail containing a conserved YVKM motif (Rowshanravan et al., 2018). Stored in endocytic vesicles, CTLA-4 is transported to the cell membrane to be colocalized with TCR on the cell surface. Dependent on dynamin and clathrin adaptor protein complex (AP2), which targets the YVKM motif, internalization of CTLA-4 from cell surface for degradation and recycling is rapid (usually within minutes) (Shiratori et al., 1997). Then CTLA-4 can be transported to cell membrane again or compartment of lysosome for degradation. Such regulation of AP2 can be disrupted by the phosphorylation of the YVKM motif after T-cell activation (Qureshi et al., 2012). Lipopolysaccharide responsive and beige-like protein (LRBA) may inhibit degradation of CTLA-4 by disrupting transportation of CTLA-4 to the lysosome via binding to YVKM sequence and promote recycling of CTLA-4. Patients with LRBA deficiency raised autoimmunity syndrome designating that accurate CTLA-4 trafficking is important for autoimmune diseases (Lo et al., 2015; Rowshanravan et al., 2018).
The phenomenon that CTLA-4, often expressed on antigen-specific T cells, has a higher affinity (10–100-fold) for CD80 dimer and CD86 monomer than CD28 is considered to be a conventional concept about how CTLA-4 downregulates the immune response (Linsley et al., 1994; van der Merwe et al., 1997). Different from antigen-specific T cells that upregulated CTLA-4 after activation, Tregs constitutively express a high range of CTLA-4 ensuring immune homeostasis and immunosuppressive capacity. Intriguingly, there have been studies proved that CD80 and CD86 on APC can be captured and deleted by CTLA-4 expressed on CD4+CD25+Foxp3+ Tregs (Qureshi et al., 2011; Tekguc et al., 2021), while patients or carriers with CTLA-4 mutation showed diminished Tregs inhibitory function and impaired trans-endocytosis of CD80 (Schubert et al., 2014). These discoveries provide a proper explanation for the rapid endocytic behavior of CTLA-4 that CTLA-4 may exhibit its inhibitory function by trans-endocytosis. Also, there have been studies about other mechanisms undergoing CTLA-4 inhibition. Kong et al. found that protein kinase C-η (PKC-η) was recruited to and physically associated with the CTLA-4 expressed on Tregs in the immunological synapse. PKC-η-deficient Tregs lacked their suppressive function, leading to lymphoproliferation and autoimmune syndromes (Kong et al., 2014). In addition, competitively binding with CD28, CTLA-4 limited the positive costimulation of CD28 by blocking the downstream PI3K/AKT and NF-κB signaling pathway (Pages et al., 1994; Olsson et al., 1999). The anti-CTLA-4 antibody (ipilimumab) eliminated Tregs in an Fc-dependent manner to achieve clinical relief, which may be due to relieved NKs cytotoxicity suppressed by Tregs (Romano et al., 2015; Khan et al., 2020). For anti-CTLA-4 antibodies therapy, CD8+ T cells were required for the therapeutic effect. Fas-FasL and perforin interactions also were important for CTLA-4 blockade (van Elsas et al., 2001).
LAG-3
Firstly identified in 1990 by Triebel and colleagues, lymphocyte activation 3 (LAG-3, CD223), an immune inhibitory receptor, is a 503 amino acid protein encoded by lymphocyte activation gene that is located on chromosome 12, containing eight exons (Triebel et al., 1990; Sierro et al., 2011). Belonging to the Ig superfamily, LAG-3 contains four extracellular Ig-like domains D1, D2, D3, and D4, which share approximately 20% amino acid homology with that of CD4. Comprising unlike intracellular region with CD4, LAG-3 is closely related but exhibits divergent functions with CD4 (Maruhashi et al., 2020). The cytoplasmic tail of LAG-3 has three conserved motifs. The first motif, which has not been considered functional, contains a hypothesized serine phosphorylation site containing two serine residues in humans. It is reported that the second motif, which has conserved six amino acid sequences (KIEELE), plays an important role in dampening T-cell proliferation, cytokine production, and cytolytic function. The third motif is a glutamic acid and proline dipeptide repeat which can colocalize LAG-3 with CD3, CD4, and CD8 molecules (Goldberg and Drake, 2011; Ruffo et al., 2019).
LAG-3 can be detected from CD4+ and CD8+ T cells, Tregs, NKs, and plasmacytoid DCs and do not express on naive T cells similar to PD-1 and CTLA-4 (Goldberg and Drake, 2011). Activation of LAG-3 can elevate intratumoral Tregs activity, and blocking of it will upregulate T-cell function and reinvigorate CD8+ tumor-infiltrating lymphocytes (TILs) to eliminate tumor cells (Lecocq et al., 2020). CD4+CD25+ Tregs from LAG-3 (−/−) mice exhibited reduced regulatory activity. Treated with anti-LAG-3 antibody, suppression induced by Tregs was inhibited in vitro and in vivo. It is obvious that LAG-3 marks Tregs populations and intermediates their regulatory function (Huang et al., 2004). As a transmembrane protein receptor which is similar to CD4 with greater affinity for MHC-II molecules on APCs (Triebel et al., 1990), there are also other proposed ligands for LAG-3 like galectin-3, fibrinogen-like protein 1 (FGL-1), α-synuclein, and LSECtin (Xu et al., 2014; Kouo et al., 2015; Mao et al., 2016). Recent research showed that FGL-1 worked as an important ligand of LAG-3 in its inhibitory effect on T cells. The expression of LAG-3 can be elevated on exhausted T cells in cancer. FGL-1 is upregulated in several human cancers, and genetic ablation or blockade of the FGL-1/LAG-3 interaction by monoclonal antibodies (mAbs) would enhance T-cell responses and antitumor immunity. Wang et al. expected a poor prognosis in non-small-cell lung cancer (NSCLC) patients with high plasma FGL-1 treated with anti-PD therapy (Wang et al., 2019a). The precise function of ligands of LAG-3 still needs to be clarified.
TIM-3
TIM-3 is a transmembrane protein encoded by HAVCR2 and identified on IFN-γ-producing CD4+ Th1 cells and CD8+ type 1 cytotoxic T cells firstly. Then it is also discovered on monocytes, Tregs, DCs, and NKs (Wolf et al., 2020). The fact that administration of antibody to TIM-3 could enhance Th1-dependent autoimmune disease strongly implying that TIM-3 works as an inhibitory molecule on T-cell function (Monney et al., 2002). Indeed, TIM-3 is found to be coregulated and coexpressed with other immune checkpoint receptors, such as PD-1 and LAG-3 (Chihara et al., 2018). High expression of TIM-3 on effector T cells also indicates severe T-cell exhaustion or dysfunction (Avery et al., 2018).
Without known inhibitory signaling motifs in its cytoplasmic tail, TIM-3 contains five conserved tyrosines to play its role. TIM-3 can be found in lipid rafts and is recruited to the immunological synapse upon T-cell activation (Clayton et al., 2014). TIM-3 interacts with HLA-B associated transcript (BAT3) in ligand unbound form and maintains T-cell activation by recruiting an active form of tyrosine kinase LCK, while in ligand-bound form, tyrosine phosphorylation in its cytoplasmic tail will release BAT from TIM-3 and recruit tyrosine kinase FYN resulting in immune synapse disruption, phosphatase recruitment, and cell apoptosis (van de Weyer et al., 2006; Rangachari et al., 2012).
It has been demonstrated that IL-27/NFIL3 axis promotes permissive chromatin remodeling of the TIM-3 locus, induces TIM-3 expression, and is crucial for the induction of TIM-3 in vivo. IL-27-conditioned Th1 cells exhibit inhibitory function through NFIL3 in intestinal inflammation (Zhu et al., 2015). In human acute myeloid leukemia (AML), activation of TIM-3 works through NF-κB and β-catenin signaling pathways to promote self-renewal of leukemic stem cells (Kikushige et al., 2015). In hepatocellular carcinoma (HCC), TIM-3 was significantly upregulated in NKs and suppressed their cytokine production and cytotoxic activity through inhibiting PI3k/Akt/mTORC1 signaling pathway (Tan et al., 2020).
Different ligands of TIM-3 show various effects. The well-studied ligands of TIM-3 are galectin-9 (Gal-9), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1), high mobility group box-1 protein (HMGB1), and phosphatidylserine (PtdSer). In T cells, ligation between Gal-9 and carbohydrate motifs on the IgV domain of TIM-3 functions in an immunosuppressive way which will induce T-cell apoptosis (Du et al., 2017; Dixon et al., 2018). CEACAM-1 coexpressed with TIM-3 is considered to be required for the regulatory function of TIM-3 (Huang et al., 2015). HMGB1 can bind to DNA released from dying cells and facilitate the uptake of DNA by Toll-like receptors. The interaction between HMGB1 and TIM-3 interferes with the innate immune response induced by nucleic acid (Nogueira-Machado et al., 2011; Chiba et al., 2012; Urban-Wojciuk et al., 2019). PtdSer-TIM-3 interaction shows clues for participating in apoptotic clearance cells, and more consequences between their interaction are waiting to be found (Nakayama et al., 2009).
