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The gut microbiome is dynamic and shaped by diet, age, geography, and environment.
The disruption of normal gut microbiota (dysbiosis) is closely related to colorectal cancer
(CRC) risk and progression. To better identify and characterize CRC-associated dysbiosis,
we collected six independent cohorts with matched normal pairs (when available) for
comparison and exploration of the microbiota and their interactions with the host.
Comparing the microbial community compositions between cancerous and adjacent
noncancerous tissues, we found that more microbes were depleted than enriched in
tumors. Despite taxonomic variations among cohorts, consistent depletion of normal
microbiota (members of Clostridia and Bacteroidia) and significant enrichment of oral-
originated pathogens (such as Fusobacterium nucleatum and Parvimonas micra) were
observed in CRC compared to normal tissues. Sets of hub and hub-connecting microbes
were subsequently identified to infer microbe-microbe interaction networks in CRC.
Furthermore, biclustering was used for identifying coherent patterns between patients
and microbes. Two patient-microbe interaction patterns, named P0 and P1, can be
consistently identified among the investigated six CRC cohorts. Characterization of the
microbial community composition of the two patterns revealed that patients in P0 and P1
differed significantly in microbial alpha and beta diversity, and CRC-associated microbiota
changes consist of continuous populations of widespread taxa rather than discrete
enterotypes. In contrast to the P0, the patients in P1 have reduced microbial alpha
diversity compared to the adjacent normal tissues, and P1 possesses more oral-related
pathogens than P0 and controls. Collectively, our study investigated the CRC-associated
microbiome changes, and identified reproducible microbial signatures across multiple
independent cohorts. More importantly, we revealed that the CRC heterogeneity can be
partially attributed to the variety and compositional differences of microbes and their
interactions to humans.
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1 INTRODUCTION

Humans are made up of trillions of cells, which work together to carry out essential functions
required for life. Besides human cells, there are many microorganisms living in and on our
bodies, which are collectively called human microbiota (Micah et al., 2007). The term
microbiome describes either the collective genomes of the microbiota, or the
microorganisms themselves (Micah et al., 2007; Knight et al., 2017). The skin, mouth, and
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gastrointestinal tract all harbor different types of
microorganisms as revealed by the Human Microbiome
Project (HMP) (Micah et al., 2007). The majority of
microbes reside in the gut, making it an attractive target
for microbiome research. Diet, antibiotics, age, and
environmental conditions have been shown to affect the
composition of the gut microbiome (Claesson et al., 2012;
Caesar et al., 2015; Langdon et al., 2016). For instance, a high-
fat diet reduces the level of Akkermansia muciniphila and
Lactobacillus, which are both beneficial for a healthy
metabolic state (Caesar et al., 2015). The microbiota of
older people (>65 years) displays greater inter-person
variation, and lower diversity levels than that of younger
adults (Claesson et al., 2012). Although the gut microbiome
changes over time and can be affected by various factors, 60%
of an individual’s microbiota remains stable for years or even
decades, suggesting that microbial signatures might be useful
for clinical evaluation of human diseases (Faith et al., 2013;
Levy et al., 2020).

The interactions between human cells and gut microbes play
important roles in human health and disease. Recent evidence
showed that the gut microbiota is involved in the regulation of
various human physiological processes including metabolic
functions and immune systems (Wang et al., 2017; Li et al.,
2021). On the other hand, dysbiosis (imbalance of microbiota)
has been shown to be associated with a wide range of diseases
(Wang et al., 2017) including inflammatory bowel disease (IBD),
obesity, mental illnesses, and colorectal cancer (CRC). CRC is a
growing public health problem worldwide. Dysbiosis is
recognized as an important player in CRC initiation and
progression (Kostic et al., 2013; Zackular et al., 2013; Wang
et al., 2017; Cheng et al., 2020). For example, Zackular et al.
(2013) found that changes in the gut microbiome directly
contributed to tumorigenesis in mice. Pathogens such as
Fusobacterium nucleatum (F. nucleatum) and Bacteroides
fragilis (B. fragilis) were overabundant during disease
progression from adenomas to CRC (Kostic et al., 2013;
Cheng et al., 2020).

CRC is characterized with high heterogeneity and
variability in molecular characters and clinical outcomes
(Guinney et al., 2015). Four consensus subtypes (CMS1-
CMS4) of CRC were defined by the Colorectal Cancer
Subtyping Consortium (CRCSC) (Guinney et al., 2015).
CMS1 patients have strong immune system activation;
CMS2 tumors displayed epithelial differentiation; CMS3 is
a genomically stable subtype with metabolic dysregulation;
and CMS4 malignancies have the worst clinical outcomes,
stromal invasion, and angiogenesis. CRC microbiota
heterogeneity was previously investigated by researchers
such as in (Flemer et al., 2017; Purcell et al., 2017). Purcell
et al. (2017) identified CMS subtype specific microbial profiles
from a cohort of 34 CRC patients, such as F. nucleatum was
elevated in CMS1, and Prevotella species were enriched in
CMS2. Flemer et al. (2017) stratified 59 CRC patients into 6
clusters: a Pathogen cluster, a Prevotella cluster, two clusters
of Bacteroidetes and Firmicutes, respectively. In addition,
Arumugam et al. (2011) performed multidimensional

cluster analysis identified 3 distinct clusters of the human
gut microbiome (designated as enterotypes), and the patterns
were reproducible in other two cohorts. The enterotypes are
mostly driven by closely related microbial species with similar
taxonomy. Specifically, the enterotype 1 is enriched in
Bacteroides, enterotype 2 is abundant with Prevotella, and
the enterotype 3 is mostly a Ruminococcus rich group. The
clusters identified from the last two studies resemble each
other, suggesting that microbial composition changes in CRC
patients may form small sets of discrete states.

The 16S ribosomal RNA (rRNA) gene is present and highly
conserved among bacteria, which contains nine hypervariable
regions (V1-V9) suitable for bacterial identifications. 16S rRNA
gene amplicon sequencing is cost-effective and has been essential
in identifying bacterial species in clinical samples (Burns et al.,
2015; Gao et al., 2015). For example, Gao et al. (2015) used 16S
rRNA gene V3 region to investigate microbiota changes between
tumor and matched normal samples. They found that
Proteobacteria phyla was under-represented, whereas
Firmicutes phyla and Fusobacteria genus were over-
represented in CRC. Burns et al. (2015) found an elevated
abundance of Providencia in the tumor microenvironment by
sequencing the V5-V6 regions of the 16S rRNA gene. CRC
microbial compositions identified from different studies share
similarities and differences, suggesting a meta-investigation of
multiple cohorts is needed to identify robust microbial signatures
for CRC.

