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Although affecting different arterial territories, the related atherosclerotic vascular diseases
coronary artery disease (CAD) and peripheral artery disease (PAD) share similar risk factors
and have shared pathobiology. To identify novel pleiotropic loci associated with
atherosclerosis, we performed a joint analysis of their shared genetic architecture,
along with that of common risk factors. Using summary statistics from genome-wide
association studies of nine known atherosclerotic (CAD, PAD) and atherosclerosis risk
factors (body mass index, smoking initiation, type 2 diabetes, low density lipoprotein, high
density lipoprotein, total cholesterol, and triglycerides), we perform 15 separate multi-trait
genetic association scans which resulted in 25 novel pleiotropic loci not yet reported as
genome-wide significant for their respective traits. Colocalization with single-tissue eQTLs
identified candidate causal genes at 14 of the detected signals. Notably, the signal
between PAD and LDL-C at the PCSK6 locus affects PCSK6 splicing in human liver
tissue and induced pluripotent derived hepatocyte-like cells. These results show that joint
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analysis of related atherosclerotic disease traits and their risk factors allowed identification
of unified biology that may offer the opportunity for therapeutic manipulation. The signal at
PCSK6 represent possible shared causal biology where existing inhibitors may be able to
be leveraged for novel therapies.

Keywords: peripheral artery disease, atherosclerosis, multi-trait analyses, GWAS—genome-wide association study,
pleiotropy

INTRODUCTION

Atherosclerotic vascular disease is a leading cause of death
worldwide (Lozano et al., 2012; Kobiyama and Ley, 2018;
Virani et al., 2020) and can affect multiple arterial territories.
Although clear differences in disease pathobiology exist (Lin et al.,
2013), epidemiological analyses have shown both coronary artery
disease (CAD) and peripheral artery disease (PAD) share similar
risk factors and frequently co-occur (Ozkaramanli Gur et al.,
2018; Klarin et al., 2019; Sundaram et al., 2020). These risk factors
include dyslipidemia, obesity, hypertension, diabetes, and
tobacco use (Criqui and Aboyans, 2015). PAD patients with
concomitant CAD are known to experience more extensive
and aggressive disease (Hussein et al., 2011).

The genetics of CAD have been well characterized and a
number of genome-wide association studies (GWAS) have
identified over 200 genetic risk loci with robust connections to
CAD (Khera and Kathiresan, 2017; Van Der Harst and Verweij,
2018; Koyama et al., 2020). For most loci, however, underlying
mechanisms by which these loci influence CAD risk remains
unclear. Although PAD has been less intensively studied, recent
work has identified 21 total risk loci associated with PAD risk
(Matsukura et al., 2015; Klarin et al., 2019). Genetic correlation
studies have demonstrated a high degree of shared genetic
architecture between CAD and PAD (LD-score regression-
based genetic correlation rg � 0.67) (Purcell et al., 2007). This
genetic correlation, based on shared pathobiology, can be
leveraged to identify novel pleiotropic genetic architecture
common to both disease traits (Zhao et al., 2017; Baselmans
et al., 2019).

The development of statistical approaches for multi-trait
GWAS meta-analysis has facilitated joint analyses of traits
with substantial evidence for a common pathophysiological
basis to elucidate shared genetic etiology (Klarin et al., 2019).
Furthermore, correlated causal risk factors can also be included in
these multi-trait GWAS analyses to provide insight on their
shared genetic pathways (Holmes et al., 2015; Zhao et al.,
2017; Riaz et al., 2018; Siewert and Voight, 2018; Larsson
et al., 2020). Our previous work has analyzed CAD pairwise
with secondary traits to understand shared genetic etiology to
successfully identify new risk loci (Zhao et al., 2017; Siewert and
Voight, 2018). Yet, there have been no studies which evaluate
atherosclerosis endpoints jointly with multiple cardiometabolic
causal risk factors for discovery and quantitative interpretation.