Gal-9 binding with TIM-3 can cause an influx of calcium and mediate aggregation and apoptosis of effector Th1 cells in vitro. Administration of Gal-9 can result in selective loss of IFN-γ-producing cells and suppression of Th1 autoimmunity (Zhu et al., 2005). PtdSer engagement will induce TIM-3 phosphorylation leading to dysfunction of NKs in HCC (Tan et al., 2020). In head and neck squamous cell cancer (HNSCC), blockade of TIM-3 by mAbs induced the reduction of Tregs and increased IFN-γ production of CD8+ T cells, while the population of CD206+ M2 macrophages was not significantly reduced (Liu et al., 2018). Intriguingly, TIM-3 can also play an immunostimulatory role in NKs, DCs, and macrophages (Gleason et al., 2012; Zhang et al., 2012; Yang et al., 2013; Clayton et al., 2014).
VISTA
V-domain Ig suppressor of T cell activation (VISTA), also termed as PD-1H, B7-H5, V-set immunoregulatory receptor (VSIR), stress-induced secreted protein 1 (SISPQ), and differentiation of embryonic stem cells 1 (Dies1), is a conventional transmembrane protein whose IgV domain homology with PD-L1 and encoded by the gene located on chromosome 10 (Huang et al., 2020). Although containing a similar molecular sequence with the B7 superfamily, VISTA does not possess ITIM/ITAM (immunoreceptor tyrosine-based activation motif). VISTA is expressed on myeloid cells (e.g., monocytes, conventional DCs, macrophages, and circulating granulocytes), T cells, Tregs, and TILs (Hosseinkhani et al., 2021). There are increasing pieces of evidence showing VISTA as a regulatory immune checkpoint. In mice lacking VISTA, they would develop spontaneous T-cell activation, cutaneous lupus erythematosus, and production of inflammatory cytokines and chemokines (Wang et al., 2014; Liu et al., 2015; Han et al., 2019). With the presence of VISTA on erythroid cells, the transformation from naive CD4+ T cells to Tregs would be accelerated through the production of TGF-β (Shahbaz et al., 2018).
Though the binding pattern of VISTA is not clear, several studies showed that VISTA could act as both ligand on APCs and receptor on T cells (Flies et al., 2014; Lines et al., 2014). Researches have reported V-Set and Immunoglobulin domain containing 3 (VSIG-3) as the ligand for VISTA in impeding cytokine and chemokine production (Wang et al., 2019b). In consideration of elevated expression of VISTA or VSIG-3 in many cancers, such as colorectal cancer (CRC), HCC, and intestinal-type gastric cancers, the blockade of the VISTA/VSIG-3 pathway can work as a new target for immune checkpoint therapy. Besides, Alan et al. presented that VISTA can bind to P-selectin glycoprotein ligand-1 (PSGL-1) in a pH-dependent model (Johnston et al., 2019). Meanwhile, a study of VISTA in malignant pleural mesothelioma shows that VISTA expression was associated with better overall survival (OS), suggesting VISTA’s prognostic value (Muller et al., 2020).
IDO1
Indoleamine-2,3 dioxygenase 1 (IDO1) is one of the three enzymes which catalyze the first rate-limiting step in the oxidative metabolism of tryptophan, an essential amino acid for T-cell proliferation and differentiation. It is mainly distributed in DCs, macrophages, and monocytes (Munn and Mellor, 2013).
Tumor cells can recruit IDO-expressed DCs into the tumor microenvironment (TME). Due to the aggregation of IDO, lack of tryptophan will lead to stagnation of T-cell proliferation and differentiation in many ways. First, decreased tryptophan means elevated uncharged Trp-tRNA, which leads to activation of a stress response kinase, general control nonderepressible 2 (GCN2) (Munn et al., 2005). Then eukaryotic initiation factor-2 (eIF-2) is phosphorylated by GCN2, and translation of protein required for generation and proliferation of effector T cells will be limited. Second, degradation of tryptophan results in suppression of mammalian target of rapamycin complex 1 (mTORC1) and PKC-θ associated with induction of autophagy. Apoptosis of effector T cells will be reinforced (Metz et al., 2012). Third, IDO1 can induce Tregs through increased activity of aryl hydrocarbon receptor (AHR) binding with kynurenine, a metabolite of tryptophan (Mezrich et al., 2010). Thus, the unbalanced metabolism of tryptophan can promote tumor development and evade immune detection indicating that the application of IDO1 inhibitor is also a promising means to enhance antitumor immunity in theory. In status quo, clinical application of IDO1 inhibitor displayed a controversial outcome with rare effect on monotherapy and combination therapy. Although the agents might not be suitable for such types of cancer involved in research, they may be helpful in other diseases.
SINGLE AGENT AND COMBINED THERAPY IN CANCER
Balckburn et al. have demonstrated that T-cell function decreases with increased expression of immune checkpoints, so targeting these immune checkpoint proteins to modulate immune responses holds great promise for cancer immunotherapy (Blackburn et al., 2009). The purpose of immune checkpoint blockade is mainly to suppress CD8+ T cells and improve tumor-specific immune response. The mAbs by targeting checkpoints CTLA-4 and PD-1/PD-L1 have achieved the US Food and Drug Administration (FDA) approval for the treatment of different cancers (Peggs et al., 2006; Hodi et al., 2010).
Ipilimumab was the first FDA-approved recombinant humanized anti-CTLA-4 immunoglobulin G1 monoclonal antibody in 2011 for the treatment of advanced melanoma in patients who cannot be surgically cured or have metastasis (Vaddepally et al., 2020). It can also work well with intermediate or poor-risk advanced renal cell carcinoma (RCC), MSI-H/dMMR CRC, metastatic NSCLC, unresectable malignant pleural mesothelioma, and HCC, which have been previously treated with sorafenib, in combination with nivolumab (Pinto et al., 2019; McKay et al., 2020; Baas et al., 2021; Casak et al., 2021; Saung et al., 2021). In 2014, nivolumab and pembrolizumab (PD-1 blockade) were approved by the FDA as a humanized IgG antibody for the treatment of unresectable or metastatic melanoma (Prasad and Kaestner, 2017; Finkelmeier et al., 2018). In 2016, the PD-L1 blockade, atezolizumab, a humanized IgG antibody, officially worked as a second-line treatment for locally advanced or metastatic urothelial carcinoma (Patel et al., 2017). With the maturity of theory and technology, the usage range of PD-1/PD-L1 blockade has gradually expanded, including metastatic nonsquamous NSCLC, advanced RCC, unresectable or metastatic, recurrent HNSCC, MSI-H/dMMR CRC, relapsed or refractory classical Hodgkin lymphoma (cHL), locally advanced or metastatic urothelial carcinoma, cervical cancer, gastric cancer, and esophageal cancer (Ansell et al., 2015; Beckermann et al., 2017; Chae et al., 2018; Lin et al., 2018; Saito et al., 2018; Oliveira et al., 2019; Wang and Li, 2019; Nassar et al., 2020; Wu et al., 2020). Pembrolizumab and nivolumab targeting PD-1 showed promising results in melanoma and NSCLC with an objective response rate (ORR) of 40–45% (Darvin et al., 2018). LAG-3 is coexpressed with many inhibitory immune checkpoints, especially PD-1, and this signifies a more exhausting state than expressing PD-1 alone. Utilization of coblockade for PD-1 and LAG-3 shows better curative effects. Relatlimab (in combination with nivolumab) is the first LAG-3 blocking antibody to demonstrate a benefit for patients in a Phase 3 study (Lipson et al., 2021). IMP321, a recombinant soluble LAG-3 Ig fusion protein of which multiple phases I and phase II trials have been completed, may enhance T-cell response, expand the percentage of long-lived effector-memory CD8+ T cells, and rarely induce immune-related adverse events (irAEs) (Brignone et al., 2009; Wang-Gillam et al., 2013). TIM-3, as an immunoinhibitory molecule, indicates the most terminal state of T cells, whose antibodies are being studied and evaluated for clinical trials, including Sym023 (NCT03489343), TSR-022 (NCT03680508), LY3321367 (NCT03099109), and MBG453 (NCT02608268). Many studies focus on the combination between anti-TIM-3 antibody and anti-PD-1 antibody in patients with advanced relapsed or a refractory solid tumor. There are also some ongoing clinical trials that evaluate the safety and feasibility of different ICIs in various tumors. Therapeutically targeting BTLA, VISTA, TIM-3, and TIGIT remain in preclinical stages to treat advanced solid malignancies (Derre et al., 2010) (NCT02671955, NCT02817633, NCT02608268, and NCT03119428).