Clustering is an unsupervised classification method to
uncover the structures and patterns in data. K-means and
hierarchical clustering are the two commonly used
algorithms to partition either features or samples into
different groups based on their similarities (Chang et al.,
2014). Biclustering allows simultaneous clustering of both
features and samples in order to identify coherent patterns
from both dimensions (Madeira and Oliveira, 2004; Zhao
et al., 2018). BackSPIN (Zeisel et al., 2015), a biclustering
algorithm on single cells that iteratively splits both cells and
genes, until no further splitting is needed. Like the generally
sparse single cell data, the microbe-sample count matrices
generated from microbial profiling studies are very sparse
with many zero values, thus we did the attempt of using
BackSPIN biclustering on microbial matrices to reveal
potential CRC-microbe-interaction patterns. Meanwhile,
previous studies on uncovering CRC microbiota
heterogeneity were mostly conducted on faecal samples,
which is generally considered to be representative for the
distal part of the large intestine. Since faecal samples provide
an incomplete and biased representation of gut microbiome, the
analysis of mucosal/tissue is more directly related to the
microbiota involvement in CRC physiopathology (Villéger
et al., 2018).

Therefore, our study is to apply a meta-investigation of
multiple independent CRC cohorts with matched tumor/
normal tissue pairs (when available), not only to determine
the consistently altered microbial species in CRC patients, but
also to identify robust patient-microbe interaction patterns. More
importantly, we revealed the CRC’s heterogeneity at the
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microbiome level, and found that only a subset of the CRC
patients were identified to have significant microbial changes
compared to normal controls.

2 MATERIALS AND METHODS

2.1 Data Collection
We collected six independent CRC datasets, considering in total
353 patients and their matched normal mucosal samples (when
available)’ 16S rRNA amplicon sequencing (16S) data (Table 1).
All the samples included came from untreated patient tissues.
More specifically, Kostic dataset (Kostic et al., 2012) has microbial
sequencing of 95 CRC patients and matched normal controls,
which contains the largest number of samples included in the
study. 67, 65, and 44 tumor-normal pairs were subjected to 16S
sequencing by Burns et al. (2015), Gao et al. (2017), Hale et al.
(2018), respectively. Although most of the sequenced samples
from Zeller dataset (Zeller et al., 2014) came from fecal samples,
there were 48 tumor-normal mucosal pairs which were added
into our study. And lastly, the included Purcell dataset (Purcell
et al., 2017) contains 34 tumor samples without matched normal
control subjects. Beside the Kostic dataset, which was based on
454 pyrosequencing, the remaining datasets were all generated by
the Illumina MiSeq paired-end platform (Table 1).

Patient’s clinical information, such as age, gender, and Body
mass index (BMI) were downloaded (when available) from the
corresponding publications (Kostic et al., 2012; Zeller et al., 2014;
Burns et al., 2015; Gao et al., 2017; Purcell et al., 2017; Hale et al.,
2018).

2.2 16S Data Processing
16S microbial profiles were obtained either by re-analysing the raw
data, or by downloading the processed Amplicon sequence variant
(ASV) tables, whichever is applicable. The ASV table for the Kostic
dataset was obtained from the Microbiome Learning Repo
(MLRepo) database (Vangay et al., 2019). Hale dataset’s ASV
assignments were downloaded from the associated publication
(Hale et al., 2018). For re-analysing the data, the raw sequences
were downloaded from EBI-ENA database (accession number:
PRJEB6070, PRJNA284355, PRJNA404030, and PRJNA383606),
followed by processing the reads through the DADA2 (1.14.0)
pipeline (Callahan et al., 2016). Specifically, we used DADA2 with
the standard filtering parameters: maxEE � (2, 2), truncQ � 2, rm.
phix � TRUE, and trimmed the potential adapter and primer
sequences. The denoised forward and reverse reads were then
merged, and chimeric sequences were removed. The taxonomywas
assigned using the Silva reference database (version 132), and
species level classifications based on exact matching between ASVs.

ASV count table, the taxonomic assignments, and patient’s
metadata were combined into a phyloseq object for each dataset
for further processing and virtualization. Rare ASVs with prevalence
less than 1% of samples were excluded. Microbial count data was
normalized to median sequencing depth, transformed to relative
abundances, and log2-transformed after adding a pseudocount of 1.

2.3 Statistical Analysis of Microbial
Community Data
Alpha diversity is the diversity within a particular habitat, and
was calculated using Shannon diversity index in the study.

TABLE 1 | Size and characteristics of the CRC 16S datasets used in the study.

Kostic Hale Gao Zeller Burns Purcell

Datasets
information

Source Vall d’Hebron
University Hospital

Mayo Clinic Shanghai Tenth
People’s Hospital

University Hospital
Heidelberg

University of
Minnesota

University of
Otago

16S Regions V3-V5 V3-V5 V4 V4 V5-V6 V3-V4
Technology 454 sequencing Illumina MiSeq Illumina MiSeq Illumina MiSeq Illumina MiSeq Illumina MiSeq
Reads ∼1,000 bp 2 × 300 bp 2 × 250 bp 2 × 250 bp 2 × 250 bp 2 × 250 bp
Accession SRP000383 PRJNA445346 PRJNA383606 PRJEB6070 PRJNA284355 PRJNA404030

Patients Tumor 95 67 65 48 44 34
P0 52 33 32 24 20 19
P1 43 34 33 24 24 15
P1% 45.3% 50.7% 50.8% 50.0% 54.5% 44.1%
Average
Age (P0)

NA 66.7 NA 63.7 63.6 70.6

Average
Age (P1)

NA 67.1 NA 66.1 66.2 78.2

Normal 95 67 65 48 44 0

Average Age
(Normal)

NA 64.6 NA 64.9 64.9 NA

Microbes Phylum 11 11 24 24 23 18
Genus 205 212 478 495 562 318
Species 420 415 318 286 269 231
Lowly variable
species

24 10 21 24 84 0

P0-specific 226 216 162 141 85 149
P1-specific 170 189 135 121 100 82
P1-specific% 42.9% 46.7% 45.5% 46.2% 54.0% 35.5%
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Microbial relative abundances were used to calculate Shannon
diversity index for each sample in a dataset. Differences were
evaluated using the pairwise Wilcoxon rank sum tests with
Benjamini-Hochberg (BH) correction. A p-value < 0.05 was
considered statistically significant.