In this study, we performed a series of N-weighted
multivariate genome-wide-association meta-analyses
(N-GWAMA) (Baselmans et al., 2019) using different
combinations of nine atherosclerotic or atherosclerosis risk

factor traits, and identified 31 unique pleiotropic loci not
previously associated with any analyzed trait combination. We
subsequently used single-tissue expression quantitative trait loci
(eQTL) colocalization analysis at these loci to identify candidate
causal genes and their tissue site of action. Some of these causal
gene candidates have potential opportunities for drug target
repurposing to treat atherosclerotic vascular disease, including
PCSK6. Ultimately, this study provides a better understanding of
biological pathways underlying atherosclerosis to inform future
therapeutic development.

METHODS

This study was approved by the U.S. Department of Veterans
Affairs Central Institutional Review Board. All participants gave
written informed consent for study participation.

Genetic Association Data
We collected the summary statistics from the largest published
GWAS to maximize our power for novel discovery. PAD
summary statistics were the European ancestry subjects from
the recent VA Million Veteran Program analysis which consisted
of 24,009 PAD cases and 150,983 PAD controls (Klarin et al.,
2019). These data can be accessed from dbGAP (phs001672).
CAD data were taken from CARDIoGRAMplusC4D combined
with the United Kingdom BioBank (UKBB) (Van Der Harst and
Verweij, 2018) and consisted of 122,733 CAD cases and 424,528
CAD controls. Data for body mass index (BMI) (meta-analysis of
GIANT and UKBB; 806,834 individuals; (Yengo et al., 2018)),
type 2 diabetes (T2D) (meta-analysis of consortia; 228,499 cases
and 1,178,783 controls; (Vujkovic et al., 2020)), smoking
initiation (smoking) (UKBB; 462,690 individuals; (Wootton
et al., 2020)), and 4 lipid traits (meta-analysis of MVP and
GLGC data; 723,000 participants; (Klarin et al., 2018)). Access
urls for all data obtained from the public domain are provided in
Supplementary Table S1.

N-GWAMA Multi-Trait GWAS
Using the summary statistics from publicly available single-trait
GWAS (Supplementary Table S1), we performed 15 N-
GWAMA (Baselmans et al., 2019) multi-trait GWAS centered
around PAD, CAD, and the following atherosclerotic risk factor
traits: BMI, smoking, T2D, LDL-C, HDL-C, TC, and TG. Full
details are provided in Supplementary Methods. Briefly, we first
performed a bivariate GWAS for PAD and CAD followed by a
series of trivariate GWAS combining PAD, CAD, and one of
seven correlated traits that represented traditional atherosclerotic
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risk factors. We also performed a series of bivariate GWAS
between PAD and these seven traits individually, given that a
series of bivariate GWAS between CAD and most of these seven
traits has already been performed (Siewert and Voight, 2018).

Each N-GWAMA multi-trait GWAS resulted in a set of
independent loci represented by a sentinel SNP. We defined
an independent locus as the genomic region that includes all
variants within 1 megabase (Mb) of the sentinel SNP and any
other variants that were in linkage diseqilibrium (LD) of r2 > 0.2
with the sentinel SNP using the 1,000 Genomes European
ancestry cohort (1 kG EUR) (Purcell et al., 2007). We then
applied a series of filters to remove loci that were not
plausibly pleiotropic, or did not represent novel associations.
To ensure there was evidence a locus was pleiotropic and that a
single trait was not driving the association, we required that the
sentinel SNP was at least nominally associated (p < 5 × 10−3) with
all the individual traits involved in the multi-trait analysis. We
also required that none of the variants at an independent locus
were previously associated with any of the traits used in the
N-GWAMA multi-trait GWAS by applying two filters. First, we
required each sentinel SNP was not genome-wide significant for
any of the individual traits (p > 5 × 10−8). It was also necessary
that none of the SNPs at the independent locus were previously
reported to be genome-wide significant for any of the individual
traits involved in the multi-trait analysis in the GWAS Catalog
(Buniello et al., 2019) (Figure 1). Finally, we excluded loci in the
HLA region from these experiments due to the difficulty of
interpreting the independent signals of these loci. Code for the
pipeline is available at: https://github.com/Bellomot/Athero_
NGWAMA_Multitrait_GWAS.