The combination of immune checkpoints may improve clinical response rates. CTLA-4 and PD-1 blockade combination could increase effector T-cell infiltration into B16 melanoma in mice (Curran et al., 2010). Nivolumab plus ipilimumab in patients with metastatic melanoma yielded a response rate from 40% with treatment alone to 72% among patients who were PD-L1-positive (Larkin et al., 2015). In an open-label, randomized, phase 3 study (CheckMate 743), the results showed that nivolumab plus ipilimumab prolonged the median of the OS by nearly one-third versus chemotherapy (18.1 versus 14.1 months) and 2-years OS rates by nearly a half (41 versus 27%) (Baas et al., 2021). Early data using relatlimab plus nivolumab showed promising antitumor activity with an 11.5% ORR (NCT01968109). Now more and more researches focus on combination medication on relatlimab in HCC (NCT04658147), melanoma (NCT03743766), refractory MSI-H solid tumor (NCT03607890), HNSCC (NCT04326257), and so on. Although the clinical effectiveness of these ICIs gained great success in cancer immunotherapy, a subset of patients still does not respond to these inhibitors.
There are also some studies that showed that immune checkpoint blockade combined with radiotherapy, chemotherapy, and targeted drugs could improve the antitumor efficacy (Twyman-Saint Victor et al., 2015; Ebert et al., 2016; Shi et al., 2016). In the murine HCC model, combination with anti-TIM-3 and radiotherapy significantly shrink the tumor growth and elongate the OS compared with monotherapy (Kim et al., 2021). In an open-label, randomized, phase III trial (CheckMate 649), nivolumab plus chemotherapy reveals promising prospects than chemotherapy alone with superior OS and progression-free survival (PFS) benefit (Janjigian et al., 2021). Guidelines recommended using atezolizumab plus nab-paclitaxel for first-line treatment of unresectable, locally advanced, or metastatic triple-negative breast cancer (TNBC) with PD-L1 expressed on tumor-infiltrating immune cells. A survival analysis found that the OS, safety outcomes, and occurrence of immune-mediated adverse events of atezolizumab plus nab-paclitaxel were all ameliorated than placebo plus nab-paclitaxel (Emens et al., 2021). A TLR9 binding CpG-ODN adjuvant with a systemic anti-CTLA-4 antibody could increase the survival of mice bearing poorly immunogenic B16 melanoma (Davila et al., 2003).
IMMUNE-RELATED ADVERSE EVENTS INDUCED BY ICIS
As we know, immune checkpoint blockade has demonstrated a significant promise in the clinic across a range of cancer indications (Chen and Mellman, 2017). However, the immune checkpoint blockade can reinforce host immunity at an expanse of uncontrolled effects that results in a unique spectrum of toxicities defined as immune-related adverse effects (irAEs) (Xu et al., 2018). The degree of irAEs is divided into five grades, comprising mild, moderate, severe, life-threatening, and death, elucidated on Common Terminology Criteria for adverse events from US National Cancer Institute (Cancer Therapy Evaluation Program, 2017). Some key oncology societies recently published comprehensive guidelines for irAEs, including the American Society of Clinical Oncology (ASCO), the European Society for Medical Oncology (ESMO), the Society for Immunotherapy of Cancer Toxicity Management Working Group, and the National Comprehensive Cancer Network (Connolly et al., 2019; Ramos-Casals et al., 2020). The referred organs/system of irAEs include, but are not limited to, cardiac, dermatological, endocrine, gastrointestinal, neurological, muscular, pulmonary, ocular, renal, skeletal, and systemic toxicities.
Paolo et al. declared that irAEs occurring in patients treated with ipilimumab were dose-dependent (Ascierto et al., 2017). Generically, the earliest and the most frequent symptom that showed up during ICI therapy (both anti-CTLA-4 and anti-PD-1) was dermatological changes (Sandigursky and Mor, 2018). A meta-analysis of irAEs in phase III randomized controlled trials of lung cancer proposed that the most frequent irAEs were diarrhea, skin rash, and hypothyroidism (Berti et al., 2021). Another network meta-analysis specifically presented that the main irAEs of ipilimumab were related to the gastrointestinal system (diarrhea, 29%) and skin (rash, 31%), while nivolumab and pembrolizumab were referred to as less frequency in irAEs with maculopapular rash (13%), erythema (4%), hepatitis (3%), arthralgia (12%), hypothyroidism (8%), and hyperglycemia (6%), respectively (Almutairi et al., 2020). A retrospective analysis about North American Intergroup trial E1609 with 1,673 patients proclaimed that grade 1-2 irAEs were associated with longer relapse-free survival (RFS) and OS versus no irAEs, while grade 3-4 showed lesser benefit from RFS and no benefit from OS (Tarhini et al., 2021). Combined immunotherapy could induce more severe and sustained irAEs than monotherapy (Choi and Lee, 2020).
T cells can undergo spontaneous differentiation into Tfh cells in CTLA-4-deficient mice, while not in CD28-deficient mice, they might be applied to explain lethal multiorgan autoimmune symptoms in CTLA4−/− mice (Walker, 2017). As precise mechanisms of irAEs have not been elucidated, some potential ones have been proposed: 1) Increased production of proinflammatory cytokines or chemokines can lead to immune-related damage in tissue which is anatomically prone. 2) Enhanced differentiation of lymphocytes containing T cells and B cells contributes to overpriming of T-cell-mediated immunity and overproduction of autoantibodies (Risbjerg et al., 2020; Ho et al., 2021). 3) Related to off-target effects of ICIs, hypophysitis induced by ipilimumab might be ascribed to targeting CTLA-4 expressed on pituitary tissues (Iwama et al., 2014). 4) The composition and percentage of the commensal microbiome may influence the curative effect for patients treated with ICI (Figure 2). The conclusion discovered from several kinds of research said that various irAEs were associated with the different superior microbiome, application of antibiotics was linked to poor prognosis, and fecal microbiota transplantation (FMT) could reduce immune colitis (Pierrard and Seront, 2019; Hommes et al., 2020; Andrews et al., 2021; Seton-Rogers, 2021). 5) Genetic susceptibility includes HLA haplotypes (Stamatouli et al., 2018).
[image: Figure 2]FIGURE 2 | Potential mechanisms of immune-related adverse events. 1) Blocking the interaction between PD-1 on T cells and PD-L1 on tumor cells may enhance the release of inflammatory cytokines from T cells. 2) Monoclonal antibodies, like anti-CTLA-4, may recognize antigen presented by the normal tissue (hypothalamic and pituitary tissues). 3) Overresponse of naive lymphocytes could proliferate autoreactive T cells and B cells. 4) The gut microbiome, which may be altered after ICI treatment, may influence T-cell function.
For the treatment of irAEs, there have been some guidelines providing algorithms for most of the frequently occurring irAEs. 1) Before ICI initiation, patients’ condition should be evaluated, including family history, general physical condition, and baseline laboratory tests (Ramos-Casals et al., 2020). 2) For those suffering grade I or II irAEs in hardly lethal organs, they could continue/hold immunotherapy. Otherwise, they would better take immunosuppressive or immune-modulating drugs, including corticosteroids, as first-line medicine to control irAEs and relieve clinical symptoms (Esfahani et al., 2020). 3) For those who may bring irreversible or fatal consequences, it is necessary to withhold ICIs and apply steroids or other immunosuppressants immediately (Brahmer et al., 2021). 4) Individual basis should be taken into account when resuming discontinued ICIs owing to irAEs. There are also artificial solutions such as developing engineering antibodies that can induce responsive immune defense and limit systemic exposure of CTLA-4 blockade at the same time (Pai et al., 2019; Lacouture et al., 2021).
MICROBIOME RELATED TO ICI