Beta diversity is commonly used to measure similarities and
differences between samples. Principal coordinates analysis
(PCoA) was performed based on Bray-Curtis distance to
estimate the beta diversity of microbial communities. A
permutational multivariate analysis of variance
(PERMANOVA) was then performed using the “adonis2”
function from the vegan package (Dixon, 2003) to test for
differences between different microbial communities. The
analysis was based on Bray-Curtis dissimilarity with 999
permutations, and accounted for by the covariates/confounders
such as age, gender, and BMI (when available). p-values of 0.05 or
lower were considered to be statistically significant.

Microbial differential abundance analysis (adjusted for
patients’ clinical factors for subtype comparison) was
performed using DEseq2 with the Phyloseq package in R.
Results were considered significant if the BH adjusted p-value
was less than 0.05.

2.4 Biclustering
BackSPIN (Zeisel et al., 2015), a divisive biclustering method
based on sorting points into neighborhoods (SPIN) (Tsafrir et al.,
2005), can be seen as simultaneous clustering of rows and
columns of a data matrix. BackSPIN can help to identify
coherent patterns between microbes and samples from
microbial abundance data.

A filtering process was performed for the 16S species-level
dataset to exclude the microbes with standard deviation (SD) of
less than 0.05. The data were then fed into the BackSPIN
algorithm for biclustering analysis with default parameters.
The depth of clustering (d � 4) is specified as levels of binary
splits the BackSPIN will be attempted, and a maximum of 24

clusters will be created for each analysis (Zeisel et al., 2015). The
optimal cluster number was determined by the Gap statistics
(Tibshirani et al., 2001). Microbe-sample biclusters determined
by BackSPIN and Gap statistics were displayed by heatmap
visualizations.

2.5 Construction of Microbial Interaction
Networks
A microbial interaction network consists of a collection of hub
microbes and their connected microbes. Hub microbes are
predicted to act as potential biomarkers that are either
positively or negatively interacting with their connected
microbes. In our analysis, we employed a network-based
approach using ARACNe algorithm (Margolin et al., 2006) to
investigate the microbe-microbe interactions in the
development and progression of CRC. The differentially
altered microbes (BH-adjusted p < 0.05) between groups
(tumor vs. normal; P1 vs. P0) were considered as the hub
microbes, and the set of microbes connected with a given
hub microbe forms a sub-network.

Specifically, the microbe-microbe interaction network
inference was performed in the RTN package (Fletcher et al.,
2013), which executed in four major steps: 1) compute mutual
information (MI) between a hub microbe and all potential
connections with the remaining microbes; remove non-
significant associations (Spearman’s coefficient correlation with
BH corrected p-value less than 0.01) by RTN’s permutation
calculations (nPermutations � 1,000); 2) remove unstable
interactions (edges) by bootstrapping (the consensus fraction
is 95%, and the number of bootstraps is 100); 3) apply the
ARACNe algorithm; 4) build microbial interaction networks
that are centered on hub microbes, and network visualization
in the RedeR package (Castro et al., 2012).

Smaller networks with fewer than 5 hub microbes or edges
were visualized by plotting heatmaps using the pheatmap package
(with the default parameter settings) (Kolde, 2012). And the
cutoff of removing non-significant associations among microbes
was set as 0.05 (Spearman’s coefficient correlation with BH
corrected).

2.6 Association Analysis Between Microbes
and Patient Clinical Factors
Statistical tests such as the chi-squared test and the Mann-
Whitney U-test were performed to test the patient grouping
information with various clinical variables (such as age,
gender, and BMI). BH corrected p-values of 0.05 or lower
were considered to be statistically significant.

3 RESULTS

3.1 A Survey of Microbial Composition
Changes in Different CRC Cohorts
Six independent CRC 16S sequencing datasets, namely Kostic,
Hale, Gao, Zeller, Burns, and Purcell were collected and analysed
in our study. Datasets and patient cohorts’ characteristics were
provided in Table 1. We used one percent of all samples in a
dataset as the prevalence threshold to eliminate singleton and rare
amplicon sequence variants (ASVs) for each cohort. ASVs were
then collapsed to different taxonomic levels (Kingdom, Phylum,
Genus, and Species) for further investigation. Few members of
Euryarchaeota and Thaumarchaeota phyla derived from the
Kingdom of Archaea have been identified from the Zeller,
Burns, and Kostic datasets, and the remaining microbes all
belonged to Bacterial Phylums.

11 to 24 unique phyla have been identified from each of these
six datasets (Table 1; Supplementary Table S1). Firmicutes and
Bacteroidetes were the two dominant phyla, ranging from 63.6 to
85.2% in CRC gut microbiota. The other major phyla include
Proteobacteria, Fusobacteria, and Actinobacteria (Figures 1A–F;
Supplementary Table S1). Differential analysis indicated that
increased proportions of Fusobacteria and/or Epsilonbacteraeota
have been observed from the tumors compared to adjacent
noncancerous tissues among most of the cohorts surveyed in
the study (adjust p < 0.05; Supplementary Table S2). Phylum
level composition variations have been observed among different
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CRC cohorts. For example, in cancerous tissues, Bacteroidetes
with a percentage range from 58.0% in Hale to 19.8% in Burns
dataset. And the percentages of Fusobacteria in the tumor group
are 11.1% (Kostic), 5.1% (Burns), 8.4% (Zeller), 10.1% (Hale),
9.5% (Gao), and 4.3% (Purcell) (Figures 1A–F; Supplementary
Table S1).

