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Adopting modern gene-editing technologies for trait improvement in agriculture requires
important workflow developments, yet these developments are not often discussed. Using
tropical crop systems as a case study, we describe a workflow broken down into discrete
processes with specific steps and decision points that allow for the practical application of
the CRISPR-Cas gene editing platform in a crop of interest. While we present the steps of
developing genome-edited plants as sequential, in practice parts can be done in parallel,
which are discussed in this perspective. The main processes include 1) understanding the
genetic basis of the trait along with having the crop’s genome sequence, 2) testing and
optimization of the editing reagents, development of efficient 3) tissue culture and 4)
transformation methods, and 5) screening methods to identify edited events with
commercial potential. Our goal in this perspective is to help any lab that wishes to
implement this powerful, easy-to-use tool in their pipeline, thus aiming to democratize
the technology.
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INTRODUCTION

Since its proposal as a eukaryotic gene-editing tool (Jinek et al., 2012), the Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated protein (Cas)
technology has been widely applied in microorganisms, animals, and plants to study gene
function (Haque et al., 2018) due to its simplicity in design and straightforward execution.
Numerous CRISPR-Cas system reviews explain its discovery and aspects to consider when using
this powerful molecular tool, so we suggest reviewing Anzalone et al., 2020 for details on
specifics, such as the diverse engineered Cas nucleases. For this perspective, the reader must
know that the CRISPR-Cas tool is composed of a small guide RNA (sgRNA) complementary to a
DNA target sequence and a Cas endonuclease (i.e., Cas9 and Cas12a). The Cas endonuclease
recognizes a protospacer adjacent motif (PAM) sequence that is upstream [5′-TTTV-(22 nt of
target sequence)-3′] for Cas12a or downstream [5′-(20 nt of target sequence)-NGG-3′] for Cas9
of the target sequence (Jinek et al., 2012; Zetsche et al., 2015). The Cas nuclease associates with
the sgRNA to form a ribonucleoprotein (RNP) complex, which scans the genome for the PAM
sequence and, by complementation, the DNA target sequence (Jinek et al., 2012; Zetsche et al.,
2015). The RNP complex catalyzes a double-strand break (DSB) in the target DNA, triggering
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FIGURE 1 | CRISPR-Cas Gene Editing Workflow. Here we present a schematic for implementing CRISPR-Cas gene editing technology in a crop of interest.
Diamonds represent decision points, while boxes represent important processes. In order to develop a gene editing protocol using CRISPR-Cas technology, the genetic
basis for the trait of interest must be identified and well described (A). If genomic information is non-existent or limited for the varietal of interest, it must be extrapolated
from existing data on similar genotypes or from related species. Adequate genomic information is essential for the design and optimization ofCRISPR-Cas sgRNA,
nuclease selection, and off-target analysis (B). Identification of the genetic basis for a trait (A) and design of CRISPR-Cas components (B) constitute the genomic aspect
of the workflow, and consideration for both can take place independently of tissue culture (C) and transformation (D). We suggest testing various tissue culture protocols

(Continued )
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the cell’s error-prone DNA repair mechanism, which results in
the creation of a mutation that may generate a desirable change
in a trait of interest (Woo et al., 2015).

In agriculture, CRISPR-Cas technology has been used to
introduce added-value traits (Tian et al., 2018; Kaur et al.,
2020; Yoon et al., 2020) and to recapitulate domestication
processes (Soyk et al., 2017, 2019; Lemmon et al., 2018). Based
on these examples, it is clear that the application of the CRISPR-
Cas tool, coupled with traditional breeding practices, has
tremendous potential in alleviating threats to food security,
production, and sustainability (Jung and Till, 2021). Numerous
published studies state that the CRISPR-Cas tool can be used in
any crop due to its simplicity, but there are key aspects to consider
when applying this technology to specific types of crops.