With an estimated average of 3.8*1013 commensal bacterial resident in a 70 kg “reference man,” it is fluent in believing that gastrointestinal microbes play an important role in immunity (Sender et al., 2016). To date, there have been some oncogenic gut bacteria such as Salmonella typhi, Helicobacter spp., and Helicobacter pylori (Schwabe and Jobin, 2013; Gagnaire et al., 2017). On the contrary, some bacteria are thought to be beneficial for the proliferation of effector T cells and enhance antitumor efficacy (Pickard et al., 2017; Roy and Trinchieri, 2017). It is harder for mice supported in antibiotic exposed or germ-free conditions to benefit from CTLA-4 blockade versus those in specific pathogen-free environments (Vetizou et al., 2015). Thus, the linkage between microbiome and ICI needs to be elucidated (Table 2).
TABLE 2 | The role of immune checkpoints in bacteria-related diseases.
[image: Table 2]Clinical studies have reported that bacterial species can be differentially abundant in responders versus nonresponders (Katayama et al., 2019). Through feeding with B. fragilis, immunization with B. fragilis polysaccharides, or adoptive B. fragilis-specific T cells transfer, mice that failed in CTLA-4 blockade could regain their immunity. Transplantation of microbiota from melanoma patients to mice proved that B. fragilis favored the CTLA-4 blockade (Vetizou et al., 2015). In metastatic melanoma, Chaput et al. reported that patients with enriched Faecalibacterium and other Firmicutes as baseline microbiota presented a better prognosis than those with Bacteroides. However, the Bacteroidetes bring little colitis than Faecalibacterium (Chaput et al., 2017). In linkage with this, Gopalakrishnan et al. discovered that Faecalibacterium was enriched in responders, while Bacteroides thetaiotaomicron was enriched in nonresponders in melanoma patients (Gopalakrishnan et al., 2018). Using 16S ribosomal RNA gene sequencing, Matson et al. found out that Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium were more abundant in anti-PD-1 responders with metastatic melanoma (Matson et al., 2018).
The potential mechanisms through which the immune response is regulated by the microbiome may be as follows (Mazmanian et al., 2005; Helmink et al., 2019; Hayase and Jenq, 2021): 1) Through linkage between PAMPs and pattern recognized receptors (PRRs, such as Toll-like receptors), the adaptive immune response can be activated by APCs. 2) Cancer cells can bear cross-reactive neoantigens with microbiota, thus inducing an immune response. 3) Cytokines secreted by APCs or lymphocytes can be altered with specific metabolites or bacterial byproducts. 4) Metabolites entering the bloodstream could elicit a systemic response.
It also has been reported that irAEs induced by CTLA-4 occur most commonly and frequently at sites of the GI tract rich in bacteria. Disrupting the gut microbiota via antibiotics could potentially impair antitumor immune responses as well as response to immune checkpoint blockade (Helmink et al., 2019). Reconstruction of GI microbiome using FMT from healthy or responding donors shows a promising therapeutic effect with ICI-associated colitis relief and proportion of Tregs increase (Wang et al., 2018).
Still, the limitations of FMT should be taken into consideration. The connection between favorable microbiota and certain immune checkpoint blockade needs to be cleared. There could be adverse events induced by FMT, as we talked about above in IrAEs, either.
IMMUNE CHECKPOINT MOLECULES IN VIRUS-INFECTED DISEASES
In chronic viral infection and cancer, due to long-term and low magnitude exposure to antigen, that T cell progressively loses its effector function with elevated coinhibitory receptor constitutive expression in order to diminish tissue damage is called “T-cell exhaustion.” Many pathogens and cancers promote inhibitory interactions to escape immune surveillance (Table 3). Thus, reversing the T-cell state is regarded as an effective solution in infectious diseases.
TABLE 3 | The role of immune checkpoints in virus infection diseases.
[image: Table 3]In mice with chronic LCMV infection, blockade of PD-1 restored CD8+ T cell function, suggesting that T-cell exhaustion is reversible. In patients with chronic hepatitis B, CTLA-4 blockade can reinvigorate hepatitis B virus- (HBV-) specific CD8+ T cells in both intrahepatic and peripheral compartments (Cao et al., 2018). With the coinhibition of PD-1 and CTLA-4, the effector function of HCV-specific CD8+ T cells can be restored in chronic hepatitis C patients (Cho et al., 2017). Meanwhile, inhibition of PD-1 can induce the production of cytokines (e.g., IFN-γ) in HIV/HBV-specific CD8+ T cells to enhance immune response (Jubel et al., 2020). Coexpressing with PD-1, LAG-3, TIM-3, and TIGIT blockade can also reverse dysfunctional T-cell responses and reduce cytokines production. It is widely known that TIM-3 is highly upregulated on virus and tumor Ag-specific CD8+ T cells, and antagonizing TIM-3 helps restore the function of CD8+ T cells (Clayton et al., 2014). Expression of LAG-3 has been reported to be associated with a reduction in invariant NKTs IFN-γ production during chronic HIV infection (Juno et al., 2015).
DISCUSSION AND FUTURE PERSPECTIVES
Immune checkpoints are some vital regulators of the immune system. Now in most referred contexts, immune checkpoints are equivalent to inhibitor regulators of the immune system. Despite the immune checkpoint molecules that we have discussed above, there are still other immune checkpoint molecules, such as BTLA, KIR, A2AR, B7-H4, NOX2, HO-1, and SIGLEC7. Besides, the stimulatory immune checkpoints are also promising targets for immune therapy, such as CD40, CD122, CD137, OX40, and GITR. Relying on neoantigen expressed on tumor cells, T cells can target and exclude potential threats. So as to escape from host immunity, tumor cells requisition inhibitory molecules to bind and silence immune cells. The availability of immune checkpoint blockade as one of the effective supplemental methods for tumor treatment has been verified. However, some tumors show low immunogenicity and cannot respond effectively to immune checkpoint blockade. For initially responding tumors, selection of low immunogenic clones and inducement of tolerance due to tumor heterogeneity will develop frequent relapses and even hyperprogression in nonresponders, of which the range was between 4 and 29% (Denis et al., 2020). Such phenomenon is known as resistance (Sharma et al., 2017). The mechanisms of resistance can be divided into intrinsic and extrinsic (Figure 3). The intrinsic mechanisms are composed of lack of tumor antigen presentation, alteration of several inhibitory signaling pathways, and upregulation of other immune checkpoints. The extrinsic mechanisms are predominantly referred to as various elements in the TME (Baxter et al., 2021). To reverse the resistance and ameliorate patients’ symptoms, researchers came up with the idea to turn the “cold” immune response to “hot.” The strategies applied under such fundamental idea consist of turning down the volume of inhibitory immune signals, triggering T-cell priming, increasing the costimulatory signals, and modulation of the TME (Attili et al., 2021; Weiss and Sznol, 2021).
[image: Figure 3]FIGURE 3 | Mechanisms of resistance from ICI treatment. 1) β2M mutations lead to loss of HLA and antigen-presenting function. 2) Additional inhibitory signals expression. 3) Little tumor-infiltrating lymphocytes present in the tumor microenvironment resulting in nonresponse. 4) Immune suppressive cells in TME. 5) Loss of IFN-γ sensitivity. 6) Formation of low immunogenicity clone under selective pressure.
Meanwhile, the sailing of drug development is never smooth. Hundreds of clinical trials to develop new agents targeted at immune checkpoints have been terminated due to low responsiveness and fatal irAEs. IrAEs induced by ICI are an impassable mountain lying in front of us, with death as the most severe consequence. The clinical trial testing sym022 (anti-LAG-3 mAb) in humans with metastatic cancer, solid tumors, or lymphoma exhibits an unwanted outcome with high progression and irAEs rate (NCT03489369). In addition, the mechanisms under ICI still need to be shed light on.
In conclusion, despite the shortcomings of immune checkpoint blockade in clinical application, it is a promising strategy for cancer therapy, with a considerable proportion of applicants achieving an objective response. Further studies are needed to be explored to elucidate precise mechanisms, achieve potential will, and ameliorate adverse events to benefit more patients with tumors and other diseases.
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‘mitochondrial apoptosis pathway
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T-cel apoptosis decreased in anti-LAG-
3 antibody-treated mice. Induced T-cel
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undergoing CLP