When we assessed the differences at the level of genera, we
found a diverse category of bacteria genera ranging from 205
(Kostic) to 562 (Burns) (Table 1). Bacteroides, Prevotella,
Fusobacterium, Faecalibacterium, Blautia, and
Lachnoclostridium are among the most abundant genera
(Figures 1G–L). Microbial composition variations among CRC
cohorts have also been observed at the genus level (Figures 1G–L;
Supplementary Table S1). For instance, in the top 12 genera, the
percentages of Faecalibacterium ranging from 2.6% (Hale) to
14.0% (Purcell); and the percentage of the Bacillus genera was
15.1% in Gao compared to 1.0% in Hale dataset (Supplementary
Table S1). Phylum and genus levels microbial composition
variations suggested that gut microbiota composition has
cohort differences. Differential analysis between tumor and
normal groups across cohorts indicated that the genera of
Faecalibacterium, Alistipes, and Blautia have been enriched in
normal tissues, and tumor-enrichment for Fusobacterium,
Selenomonas, and Campylobacter have been commonly
observed across CRC cohorts (adjust p < 0.05; Supplementary
Table S2).

A total of 420, 415, 318, 286, 269, and 231 microbial species
have been detected from Kostic, Hale, Gao, Zeller, Burns, and

Purcell datasets, respectively (Table 1; Supplementary Table S3).
Among them, 62 common species have been detected in these six
datasets, and majority of them came from the order of
Bacteroidales and Clostridiales (Supplementary Table S4). The
significantly differentially enriched and depleted species between
tumors and normals (adjust p < 0.05) and their overlap
relationships across the datasets were illustrated in Figure 2.
Multiple species have been found to be uniquely enriched/
depleted among different CRC cohorts (Figure 2), suggesting
that the microbial composition variations were common at the
species level. Four species, namely F. nucleatum (4 datasets), F.
prausnitzii (2 datasets), P. micra (2 datasets), and S. sputigena (2
datasets) were detected to be significantly altered in more than
one dataset (Figure 2). Specifically, aside from the Burns dataset,
F. nucleatum has been found to be enriched in tumors compared
to adjacent normal tissues in the Kostic, Hale, Gao, and Zeller
datasets. Tumor depletion of F. prausnitzii has been observed
from the Kostic and Hale cohorts (Figure 2).

We didn’t observe any significant microbial diversity
(Shannon alpha-diversity index) differences between the tumor
and normal samples at any of the six cohorts (Supplementary
Figure S1). Bray-Curtis distance was computed to measure the
dissimilarity between tumor and normal microbial compositions
(beta diversity), and principal coordinates analysis (PCoA)
revealed highly significant differences between the two groups
on the phylum, genus, and species levels (PERMANOVA, adjust
p < 0.05; Supplementary Figure S2). Taken together, these
findings suggested that gut microbiota composition has both

FIGURE 1 | Relative abundance of top 12 microbial taxa from CRC patients and adjacent normal tissues. Taxa composition bar plots illustrate the relative microbial
abundance (%) at the phylum level (A–F) and the genus level (G–L). CRC patient cohorts include Kostic (a and g), Hale (B, H), Gao (C, I), Zeller (D, J), Burns (E, K), and
Purcell (F, L).
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FIGURE 2 | Differentially altered microbial species between tumor and normal groups, and their overlap relationships across the five CRC cohorts. The significantly
differentially enriched and depleted microbial species between tumor and normal groups (adjust p < 0.05) were compared for their overlap relationships across the five
CRC cohorts (Kostic, Hale, Gao, Zeller, and Burns). The number of overlap species across the cohorts were shown by a Venn diagram. Species names were shown
around the Venn diagram. Tumor-enriched species were marked in red, and tumor-depleted species in blue.

FIGURE 3 | Differential microbial interaction networks in the Kostic cohort. A directed graph displaying differential microbial species between tumor and normal
groups (hub microbes) in the Kostic cohort (shown in rectangles; green: depleted in tumor, red: enriched in tumor). Microbes predicted to interacting with the hub
microbes were shown based on their differential level between tumor and normal groups (shown in circles; blue: depleted in tumor, orange: enriched in tumor). The
connections among microbes were depicted in red (induction) or blue (repression) based on the associations of the hub microbes and their related microbes.
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cohort differences and similarities; most importantly, significant
microbial community composition differences, but not the
microbial alpha diversity difference between cancerous and
adjacent noncancerous tissues have been detected in different
CRC cohorts.

3.2 Differential Microbial Interaction
Networks in Kostic and Hale Cohorts
Like the genes in a genome, microorganisms in the gut
microbiota interact. To examine the underlying microbe-
microbe interaction network in CRC, we inferred a
differential microbial interaction network (DMIN) using
ARACNe algorithm (Margolin et al., 2006) for each CRC
cohort investigated. Differentially altered microbes between
tumor and normal were selected as the hub microbes, and
the set of hub-connecting microbes by a given hub microbe
forms a sub-network. The microbial interaction units (sub-
networks) were thus composed of the hub microbes and their
connected microbes. The degree distribution of the network was
defined as the number of microbes connected with the hub
microbes, which was used to represent the importance of the
hub microbes (the more the bigger the importance). Kostic and
Hale cohorts were first selected based on the criteria: more than
5 hub microbes or edges, to investigate the potential microbe-
microbe interactions.

Out of the 10 microbes differentially enriched/depleted
between tumor and normal samples in the Kostic dataset
(adjust p < 0.05; Supplementary Table S2), 9 (S. termitidis, A.
shahii, B. uniformis, C. viride, F. prausnitzii, B. faecis, F.
nucleatum, T. socranskii, and L. trevisanii) were predicted to
be the hub microbes (Figure 3). Among them, 3 were enriched
(shown in red rectangles), and the remaining 6 (shown in green
rectangles) were depleted in tumors. Of the 3 up-altered species in
tumors, two were derived from the order of Fusobacteriales, and
the remaining 1 (T. socranskii) is a pathogen which can cause
diseases in humans. The 6 depleted microbes in tumors all come
from the phyla of Firmicutes and Bacteroidetes, most prominently
in the order of Clostridiales. Microbes predicted to be associated

with the hub microbes are shown in orange (highly enriched in
tumor) and blue (depleted in tumor). More microbes were
depleted than enriched (48 vs 7) in tumors. 6 (F. nucleatum,
T. socranskii, F. fastidiosum, S. sputigena, D. pneumosintes, and P.
micra) of the 7 enriched microbes were oral pathogens (Chen
et al., 2010) (Table 2), indicating the role of oral microbiome on
the tumorigenesis of CRC. 59 connections (edges), which were
weighted by Spearman’s correlation coefficients among microbes
were added to the network (Figure 3). B. faecis, A. shahii, and S.
termitidis were the top 3 largest hub microbes which were
associated with 17, 14, and 10 microbe’s abundances,
respectively. Almost all the interactions between hub microbes
and their connected microbes were positive (cooperative), except
for a negative (competitive) relationship between F. nucleatum
and B. luti. B. luti is a beneficial bacteria, which was depleted in
tumors, its relationship with F. nucleatum needs further
investigation.