Tropical crops present an appropriate case study where
implementation of the CRISPR-Cas technology would
significantly contribute to its improvement. However, a lack of
genomic resources, complex tissue culture procedures, and
reproductive compatibility constraints in many tropical crops
make utilizing this robust tool challenging (Atkins and Voytas,
2020; Maher et al., 2020). Although promising advances in
tropical crop improvement using CRISPR-Cas have recently
been achieved, most focus on proof-of-concept studies (Odipio
et al., 2017; Naim et al., 2018; Fan et al., 2020; Ntui et al., 2020; Eid
et al., 2021; Syombua et al., 2021; Zhao et al., 2021) and few on
value-added traits (Gomez et al., 2017; Bull et al., 2018; Fister
et al., 2018; Mehta et al., 2019; Oz et al., 2021). In this perspective
we outline critical points to consider when executing a gene-
editing project in a tropical crop species (Figure 1). This
perspective will outline key considerations at the main
decision points throughout the gene editing workflow.

Trait Variation and Genomic Structure
The foundation of any gene-editing project relies on
understanding the genetic mechanism(s) underlying trait
variation within the species of interest and identifying where
to source specific varietal material (i.e., genebanks, elite lines).
There are numerous international and regional institutions
dedicated to conserving tropical collections (FAO, 2010).
However, inherent properties of common tropical crops, such
as recalcitrant seeds (Bourdeix et al., 2020), low seed number or
viability (Batte et al., 2019; Kallow et al., 2020; Mertens et al.,
2021), and laborious maintenance of vegetatively propagated
crops (Balogun, 2009; Gaba and Singer, 2009; Panis et al.,
2020), tend to limit collection size.

Plant breeding efforts in tropical crops often focus on
domestication traits first, followed by value-added
commercialization traits (Ramstein et al., 2019; Bernardo, 2020).
Several challenges for efficient breeding in tropical crops include

polyploidy, clonal propagation, and obligate outcrossing biology
(Santantonio et al., 2020). Furthermore, lengthy growth cycles
(Batugal and Bourdeix, 2005; Wickramasuriya and Dunwell, 2018)
and unpredictable or asynchronous flowering (Amadi et al., 2012;
Darkwa et al., 2020) in some tropical cropsmake breeding intractable.
Tropical crops that have not become global commodities are often
clonal, and therefore have traits associated with domestication
syndrome that are not “fixed” (Denham et al., 2020). The lack of
research on many of these crops also impacts the identification of
genotypes with more desirable characteristics (Varshney et al., 2012).
Outbreeding tropical crops tend to be highly heterozygous (Ceballos
et al., 2004;Wickramasuriya andDunwell, 2018; Darkwa et al., 2020),
making inbred and double-haploid lines difficult to generate
(Ceballos et al., 2004). The inability to create inbred lines, which
are required for straightforward prediction of genetic gain and
consistent improvement of breeding material (Bernardo, 2014;
Cobb et al., 2019), limits the efficiency of conventional breeding
in many tropical crops and often makes knowing the exact genetic
basis of a trait difficult. However, genome engineering becomes a very
enticing technology for crop improvement when the genetic basis has
been identified, often in a tractable model species.

Critical to the development of a gene-editing workflow is
understanding the genetic variation that underlies trait expression
(Figure 1A). Genetic mapping is typically used to identify the
relative location of genes associated with specific traits on a
chromosome, though the process becomes more complex in
polyploid organisms. To date, success in gene editing has focused
on traits following qualitative, Mendelian inheritance [i.e., few, large
effect gene(s)] since many domestication traits behave in this
manner. For example, plant architecture (Li et al., 2016; Lemmon
et al., 2018; Zhang et al., 2020), flowering time (Soyk et al., 2017), and
some disease resistance traits (Macovei et al., 2018) have been
studied in detail in model organisms which identified their
genetic bases, making them attractive targets for similar
modification in tropical crops. Therefore, the identity of the
underlying genetic cause of the trait is key to being able to
“introduce” such traits into the crop of interest.