The macaque model of M. tuberculosis
infection showed IDO-expressing cellsin
the macrophage-rich layer of
granulomas, which fkely serves to
prevent optimal interactions between
CDA+ T cells and M. tuberculosis-
infected antigen-presenting cels (APCS).
Moreover, increased expression of IDO'
comelated with M. tuberculosis bacterial
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1DO1 is known for ts tolerogenic and
immunosuppressive propertes, exerted
by modulating plasmacytoid denditic
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responds differently to autoimmune-
mediated inflammation in the testis
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1DO1 contrbutes to IFN-y-mediated
restriction of C. bureti. IDO1 is an
enzyme that catabolizes celular
tryptophan to kynurenine metabolites,
thereby reducing tryptophan avaiabilty
in cells. Cels deficient in IDOT function
were more permissive for C. burneti
replcation when treated vith IFN-y, and
supplementing IFN-y-treated cells with
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replcation. Additionally, ectopic
expression of IDOT in host cells was
sufficient to restrict repication of C.
‘bumetiin the absence of IFN-y signaling.
Using differentiated THP1 macrophage-
fike cell, t was determined that IFN-y
activation resuited in IDO1 production
and that supplementation of IFN-
y-activated THP1 cels with tryptophan
enhanced C. bumeti repication

Rv1737c s predominantly expressed by
the Mib in latent infection. In this study,
we have characterized the R1737c
functions n the recrutment and
activation of macrophages, which play a
cardinal role in innate and adaptive
immunity. Rv1737¢ induced the
tolerogenic phenotype of macrophages
by upregulating the expression of
indoleamine-2,3-dioxygenase 1 (DO1)