Based on the 24 differentially abundant bacteria species in the
Hale dataset (adjust p < 0.05; Supplementary Table S2), 22 were
selected to build the DMIN which consisted of 22 hub microbes
with 143 edges (Supplementary Figure S3). There were 2
overlapped hub microbes (F. nucleatum and F. prausnitzii)
between Hale and Kostic dataset. Hub microbes’ connection
size range from 1 (for S. sputigena) to 12 (for F. prausnitzii).
Similar to our previous results, oral pathogens (such as C. gracilis,
S. sputigena, and P. micra) were enriched in tumors; most of the
depleted species were belonging to the order of Clostridiales; and
hub microbes were mostly positively interacted with their
connected microbes, indicating potential symbiotic
relationships between them.

3.3 Differential Microbial Correlation
Networks in Other CRC Cohorts
The remaining three CRC cohorts (Zeller, Gao, and Burns) which
have tumor-normal pairs were employed separately to infer
differential microbial correlation networks (DMCNs), as they
have less than 5 hubmicrobes or edges. DMCNs were constructed
according to the Spearman’s correlation coefficients between hub

TABLE 2 | The prevalence of the 15 oral-related microbes in the six datasets.

Species Kostic (%) Hale (%) Gao (%) Zeller (%) Burns (%) Purcell (%)

Fusobacterium nucleatum 70.5 49.1 60.0 75.0 22.7 61.8
Treponema socranskii 21.1 4.3 9.2 8.3 9.1 8.8
Fretibacterium fastidiosum 11.6 4.8 9.2 16.7 0.0 14.7
Selenomonas sputigena 40.0 10.4 26.2 35.4 4.5 44.1
Dialister pneumosintes 50.5 35.2 46.2 50.0 18.2 14.7
Parvimonas micra 82.1 27.0 64.6 66.7 43.2 38.2
Solobacterium moorei 6.3 13.0 0.0 47.9 2.3 5.9
Dialister pneumosintes 50.5 35.2 46.2 50.0 18.2 14.7
Peptoanaerobacter stomatis 2.1 18.7 69.2 2.1 15.9 29.4
Selenomonas infelix 0.0 4.3 12.3 10.4 2.3 17.6
Fretibacterium fastidiosum 11.6 4.8 9.2 16.7 0.0 14.7
Treponema socranskii 21.1 4.3 9.2 8.3 9.1 8.8
Filifactor alocis 4.2 3.5 6.2 8.3 4.5 0.0
Porphyromonas endodontalis 15.8 0.0 13.8 6.3 0.0 0.0
Campylobacter gracilis 8.4 9.1 3.1 20.8 4.5 14.7
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microbes and their connectedmicrobes (adjust p < 0.05) and were
visualized by heatmaps (Figures 4A–C).

From the Zeller dataset, 3 hub microbes (S. sputigena, F.
nucleatum, and P. micra) were all enriched in tumors, and
were significantly positively correlated with a total of 11
microbes’ relative abundance (Figure 4A). 9 of the 11
microbes have an oral origin (S. moorei, D. pneumosintes, P.
stomatis, S. infelix, F. fastidiosum, T. socranskii, F. alocis, P.
endodontalis, and C. gracilis) (Chen et al., 2010) (Table 2),
and the remaining 1 bacteria (M. curtisii) is associated with
Bacterial vaginosis (BV).

3 hub microbes were also identified from the Gao dataset.
Consistent with previous reports, F. nucleatum was enriched in
tumors compared to normal controls. Correlation heatmap
analysis of the relationship between hub microbes and their
connected microbes showed that F. nucleatum was positively
interacted with P. micra, although the correlation was not strong
(0.367) (Figure 4B). The remaining two hub microbes (C. acnes,
and B. cereus) were all depleted in tumors. C. acnes is an
opportunistic pathogen, and the stains of B. cereus are
widespread in our living environment (Majed et al., 2016).

There are two microbial species from the genus of
Corynebacterium that were enriched in tumors, but not
selected as the hub microbes in the Burns cohort. Among the
4 hub microbes (all depleted in tumors, which are belonging to
the normal gut microbiota) in the Burns cohort, R. bacterium was
the most significant microbe to be interacted with other microbes
(Figure 4C). For instance, R. bacterium positively interacts with
D. formicigenerans with the Spearman’s correlation coefficients
as 0.63.

In summary, the DMCNs inferred from Zeller, Gao, and Burns
were similar to those obtained earlier, that is, pathogens (like F.
nucleatum) were mostly cooperative associated with their
targeted microbes, the majority of them have an oral-origin
and were highly enriched in the tumor site; whereas beneficial
microbes (members of Clostridiales) were depleted in tumors, and
positively interacted with each other.

3.4 Biclustering Identifies Two Microbial
Subtypes of CRC
We have examined the microbial composition changes and
investigated the potential interactions between hub microbes
and their connected microbes in different CRC cohorts. As
CRC is heterogeneous at the molecular level (Guinney et al.,
2015), we next asked the question if CRC is heterogeneous at the
microbial level.

Lowly variable species (SD < 0.05) for each cohort (Table 1)
were filtered out before analysing through the BackSPIN, a
biclustering approach to identify CRC subtypes that were co-
perturbed across a subset of the microbes. The gap statistic
compares the total within intra-cluster variability, and was
used to determine the optimal number of clusters for each
cohort. The previous PCoA analysis indicated that the
microbial communities of a tumor and the corresponding
normal samples from a given patient were more similar to
each other than the tumors or paired normal samples from
unrelated patients (Supplementary Figure S2), which is
similar with the hierarchical clustering results obtained from
Kostic et al. (2012). Thus, only tumor samples from each