Another important workflow component is an annotated
reference genome, which allows for quick identification of target
sequences and homologous sites for genome editing (Bortesi and
Fischer, 2015). In cases where little to no genomic information is
available, information should be extrapolated from existing genomic
resources of closely related species, an approach Lemmon et al.
(2018) used to target domestication traits in the orphan crop
“groundcherry.” Though genome size and ploidy level often cause
challenges in genome assembly, reference genomes do exist for
several tropical crops (Ming et al., 2008; Argout et al., 2011; Prochnik
et al., 2012; Xiao et al., 2017; Lantican et al., 2019; Sahu et al., 2020;
Wang et al., 2020; Bally et al., 2021; Strijk et al., 2021). Pan-genomes,

FIGURE 1 | when they do not exist for the varietal of interest but do exist for a different genotype or related species (C). CRISPR-Cas reagents may be introduced to
cultured cells in several ways including Agrobacterium-mediated transformation, transient expression from transfected plasmids, and biolistic transformation with RNP
or RNA complexes. Selection of the transformation method will depend on the goals of the research. Following CRISPR-Cas design (B) and transformation (D), explants
should be screened, field tested, and propagated (E) to generate a phenotypically stable, CRISPR-Cas gene edited population. Screening for edited events (E) will
involve sequencing for allelic differences and phenotypic selection. Depending on the goals of the research, marker-guided selection and resistance genes may also be
used to screen for edited events.
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if available, offer a more robust view of a cultivar’s genetic variation
since they consist of a core genome shared by all sequenced
individuals, and reveal genetic variations that are present or
absent in re-sequenced genomes (Kyriakidou et al., 2018;
Marschall et al., 2018).

Design and Optimization of CRISPR-Cas
Components
Sequence information about the gene or region in the chromosome
associated with the trait of interest is critical in designing the
appropriate gRNA respective to the Cas endonuclease
(Figure 1B). Having the genomic sequence allows for
identification of the PAM sequence relevant to the Cas enzyme to
be used (i.e., 5′-NGG-3′ for Cas9 (Jinek et al., 2012) or 5′-TTTV for
Cas12a (Zetsche et al., 2015), where “N” is any nucleotide and “V” is
A, G, or C) and subsequent gRNA design. Several software programs
are available that screen for PAM sequences based on the Cas enzyme
of interest and suggest guide designs that target the region with a
quality score. If a reference genome is available, the software can also
identify potential off-target sites (Brazelton et al., 2015; Doench et al.,
2016). The guides can be synthesized in-house via in vitro
transcription (Liang et al., 2017; 2018b) or ordered commercially
(Banakar et al., 2019) to test the reliability of their design.

Once obtained, the guides should be assessed for editing efficiency
either in vitro or in vivo prior to tissue culture and transformation. In
both instances, the gRNA is incubated with their compatible Cas
nuclease to form the RNP complex before testing (Woo et al., 2015; Li
et al., 2016; Liang et al., 2017, 2018b; Banakar et al., 2019). The in vitro
assay is an enzymatic reaction similar to a restriction enzyme
digestion, wherein the target sequence has been amplified or
cloned and subsequently incubated with the RNP complex to
determine target-cleaving efficiency, while the in vivo assay
typically relies on transfection of protoplasts with the RNP
complex. In vitro gRNA design assays are a fast, cost-effective,
and reliable method for gRNA optimization. Post-transfection, the
target region of the genome is amplified and assessed enzymatically
(in vitro assay) or sequenced [i.e., Sanger, next-generation sequencing
(NGS)]], depending on resource availability and short-term goals
(Woo et al., 2015). If the in vitro assay is performed post-transfection,
the absence of cleavage is indicative of high efficiency gRNA design.
Sanger sequencing addresses whether an editing event occurred, as
well as the types and proportion of alleles produced. The Sanger
sequence data can be analyzed by different software such as TIDE
(Brinkman et al., 2018).When performed post-transfection, NGS can
quantify the different edited alleles produced, and, if a reference
genome is available, the relative number of off-target events.