We found that an IFN-y stimuation of
hPRE cells induced the expression of
1DO1, which inhibited the growth of T.
gondiiand S, aureus. Costimulation with
IFN-, interleckin-1 beta, and tumor
necrosis factor alpha induced a strong
expression of iNOS. The INOS-derived
itric oxide production was dependent
on cel-culture conditions; however, it
could not cause antimicrobial effects.
iNOS did not act synergistically with
1DO1. Instead, INOS actiity inhibited
1DO1-medated tryptophan degradation
and bacteriostasis

In PBMCs infected with C. trachomatis
there was a significant upreguiation in
1DO levels, which was independent of
IFN-y. I fact, C. trachomatis infection in
PBMCs falled to induce IFN-y levels in
comparison to the uninfected culture

The idea of an expanded role for IDO in
innate celuiar responses through the
AHR-mediated effects of kynurenine
metabolites on neutrophi function, in
addiion to the previously dentified roles
in adaptive immune regulation

Subsequent inflammatory Thi-type
immunity was modulated by induced
Treg cells, which required the TRIF
pathway as well, and acted through
activation of IDO in denditic cells and
Th17 cell antagonism (17947673)

S. cerevisiae has only one IDO gene
(BNA2) and, to date, it has only been
associated with one function, NAD +
synthesis

1DO infibition was shown to induce.
increased fungal loadss in resistant and
susceptible mice concomitantly with
increased induction of NO synthesis

VISTA overexpression on tumor cells
interferes with protective antitumor
immunity i vivo in mice. These findings
show that VISTA, a novel
immunoreguiatory molecule, has
functional actvities that are:
nonredundant with other Ig superfamiy
members and may play a role in the
development of autoimmunity and
immune surveilance in cancer
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intracelular pathogens via ts ligand G,
which in tum inhibits expansion of
effector TH1 cels to prevent futher
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HPV16-speciic CD8+ T cels

Invariant natural kiler T; T cell

CD4+ and CDB8+ T cells

Toels

HCV-specific CTLs

CD8 T cell

CD8 T cell

CD4+ and CDB+ T cells

Influence on
efficacy

Anti-PD-1 antibodies could partially
restore HBsAg-specific B-cel
maturation

Significant reduction in HCV viremia in
responder animal

Cof blocking CD3%/adenosine and PD-
1 signaling showed a synergic effect in
restoring CDB+ T-cell function (secrete
functional cytokines and kil autologous
reservoir cels) in vito

Blockade of PD-1/PD-L1 couid reverse
functional anergy of CMV-specific
CD4+ T cell and increase 10-fold
prolferation in CMV-specific GD4+
Teel

Pembroizumab was tolerated with
17% grade 3-4 IFAES; the overall
response was 25% in HPV-positive
patients

Blockade of the CTLA-4 had o effect
on either T-cell function or viral control

Blocking CTLA4 can increase the
expansion of IFN-gamma producing
HBV-specific DB+ T cells

Anti-GTLA-4 showed a good safety
profil; no patients needed steroids due
to severe irAES; disease control rate
was 76.4%

No serious adverse events or dose-
limiting toxiciies and ipiimumab were
‘associated with variations in HIV RNA

CTLA-4 expression correlated
positively with disease progression and
negatively with the capacity of CD4+
T cels to produce interteukin 2 in
response to viral antigen. In vitro
blockade of GTLA-4 augmented HIV-
speciic CD4+ T-cell function

Significantly higher expression of PD-1
and CTLA-4 onT cells consistent with a
viral-protective effect of PD-1 and
CTLA4, thereby preventing the
destruction of virus-infected
hepatocytes in AHA

‘Combination of PD-1/CTLA-4
blockade reduced the size of
lymphoma, decreased the number of
both latently and lytically EBV-infected
B cells