FIGURE 4 | Differential microbial correlation networks in other cohorts. Heatmaps display a number of statistically significant Spearman’s coefficient correlations
(BH corrected p < 0.05) between hub microbes and their related microbes in Zeller (A), Gao (B), and Burns (C) cohorts. Numbers in the heatmaps represent the
correlation coefficient values. Each column represents a hub microbe, with the species names shown at the bottom. Each row represents a hub-connecting microbe,
with the species names shown on the right.
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cohort were included in the biclustering analysis, and normal-
adjacent samples were only involved when comparing the alpha
diversity between patient subtypes and nearby intact tissues. Two
CRC-microbe coherent patterns (P0 and P1) can be consistently
identified from the six CRC cohorts, respectively (Figures
5A–F,G–L). Significant difference in the microbial alpha
diversity were observed between the two subtypes in Kostic,
Hale, and Gao cohorts (pairwise Wilcoxon test, adjust p <
0.05; Figures 6A–C); however, no significant pairwise
microbial abundance differences were found between P1 and
P0 subtypes in Zeller, Burns, and Purcell cohorts after multiple
hypothesis correction (Figures 6D–F). More importantly, no
statistically significant differences in microbial alpha diversity
were observed between P0 patients and normal controls, whereas
the alpha diversity in P1 patients were significantly decreased
compared to P0 patients and non-tumor tissues (in Kostic, Hale,
and Gao cohorts) (Figures 6A–C). PERMANOVA analysis of the
Bray-Curtis distance (after adjusting for age, gender, and BMI
effects when available) indicated that the P1 patients exhibited
different beta microbial diversity than those of the P0 patients’
microbiomes (PERMANOVA, adjust p < 0.05; Figures 5M–R).
Taken together, the PCoA on beta-diversity analysis revealed
significantly distinct microbial compositions between the two
subtypes in the six cohorts. In addition, the average microbial
alpha diversity abundances in P1 patients were detected for less

than that in P0 patients and normal controls in the Kostic, Hale,
and Gao cohorts (Figures 6A–C).

3.5 Characterization of the CRC Microbial
Subtypes
An average of 45.1% of the total microbial species, ranging from
35.5% (Purcell) to 54.0% (Burns), were assigned into the P1
subtypes (Table 1); and the remaining species were belonging to
each of P0 subtypes among the six cohorts, respectively. A total
of 12 overlapped bacteria species, including 6 Bacteroidales and
6 Clostridiales, were present in P0 subtype across the six cohorts
(Table 3). These species are part of normal gut flora, and are
generally considered to be beneficial for gut health. For example,
B. uniformis, B. vulgatus, and F. prausnitzii are among the most
predominant commensal bacteria in the human intestine
(Jansson et al., 2009). R. bromii within the order of
Clostridiales, is responsible for the degradation of resistant
starch (Ze et al., 2012). And P. goldsteinii possesses probiotic
properties (Wu et al., 2019). 3 identical bacteria species were
present in P1 subtype across the cohorts investigated (Table 3).
Two of the three species were derived from the order of
Clostridiales, and the other one came from the Eggerthella
genus. C. cadaveris has been sporadically reported to be
associated with human infection (Kiu et al., 2017). And E.

FIGURE 5 |Biclustering identified twomicrobial subtypes in CRC. Gap statistics (and their standard deviations) per cluster number (1–10), which reach peaks at k �
2 for Kostic (A), Hale (B), Gao (C), Zeller (D), Burns (E), and Purcell (F). Species level abundance heatmaps display biclustering results for Kostic (G), Hale (H), Gao (I),
Zeller (J), Burns (K), and Purcell (L). Two patient-microbe interaction patterns (P0 and P1) were consistently identified across the CRC cohorts investigated. Red
represents the P1 group, and blue for the P0 group. Each row represents the abundance for each species, with the species’ grouping information indicated by the
colored bar located on the right. Each column represents the abundance for each patient, with the patient subtyping information indicated by the colored bar located on
the top. The PCoA based on Bray-Curtis dissimilarity was used to estimate the beta diversity of microbial communities for Kostic (M), Hale (N), Gao (O), Zeller (P), Burns
(Q), and Purcell (R). Each point represents a patient. P1 patients were in red, and P0 patients in blue. PERMANOVAwas used to test for differences between P1 and P0.
p-values of 0.05 or lower were considered to be statistically significant, and marked with star.
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lenta has been documented to induce bacteremia (Lee et al.,
2014). The microbial taxa within each subtype were consistently
diverse, composed of the five major phyla Firmicutes,
Bacteroidetes, Proteobacteria, Fusobacteria, and
Actinobacteria as observed earlier (Figures 1A–F, 7A–F).
Each cohort individually had a list of dominated taxa, and in
general, Bacteroides, Prevotella, Fusobacterium, and

Faecalibacterium were among the most abundant genera
within each subtype across the six CRC cohorts (Figures
7G–L), which further support that the gut microbiomes
consist of continuous populations of widespread taxa rather
than discrete enterotypes.

We next investigated the associations between CRC subtype
assignments with patients’ clinical factors such as age, gender, and

FIGURE 6 | Microbial alpha diversity comparisons in different groups and cohorts. Shannon’s diversity index (in y-axis) was used to measure alpha diversity for
Kostic (A), Hale (B), Gao (C), Zeller (D), Burns (E), and Purcell (F). P0 groups were colored blue, P1 were colored red, and Normal were colored green. Alpha diversity
differences between groups were evaluated using the pairwise Wilcoxon rank sum tests with Benjamini-Hochberg (BH) correction. Only statistically significant p-values
(less than 0.05) were shown below the boxplots, and marked with star.

TABLE 3 | Recurring subtype-specific microbial species in the six datasets.