Off-target events are unintended genetic modifications that can
arise during gene-editing and are usually due to target sequence
similarity (few or no mismatches) (Brazelton et al., 2015; Doench
et al., 2016). The risk of off-target editing can be addressed at the
gRNA design stage using various genomic strategies that typically
depend on the availability of a reference genome (Manghwar et al.,
2020). Without a reference genome, off-target editing sites can be
unpredictable and limit the widespread application of gene-editing
technology for commercial purposes. CIRCLE-seq is an in vitro
screen for genome-wide off-target cleavage sites which has

previously demonstrated potential as a genome-independent
method of off-target analysis, though the technology is limited to
the CRISPR-Cas9 system (Tsai et al., 2017; Lee et al., 2019). Notably,
off-target effects have been observedmore frequently in edited plants
produced by T-DNA transformation compared to “DNA-free”RNA
or RNP methods, wherein the likelihood of undesirable edits
dramatically decreases as more mismatches are present between
the target sequence and off-target regions (Modrzejewski et al.,
2020). Therefore, introducing the CRISPR-Cas system as RNP or
RNA may reduce the probability of off-target events.

Tissue Culture
Gene editing reagents need to be introduced into plant cells using
tissue culture (Figure 1C) and transformation methods (Sandhya
et al., 2020). A major challenge for CRISPR-Cas genome editing
in tropical crops is often the lack of efficient tissue culture and
transformation protocols due to their lengthy generation times
(Haque et al., 2018; van Eck, 2018). Development of efficient
tissue culture and regeneration protocols will depend on the
research group’s resources and the crop of interest. Thus far, there
are two ways of performing tissue culture and subsequent
regeneration post-transformation/transfection: chemical-based
and molecular genetic-based.

The most common approach is the chemical-based strategy
and is based on testing different ratios of auxin and cytokinin, two
important hormones in plant development (Gaba, 2004; Chin
and Tan, 2018). In this approach, plant regeneration is achieved
through direct or indirect routes. The direct route involves the
induction of shoots or roots directly from differentiated explant
tissue, resulting in genetically stable clonal plants at a low rate of
efficiency. On the other hand, the indirect route involves
dedifferentiation of somatic tissue into a callus phase and
subsequent production of somatic embryos occurring at a
higher efficiency (Chin and Tan, 2018). Genotype-dependency,
rate of somaclonal variation, and low rate of plantlet regeneration
present challenges for efficient tissue culture and regeneration
using this approach (Chin and Tan, 2018).

Molecular genetic-based tissue culture and transformation
methods fall broadly into three categories: developmental
regulators (DR), morphogenic factors, and Growth-Regulatory
plus GRF-Interacting Factors (GRF-GIF). The DR-based strategy
involves the expression of meristem-organizing genes, either in vitro
or ectopically, to generate new shoots that give rise to fertile plantlets
from somatic tissue (Maher et al., 2020). This method, however, is
not generalizable to all crops or regulatory systems (Nasti and
Voytas, 2021). On the other hand, the application of
morphogenic factors is genotype-independent and generates a
larger number of edited plants in less time (Lowe et al., 2016).
Briefly, the overexpression of morphogenic genes, such as Baby
boom (Boutilier et al., 2002) and Wuschel (Arroyo-Herrera et al.,
2008), can be used to efficiently induce somatic embryogenesis
directly from explant tissue without the need for a callus phase.
The GRF-GIF approach uses the overexpression of specific chimeric
GRF and GIF fusion proteins (Kong et al., 2020) to produce stable
transformants with increased regeneration efficiency. This approach
was instrumental in producing edited genotypes that were
recalcitrant to previous transformation methods.
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Transformation Platform
There are two general approaches to transformation using CRISPR-
Cas: transgenesis and transfection (Figure 1D). Transgenic
techniques introduce exogenous DNA fragments, or transgenes, to
target tissue genomes via bombardment or co-cultivation with
disarmed Agrobacterium tumefaciens strains that insert T-DNA
from binary vector systems (Bower and Birch, 1992; Fitch et al.,
1993; May et al., 1995; Nasti and Voytas, 2021). The advantage of the
transgene approach is that it uses selection to identify events that
carry the transgene versus those that do not, facilitating the screening
of CRISPR-Cas positive events. However, the integration of
transgenes is non-specific and sometimes unstable (Jaganathan
et al., 2018). Transfection techniques are possible because the gene
editing reagents can be assembled as RNP complexes or RNA
molecules in vitro (Zhang Y. et al., 2021) and subsequently
delivered to embryogenic calli via particle bombardment or
introduced in isolated protoplasts via transfection (Liang et al.,
2018b). The advantage of using the transfection approach is that
the edited events are transgene-free, which may or may not influence
regulatory processes required for commercial release of gene edited
crops. However, the disadvantage is that hundreds of events must be
screened due to the absence of a selectable marker (Fister et al., 2018).