Inducing robust latency reversal and
reducing total levels of integrated virus.
No enhanced SIV-specific CD8+ T-cell
responses or viral control

High viral load, faster disease
progression, and rapid retum of viremia
following treatment interruption

Acting as a suppressor of HBV-specific

HPV-related OPSCC might be more
suscepible to single or combined anti-
LAG-3 antibody therapy than HPV-
negative OPSCC patients

Inhibiting cell prolferation, cytotoxicity
function, and eytokine production

LAG-3 s continuously upregulated on
LCMV-specific exhausted CD8 T cells;
italone does not significantly contribute
to T-cel exhaustion

IDO may represent a citical iniiating
event thatresultsininversion of the T(H)
17/7 (reg) balance and in the
consequent maintenance of a chronic:
inflammatory state in progressive HIV
disease

The HPV16 CTL epitopes identified in
this study, in combination with
blockade of HPV + HNSCC-specific
PD-1/IDO-1 checkpoints, may be
useful for targeted immunotherapy

Induction of IDO1 in HPV-infected skin
contributes to evasion of host immurnity

Gal-0 and VISTA expression was
‘associated with impaired T-cell effector
functions

Blocking the TIM-3 signaling pathway
restored prolferation and enhanced
cytokine production in HIV-1-specific
T cells

Blockade of either PD-1 or TIM-3
enhanced in vitro prolferation of HCV-
specific GTLs to a simiar extent,
whereas cytotoxicity against a
hepatocyte cell e that expressed
cognate HOV epitopes was increased
exclusively by TIM-3 blockade

Targeting both PD-1 and TIM-3 is an
effective immune strategy for treating
chronic viralinfections

Combinedblockade of PD-1and TM-3
during the priming difierentiation phase
rescued FV-specific CD8 (+) T cells
from becoming terminally exhausted,
resuting in improved CD8 (+) T-cell
functionality and virus control

Overexpression of TIM-3 is involved in
disease progression of CHB and that
TIM-3 may participate in skewing of
Thi/Te1 response, which contributes
to the persistency of HBV infection

Mechanism

HBV infection has a marked impact on
‘global and HBV-specific humoral
immunity, yet HBsAg-specific B cels are
‘amenable to a partial rescue by B-cell
maturing cytokines and PD-1 blockade

Successful PD-1 blockade likely requires
acritical threshold of preexisting virus-
specifc T cell in ver and warrants
‘consideration of therapeutic vaccination
strategies in combination with PD-1
blockadle to broaden narrow responses

Combined blockade of CD39/adenosine
and PD-1 signaling in vitro may exert a
synergistc effect in restoring CDB+ T-cel
function in HIV-1-infected patients

Expression of PD-1 defines a reversible
defect of CMV-specific CD4 T cells that
‘are associated with viremia, and blocking
PD-1 signaling may provide a potential
target for enhancing the function of
‘exhausted T celsin chronic CMV infection

Greater antitumor activity was recorded in
patients with squamous cel carcinoma
tumors of the head and neck that
expressed higher levels of PD-LT and
interferon-y-related genes. Thus,
pembrolizumab might represent a new
treatment approach for patients with
squamous cel carcinoma of the head and
neck

Inhibition mediated by PD-1 reqires
close proximity of PD-1 1o the site of TCR
‘engagement and does not signal in the
absence of a TCR signal. Following
‘crossiinking by PD-1 ligand, the
immunoreceptor tyrosine-based switch
motif (TSM)in the cytoplasmic domain of
PD-1 is phosphorylated and recruts the
phosphatases SHP-1 and SHP-2. These
phosphatases act on proximal signaling
Kinases of the TCR pathway, reducing the
TCR signal and leading to diminished
T-cell activation and cytokine production.
‘Therefore, under conditions of persistent
antigen, T cells may moduiate their
responsiveness by upreguiating inhibitory
receptors such as PD-1 that attenuate
TCR signaling

CTLA-4is expressed by HBV-speciic
CD8+ T celis with high levels of Bim and
heips to dive this proapoptotio
phenotype

HCV-specific CDB+ T cells that are
‘exhausted express various inhibitory
receptors, indluing CTLA-4 that acts
synergisticall with the programmed cell
death-1 receptor (PD-1) to enforce their
‘exhaustion state. Moreover, CTLA-4 is
preferentially upregulated in PD-1+ T cells
from the fiver of chronically HCV-infected
patients. It seems possible that the revival
of antiviral T-cellimmunity in patients with
long-lasting chronic HCV infection
following tremefimumab therapy may
result from increased GD4+ T cell help
‘and recovery of CD8+ T-cel exhaustion
Ipifmumab treatment of an HIV-infected
patient on antiretrovial therapy increased
CD4+ T cells, predominantly total memory
‘and effector-memory cels, postinfusion
along with transient increases in CD8+
T cels without change i cell activation
Furthermore, ipiimumab increased cell-
‘associated unspliced HIV RNA and a
subsequent decline in plasma HIV RNA

GTLA-4 igation can suppress effector
T-cell functions both directly through
CTLA-4 expressed on effector cells and
indirectly through CTLA-4 expressed on
CD4+CD25+ Treg cels. A CTLA4-
mediated effect of Treg cells can probably
‘occur in vivo both by direct T-cel-T-cell
‘contact and indirectly by induction of
indoleamine-2,3-dioxygenase in dendritic
cells

‘The changing expression of PD-1 and
GTLA-4 during the symptomatic and
recovery phases of AHA points o the
protective effects of these inhibitory
molecules, perhaps by suppressing the
actiity of cytotoxic T cells, thereby
preventing the induced fuminant
destruction of HAV-infected hepatocytes

PD-1/CTLA-4 blockade markedly
increases EBV-specific T-cell responses
and is associated with enhanced tumor
infitration by D4+ and CD8+ T cells

Dual GTLA-4/PD-1 blockade produced a
significant reduction in cell-associated
SIV-DNA within LN CD4+ TEM, the CD4+
T-cel subpopulation most activated from
‘combined treatment. Importantly, in situ
hybridization assays demonstrated a
significant reduction in the number of
VRNA+ and vONA + cells following dual
CTLA-4/PD-1 blockade in the LN,
incluing in the BCF

Although mechanisms and functions of
LAG-3 remain controversial, LAG-3
‘earlyinhibits immune responses. IfLAG-
3 blockade improves immune function
during HIV infection, it could help deplete
the HIV reservoir by reversing latency and
restoring immunity of exhausted cells