Subtype Kingdom Phylum Class Order Family Genus Species

P0 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides coprocola
P0 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides uniformis
P0 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides vulgatus
P0 Bacteria Bacteroidetes Bacteroidia Bacteroidales Marinifilaceae Odoribacter Odoribacter splanchnicus
P0 Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides Parabacteroides merdae
P0 Bacteria Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides Parabacteroides goldsteinii
P0 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium Faecalibacterium prausnitzii
P0 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia Blautia obeum
P0 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea Dorea longicatena
P0 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea Dorea formicigenerans
P0 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Fusicatenibacter Fusicatenibacter saccharivorans
P0 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_2 Ruminococcus bromii
P1 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Eggerthellaceae Eggerthella Eggerthella lenta
P1 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae_1 Clostridium_sensu_stricto_2 Clostridium cadaveris
P1 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Tyzzerella_4 Tyzzerella nexilis
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body mass index (BMI), as these factors were considered to
influence the microbial community compositions (Claesson
et al., 2012; Gao et al., 2018). The percentages of patients in
subtype P1 were found to be 45.3% (Kostic), 50.7% (Hale), 50.7%
(Gao), 50.0% (Zeller), 54.5% (Burns), and 44.1% (Purcell)
(Table 1). Gao dataset doesn’t have any patient clinical
information, and was excluded from this analysis. The
remaining five datasets all have age and gender information.
Besides that, BMI values for Zeller and Hale datasets were also
available. Age and/or gender were not significantly associated
with the subtype labels in the Kostic, Zeller, and Hale datasets,
indicating that the microbial subtypes were independent from
these factors. However, more older patients were enriched in P1,
as identified from Burns and Purcell cohorts (Mann-Whitney
U-test, BH adjust p < 0.05). In addition, P1 patients were more
likely to be females, as observed solely in the Burns dataset (chi-
squared test, BH adjust p < 0.05). We speculated the associations
(between subtype labels with age and gender) were not
convincing, as Burns and Purcell cohorts have relatively fewer
patients (15–24) than others. Furthermore, from Zeller and Hale
cohorts, we saw P1 patients have significantly higher BMI than P0
patients (Mann-Whitney U-test, BH adjust p < 0.05). Given the
incomplete information and limited sample size for subgroup
analyses, the associations between microbial subtype labels with
clinical factors such as age, gender, and BMI were not robust
despite being significant at some levels. In other words, the two
CRC microbial subtypes were considered to be independent and
not influenced by the patients’ metadata.

3.6 CRC Subtype-specific Microbes
We next performed the differential abundance analysis for
identifying microbial members associated with CRC subtype
status. To facilitate comparisons across datasets, we adjusted
for age, gender, and BMI (when available) effects when
performing the analysis, and Gao dataset was excluded from
the analysis for the same reason. Zeller, Burns, and Purcell
datasets were also not processed further as there were no
differential abundance microbes between P0 and P1 subtypes
after adjusting the confounding factors.

Kostic and Hale datasets were used for subtype-specific
microbes identification. Significant differences in the
abundance of a number of taxa including Prevotella,
Clostridiales and Bacteroidales were seen between P0 and P1
subtypes (adjust p < 0.05). More microbes were depleted than
enriched in P1, and the majority of the depleted microbes in P1
were derived from the Firmicutes and Bacteroidetes phyla, most
prominently in the order of Clostridiales (Figures 8A,B). Among
the 38 bacteria being differentially abundant between P1 and P0
subtypes in the Kostic dataset, 7 oral-related species (F.
fastidiosum, C. morbi, T. socranskii, L. orale, P. micra, D.
pneumosintes, and V. dispar) were significantly enriched in P1
subtype (adjust p < 0.05; Figure 8A). 37 bacteria have been found
to be differentially abundant between P0 and P1 subtypes in the
Hale dataset (adjust p < 0.05). 11 of them were enriched, and the
remaining 26 were depleted in P1 (Figure 8B). 7 out of the 11
enriched species (P. micra, S. moorei, P. stomatis, H.
parainfluenzae, C. gracilis, P. oris, and P. oralis) were oral-

FIGURE 7 | Relative abundance of top 12 microbial phyla/genera in different groups and cohorts. Taxa composition bar plots illustrate the relative microbial
abundance (%) at the phylum level (A–F) and the genus level (G–L). CRC patient cohorts include Kostic (A, G), Hale (B, H), Gao (C, I), Zeller (D, J), Burns (E, K), and
Purcell (F, L).
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related. P. micra, an oral-related pathogen which can cause a
broad range of infections in humans (Carretero et al., 2016;
Shinha and Caine, 2016), was enriched in P1 both from the
Kostic and the Hale datasets. The relative abundance of
Clostridiales and Bacteroidales in P0 subtype were higher than
that in P1 subtype. Of the 10 overlapped species enriched in P0
(B. faecis, B. obeum, B. luti, F. saccharivorans, P. distasonis, D.
formicigenerans, O. splanchnicus, A. hadrus, F. prausnitzii, and P.
merdae) were identified both from the Kostic and Hale datasets, 7
were derived from the order of Clostridiales, and the remaining 3
came from the Bacteroidales. Most members of Clostridiales and
Bacteroidales were found among the healthy gut microbiota,
suggesting that P1 patients’ microbiota were more similar to
controls than to the P0 patients.

4 DISCUSSION

Gut microbiomes play important roles in the onset and
progression of CRC. 16S rRNA gene amplicon sequencing is a
cost-effective approach for microbiome studies. In this meta-
investigation study, we systematically analyzed six independent
16S CRC cohorts in terms of their microbiota compositions.
Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and
Actinobacteria account for the majority of the gut microbiota.
Although microbial composition variations have been observed

among different CRC cohorts, tumor-specific enrichment of F.
phylum, as well as depletion of Clostridia and Bacteroidia have
been observed in CRC patients relative to normal controls. To
explore this further, microbe-microbe and patient-microbe
interaction networks were built to investigate the global and
local patterns in the data. We found that hub microbes mostly
positively interacted with their connected microbes. We also used
BackSPIN, a biclustering approach to identify coherent CRC
subtypes according to their abundance concordance in
subtype-relevant microbes. BackSPIN can not only address the
heterogeneity of CRC, but also identify microbes which are
specific for each subtype. Through our analysis, we
consistently identified two distinct CRC microbial subtypes
across the cohorts investigated. One subtype, namely P1,
showed decreased microbial diversity, lack of beneficial
microbes, and was enriched for species associated with oral
infections. However, the gut microbiota of the P0 patients
resemble that from normal controls, indicating that only a
subset of the cancer patients have suffered from intestinal
dysbiosis; and dysbiosis accounts for partial CRC heterogeneity.