Screening
Once gene-editing reagents have been inserted into plant cells and
cellular repair mechanisms have created edits, cells carrying these
genetic changes need to be identified, so that regenerated plantlets
that are chimeric or homozygous for the desired edit can be
recovered (Figure 1E). Edited events may be phenotypically
screened and subsequently verified through sequencing, or vice
versa depending on the trait of interest (Kaur et al., 2018). Many
methods are available (Slatko et al., 2018), but large-scale editing
projects typically require a high-throughput approach. Recent
advancements such as PacBio technology and Nanopore
sequencing can generate long DNA (and RNA) reads at
unprecedented volume, in contrast to first and second-
generation sequencing which mostly produce short-read
sequences (Slatko et al., 2018). The drawback of high-throughput
approaches is their relatively high error rate, though the large
computational capacity circumvents this problem. In the
transgenic approach, selectable markers, such as antibiotic
(Hardegger and Sturm, 1998) or herbicide resistance (Zhao
et al., 2000), have been essential in identifying and propagating
edited plants. However, concern over the presence of transgenes in
the final product and the prospects of successive rounds of
transformation and gene silencing have made marker
elimination a more attractive approach (Veluthambi et al., 2003).
Elimination of transgenes, T-DNA, and selectable markers depends
on the efficiency of progeny regeneration and the ability to segregate
the T-DNA from the edited allele through crosses (Russell et al.,
1992; Hohn et al., 2001; Veillet et al., 2019). Furthermore, edited
lines should be assessed in various field environments to ensure that
the desired phenotype is heritable and stable for commercial
application. Breeders must consider gene-environment
interactions (GEI) and trait stability to recommend ideal
varieties to growers and maximize success (Huang et al., 2016).

In the case of vegetatively propagated crops, or where traditional
breeding is cumbersome or not possible, screening must be
approached differently. Transgene-free methods remove the need
to segregate transgenic material out of desired lines and still retain
the edited event but rely on genomic analyses for selection. Briefly,
polymerase chain reaction (PCR)-based andDNA sequencing-based
methods are highly sensitive and specific, provided an adequate
reference is available (Grohmann et al., 2019). Although limited in
their application, alternative approaches include DNA hybridization
assays, protein- and metabolite-based methods (Grohmann et al.,
2019), and restriction enzyme assays (Kim et al., 2014; Shan et al.,
2014; Vouillot et al., 2015) combined with bioinformatic analysis
tools (Liang et al., 2018a). Probe-based quantitative PCR (qPCR) is a
simple, robust, and rapid approach that can be applied to a broad
range of genotypes (Falabella et al., 2017; Peng et al., 2018) and the
use of a locked nucleic acid (LNA) probe may offer increased
specificity by reducing off-target amplification (Zhang H. et al.,
2021). We suggest reviewing Grohmann et al., 2019 for an overview
of screening and selection methods to aid in protocol development.

CONCLUSION

The promise in genome engineering technology is clear, especially in
under-resourced regional tropical crops. Here, we have outlined a
clear workflow to operationalize CRISPR-Cas technology in any
species of interest, though it is important to understand the different
cultural relevance of underutilized crops to appropriately develop
resources (Gordon et al., 2021). The processes outlined here can be
developed independently at different times, but all need to be in place
in order to establish a CRISPR-Cas gene editing platform for
improvement of your target crop.
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