Given that we performed 15 multi-trait GWAS for
combinations of related traits, we next implemented a multiple
testing correction procedure to assess significance. Due to the
high correlation between each of the multi-trait GWAS we
performed, a Bonferroni correction (p < 3.3 × 10−9) for each

trait combination test is conservative. Thus, we constructed a null
distribution Z-score sampling strategy to estimate an α �
0.05 p-value threshold given the set of N-GWAMA multi-trait
GWAS that we performed. Under the assumption that the
correlation of the Z-scores across the entire genome that
resulted from the N-GWAMA multi-trait GWAS are a
reasonable estimate of the correlation in the multivariate null
distribution of Z-scores, we can use the correlation matrix of the
Z-scores from the 15 multi-trait GWAS to model the 15-
dimentional multivariate standard normal distribution that is
the theoretical null distribution of these results.

To get this estimate of the appropriate α � 0.05 p-value
threshold, we first drew 10,000 sets of 1 million samples from
a 15-dimentional multivariate normal distribution centered at the
origin, and used the correlation between the Z-scores of all the
SNPs that were tested across all 15 N-GWAMA multi-trait
GWAS as the correlation matrix (Supplementary Table S2).
We kept the most extreme Z-score from each of the 10,000 sets
and then identified the 95th percentile of the most extreme
Z-scores as our α � 0.05 threshold. We defined experiment-
wide significance as the 95th percentile Z-score of 5.87, which
corresponds to a p-value of 4.3 × 10−9.

Trait-Trait Colocalization
For each multi-trait GWAS, we assessed the evidence of a shared
causal variant at each significant locus by performing
colocalization analysis between the trait signals using COLOC
for bivariate GWAS and MOLOC for trivariate GWAS
(Giambartolomei et al., 2014; Giambartolomei et al., 2018)
(Supplementary Table S3). For this analysis, we applied a 500
kilobases (Kb) window (+/− 250 Kb) around the sentinel SNP. A
conditional probability of colocalization is defined as the
posterior probability of colocalization conditioned on the
presence of a signal for each trait. For example, when using
COLOC, this would be represented as the posterior probability of

FIGURE 1 | Flowchart of multi-trait analysis and candidate gene results. 9 traits were analyzed in 15 different bivariate and trivariate scans that best represented
atherosclerosis. The summary statistics from all scans were filtered by single trait p-values and loci within 500 kb or in LD (EUR r2 > 0.21 kG EUR) with the known trait
being tested according to the GWAS Catalog, resulting in 150 unique loci. Trait-to-trait colocalization with a threshold of a conditional posterior probability of
colocalization >0.8 was performed to ensure evidence of a shared causal SNP between each trait. The resulting 31 unique loci were run through single tissue eQTL
analysis using GTEx v8 to identify candidate causal genes and tissues for each locus. 34 unique genes were identified among 14 loci.
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hypothesis four (PP4) over the sum of the posterior probabilities
of hypothesis three (PP3) and PP4 (PP4/(PP3 + PP4))
(Giambartolomei et al., 2014). A probability of ≥0.8 was
considered of interest. Loci that had a conditional probability
of colocalization >0.5 and <0.8 were visually inspected using
LocusZoom plots (Supplementary Table S4). If the LD structure
suggested additional associations unlinked to the sentinel SNP,
approximate conditional analysis was performed (see details on
Approximate Conditional Analysis below).