It was previously thought that gut microbiomes fall primarily
into three discrete enterotypes: type 1 is enriched with
Bacteroides, type 2 has less Bacteroides but Prevotella are
predominant, and type 3 is a Ruminococcus rich group
(Arumugam et al., 2011). The concept of enterotypes has been
challenged recently (Knights et al., 2014; Gorvitovskaia et al.,

FIGURE 8 | Differentially altered microbial species between P1 and P0 in Kostic and Hale cohorts. The significantly differentially enriched and depleted microbial
species between P1 and P0 (adjust p < 0.05) with their log2 fold changes (in x-axis) were visualized by scatterplots for Kostic (A) and Hale (B) cohorts. Species names
were shown on the left axis of the scatterplots. Each point on a scatterplot represents a microbial species, shown as a small colored circle, indicating the particular
phylum they derived from.
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2016), as gut microbial communities changing over time and
presenting continuous gradients in compositions between
Bacteroides, Prevotella, Ruminococcus, and many other taxa.
Our study not only proved that gut microbiota composition
has both cohort differences and similarities, but also further
supports the evidence that gut microbiomes are spanning
multiple co-occurring taxa which work together to interact
with the host. A few hub microbes, including members of
Clostridiales and F. nucleatum, were identified driving the
compositions of the human gut microbial community.
Members of Clostridiales are among the major constituents in
the gut microbiome. In our study, we identified a broad range of
interactions among Clostridiales in relation to other beneficial
microbes in the tissue site. But the interactions are weaker and
sensitive, and can be disrupted by pathogens, resulting in
dysbiosis. Differential microbial interaction analysis between
tumor and normal groups confirmed a number of correlations
between F. nucleatum and other oral species, which are in
agreement with previous results (Kolenbrander et al., 1989;
Edwards et al., 2006). For instance, F. nucleatum has been
tested to co-aggregate with a broader variety of oral bacteria
(Kolenbrander et al., 1989), and the co-aggregation with S.
cristatus to facilitate invasion of the later into host cells has
been validated (Edwards et al., 2006). The Shedding, co-
occurrence, and overgrowth of the oral cavity microbiomes in
the digestive system not only implies that cancer patients are
prone to microbial infection, but also provides opportunities to
develop and use the specific probiotics and antibiotics to treat
disease like CRC.

Gut microbes interact with the host in many ways, from
nutrient uptake and immunity to chronic inflammation and
carcinogenesis. Depletion of normal gut microbiota
composition (members of Clostridia) as well as the presence
of pathogens (like F. nucleatum) will disrupt the balance
between microbe and host. Most members of Clostridia are
typically anaerobic fermenters, known for their capacity for
butyrate production. For example, F. prausnitzii is one of the
main butyrate producing-bacteria in the human gut, and is
reduced in abundance in many intestinal disorders (Lopez-Siles
et al., 2017). Roseburia spp. of the family Lachnospiraceae are
part of commensal bacteria, which produce butyrate to inhibit
NF-κB activation and induce the maturation of the immune
system (Tamanai-Shacoori et al., 2017). Butyrate is involved in
a variety of metabolic and immune functions, and acts as a
mediator for maintaining intestinal homeostasis. It is not only
the preferred energy source for the colonocytes, but also has
anti-inflammatory properties (Venegas et al., 2019). On the
other hand, the presence of certain bacteria in the gut are
harmful and can induce dysbiosis and tumorigenesis. For
instance, since Kostic et al. (2012) established the
association of oral pathogen F. nucleatum with CRC, more
and more studies (Témoin et al., 2012; Yang et al., 2017; Sun
et al., 2019) have been carried out to investigate the oncogenic
mechanisms of F. nucleatum in CRC. The tumor-promoting
role of F. nucleatum via activating toll-like receptor 4 (TLR4)
signaling pathway has been observed in mice (Yang et al.,
2017). Two F. nucleatum virulence factors: FadA and Fap2

were believed to create a pro-inflammatory microenvironment,
which promote cancer development. FadA stimulates tumor
cell proliferation (Témoin et al., 2012), and Fap2 can bind to
immune cells causing immunosuppression (Sun et al., 2019).
Besides the direct interactions with tumor and immune cells,
toxins produced by microbes can not only damage the tissues,
but also contribute to colon carcinogenesis. For example, toxins
secreted by C. difficile can cause serious intestinal damage (Di
Bella et al., 2016). Cyanotoxins produced by Cyanobacteria can
affect multiple human organs, and play a role in colon cancer
formation (Kubickova et al., 2019). And intestinal
inflammation can be mediated by enterotoxigenic
Bacteroides fragilis (ETBF) (Sears et al., 2014). Thus, the
study of the microbiome-derived metabolome would be
valuable.

5 CONCLUSION

In conclusion, gut microbes live in a constantly changing
environment. The composition of microbial communities
varies across different cohorts and populations. Taxonomically
and functionally related microbes tend to co-exist. In CRC,
microbiome shifts are dominated by the over-representation of
a small number of oral-originated pathogens as well as the
depletion of wide-ranging commensal intestinal bacteria. Two
microbiome-based CRC subtypes have been identified, with
significant differences in microbial compositions and
abundance. Gut microbiomes contribute to CRC pathogenesis,
and account for partial CRC heterogeneity.
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Supplementary Figure 1 | Microbial alpha diversity at different taxonomy levels in
tumor and normal groups. Shannon’s diversity index (in y-axis) was used to measure
alpha diversity at the phylum level (A–F), the genus level (G–L), and the species level
(M–R). CRC patient cohorts include Kostic (a, g, and m), Hale (B, H, N), Gao (C, I,
O), Zeller (D, G, P), Burns (E, K, Q), and Purcell (F, L, R). p-values were not included
in the boxplot as none of them were significant (Pairwise Wilcoxon rank sum tests
with BH adjusted p-value < 0.05).

Supplementary Figure 2 |Microbial beta diversity at different taxonomy levels
in tumor and normal groups. The PCoA based on Bray-Curtis dissimilarity was
used to estimate the beta diversity of microbial communities at the phylum
level (A–F), the genus level (G–L), and the species level (M–R). CRC patient
cohorts include Kostic (a, g, and m), Hale (B, H, N), Gao (C, I, O), Zeller (D, G,
P), Burns (E, K, Q), and Purcell (F, L, R). Each point represents a sample.

Tumor samples were in red, and normal samples in green. PERMANOVA was
used to test for differences between tumor and normal groups. p-values of
0.05 or lower were considered to be statistically significant, and marked
with star.

Supplementary Figure 3 | Differential microbial interaction networks in the Hale
cohort. A directed graph displaying differential microbial species between tumor and
normal groups (hub microbes) in the Hale cohort (shown in rectangles; green:
depleted in tumor, red: enriched in tumor). Microbes predicted to interacting with the
hub microbes were shown based on their differential level between tumor and
normal groups (shown in circles; blue: depleted in tumor, orange: enriched in tumor).
The connections among microbes were depicted in red (induction) or blue
(repression) based on the associations of the hub microbes and their related
microbes.
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