SinceLAG-3 is an inhibitory molecule that
plays a downreguatory role on T-cell
responses, we found the correlation
between LAG-3 expression and HBV-
specific CDB+ T cels dysfunction

Possible reasons for this may be the
interrelationship of muliple components
in the tumor immune microenvironment,
as it has been reported that the
‘coexpression of LAG-3 with other
inhibitory molecues suchas TIM-3 or PD-
1 induces the exhaustion ofimmune cells,
resuiting in downregulated cytokine
expression

LAG-3 expression could be substantilly
upregulated on CD4+ or CDB+ T cells by
IL-12, a cytokine that has been shown to
induce T-cel exhaustion and be increased
in the serum of lymphorma patients.
Furthermore, we found that blockade of
both PD-1 and LAG-3 signaling enhanced
the function of inratumoral CD8+ T cells
resulting in increased IFN-y and IL-2
production

LAG-3 is upregulated on LGMV-specific
‘exhausted CD8 T cell; it does not
significantly contribute to T-cell
‘exhaustion alone. To effectively interfere
with T-cel exhaustion, it i very likely that
severalinhibitory receptors wil have to be
targeted simultaneously

IDO1-dependent tryptophan catabolism
may be an important link between
immune activation andthe gradual deciine
of immune function seen in progressive
HV infection

Our findings implicate mechanisms of
T-cell escape in HPV + HNSCC, wherein
high tumoral HPV-antigen load results in
high expression of immune dysfunction
‘genes on tumor cels (e.g., IDO-1) and
dysfunction of HPV-specific CTLS (e.g.,
E7; E2-CTLs). HPV + HNSCCs
‘expressing IDO-1 might similarty be driven
by HPV-specific-CTL infitration in
response to high tumoral HPV-antigen
load

Inhibiting IDO activiy using 1-methyl-DL-
tryptophan (1-D/L-MT) promotes K14E7
skin gratt rejection. Increased IDO1
‘expression and activity in K14E7 skin
require IFN-g and invariant natural Killer T
(NKT) cels, both of which have been
shown to negatively regulate T-cell
effector function and suppress K14E7
graft rejection. Furthermore, DCs from
K14E7 skin express higher levels of IFN-g
receptor (FN-gR) than DGs from control
skin

A dramatic reduction in the production of
oytokines by T cells expressing PD-1,
CD160, CD39, TIM-3, and VISTA. In
‘contrast to other coinhibitory molecules,
the pattern of cytokine production was
ot diferent between 284+ and 2842
CD4+ T cells, and interestingly 284+
CDB+ T cells exhibited higher cytokine
production capabilties compared with
2842 CDB+ T cells

In progressive HIV-1 infection, TIM-3
‘expression was upregulated on HIV-1-
specific CD8 + T cels. TIM-3-expressing
T cels failed to produce cytokine or
proliferate in response to antigen and
‘exhibited impaired Stats, Erk1/2, and p38
signaiing. Blocking the TIM-3 signaling
pathway restored prolieration and
‘enhanced cytokine production in HIV-1-
specific T cels

Early accumuiation of PD-1+TIM-3+
T cells is associated with functional
impairment and consequently with the
development of persistent HCV. The
present study provides a basis for
improving current therapies by
simultaneous blockade of muliple
inhibitory pathways that could result in
additive efficacy without excessive toxicity

Whereas TIM-3 was only transiently
‘expressed by CD8 T cells after acute
infection, virus-speciic CD8 T cels
retained high TIM-3 expression
throughout chronic infection. The majority
(approximately 65-80%) of lymphocytic
choriomeningits virus-specific CD

T cels in lymphoid and nonlymphoid
‘organs coexpressed TIM-3 and PD-1.
‘This coexpression of TIM-3 and PD-1 was
‘associated with more severe CD8 T-cel
‘exhaustion in terms of proiferation and
secretion of effector cytokines such as
IFN-y, TNF-a, and IL-2. Interestingly, CD8
T cells expressing both inhibitory
receptors also produced the suppressive
cytokine IL-10. Most importanty,
‘combined blockade of TIM-3 and PD-1
pathways in vivo synergisticall improved
CD8 T-cell responses and viral control in
chronically infected mice.

TIM-3 and CTLA-4 were recently found to
be overexpressed on HIV- and hepatitis C
virus-specific CD4+ and CD8+ T cels and
to act to suppress effector functions of
activated T cels. Upreguiation of LAG-3.
was also shown to correlate with the
impaired effector functions and
exhaustion of CD8+ T cells

‘The expression of TIM-3 s upregulated on
Grculating GD4+ and CDB+ T cellsin CHB
patients. TIM-3 was highly expressed on
T cells from AHB patients as well;
however, its expression decreased
dynamicaly in the convalescence phase,
TIM-3 expression positively corelated
with disease severity and negatively
‘correlated with Thi/Tc1 response in CHB
patients
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Mechanisms

ITSM recrits SHP-2, which acts as a bridge between
two PD-1 molecules and induces inhibitory function of
PD-1

Conserved YVKM molif in the cytoplasmic tail of

CTLA-4 mediates recruitment of SH2-domain-
containing proteins to regulate immune response

The KIEELE motif is considered to be essential for
LAG-3 mediated inhibition

TIM-3 exerts its function through several tyrosine
residues

VISTA has the potential function of both a receptor
and a ligand. The precise mechanism of VISTA needs
to be explored

Accumulation of kynurenine metabolites leads to
suppression of T cells and induction of Tregs

PMID

30851633,
32184441, and
28443090

10411922,
18845758, and
29794465

33488626 and
34067904

29069302 and
31676858

29375120 and
31690319

20720200 and
33883013





OPS/xhtml/nav.xhtml
Contents

		Cover

		Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases		Introduction

		Biology of Immune Checkpoint Proteins		PD-1/PD-L1

		CTLA-4

		LAG-3

		TIM-3

		VISTA

		IDO1





		Single Agent and Combined Therapy in Cancer

		Immune-Related Adverse Events Induced by ICIs

		Microbiome Related to ICI

		Immune Checkpoint Molecules in Virus-Infected Diseases

		Discussion and Future Perspectives

		Author Contributions

		Publisher’s Note

		References









OPS/images/cover.jpg
‘ frontiers
in Genetics

Current Progress and Future
Perspectives of Immune
Checkpoint in Cancer and
Infectious Diseases





OPS/images/fgene-12-785153-g001.gif
o e
> |





OPS/images/fgene-12-785153-g002.gif









OPS/images/crossmark.jpg
©

|





OPS/images/logo.jpg
’ frontiers
1N Genetics