Single-Tissue Gene Expression
Colocalization
We performed single-tissue colocalization analysis to prioritize
candidate causal genes implicated in each N-GWAMA multi-
trait GWAS using RNA-seq data obtained from the Genotype-
Tissue Expression (GTEx) project (Giambartolomei et al.,
2014). We identified the list of genes and tissues for which
each N-GWAMA sentinel SNP was a significant single-tissue
eQTL in any GTEx v8 tissue as reported in the
“.signif_variant_gene_pairs.txt.gz” files available from the
GTEx Portal (Supplementary Table S5). We then
performed colocalization between either CAD or PAD, as
determined by which trait had the most significant sentinel
SNP at each locus, and each single-tissue eQTL signal
(Giambartolomei et al., 2014). We selected the window of
colocalization to be 500 Kb spanning the sentinel SNP. Similar
to trait-trait colocalization analysis, our threshold to classify
the traits as colocalized was a conditional probability of
colocalization (PP4/(PP3 + PP4)) ≥ 0.8. We visually
inspected LocusZoom plots for loci where colocalization
analysis resulted in a conditional probability of
colocalization <0.8 but >0.5 and performed approximate
conditional analysis when the LD structure suggested
possible allelic heterogeneity (see details on Approximate
Conditional Analysis below).

Approximate Conditional Analysis
For each locus that showed evidence of multiple independent
signals, we performed approximate conditional analysis on
variants that appeared to be associated with the trait of
interest independently of the sentinel SNP (Supplementary
Table S6). This analysis was necessary given that the presence
of multiple associated variants in a region violates the
assumptions of COLOC (Giambartolomei et al., 2014).
Potential nearby association signals were identified using
LocusZoom plots and the LDlink LDassoc tool between
sentinel and putative distinctive signal variant quantified using
LDlink (Pruim et al., 2010; Machiela and Chanock, 2018). We
performed approximate conditional analysis using GCTA-COJO
with 1,000 Genome Project data (European samples, n � 503) as a
reference panel (Yang et al., 2011; 1000 Genomes Project
Consortium et al., 2012). We conditioned the sentinel SNP on
the most associated variant for each potential confounding signal
identified at the locus. We then repeated the colocalization
experiment on the locus using the conditional variant p-values.
A full list of traits, the sentinel SNPs, and the conditioned variants

for each conditional analysis are provided in the supplement
(Supplementary Table S6).

Splicing Quantitative Trait Locus
Colocalization
We performed a colocalization analysis between the PAD signal
at the PCSK6 locus and the GTEx v8 liver tissue splicing

FIGURE 2 | PCSK6 locus with a sentinel SNP of rs1531817. Pleiotropic
signal between PAD and LDL-C with an sQTL for PCSK6 in liver tissue. This
locus also colocalized with hepatocyte-like cells (HLCs) in vitro.
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TABLE 1 | Atherosclerosis trait N-GWAMA analysis and results. Trait 3 p value will have a value of NA if there were only 2 traits analyzed. Conditional posterior probability
represents the probability of the trait-to-trait colocalization analysis (e.g., PP4/(PP3 + PP4)).

Trait 1,
Trait 2,
Trait 3

Locus
name

Sentinel
SNP

Chr Position
GRCh37

Effect Other
allele

Direction
of effect
for each

trait

Effect
allele

frequency

Multivariate
p

value

Trait
1 p

value

Trait
2 p

value

Trait
3 p

value

PAD, CAD,
T2D

SATB1 rs9845140 3 18728878 C A −/−/− 0.27 2.06E-11 2.59E-
05

8.18E-
06

2.09E-
05

PAD, CAD,
HDL

LRCH1 rs9526214 13 47237213 T C −/−/− 0.24 3.38E-11 6.17E-
06

7.06E-
05

8.31E-
04

PAD, CAD CTGE1/
CTGE2

rs948386 18 19998810 G C −/− 0.42 4.10E-11 2.20E-
05

1.49E-
07

NA

PAD, LDL PCSK6 rs1531817 15 101906737 C A +/+ 0.68 3.15E-10 4.72E-
04

6.48E-
08

NA

PAD, CAD,
TG

SAMD8 rs9299525 10 76878025 G A −/−/− 0.58 5.73E-10 2.35E-
05

2.15E-
05

5.30E-
04

PAD, CAD NFAT5 rs1364063 16 69588572 T C +/+ 0.59 6.63E-10 6.27E-
08

2.17E-
05

NA

PAD, CAD,
T2D

SPP2C rs55660209 17 43932173 T C −/−/− 0.79 6.68E-10 7.41E-
04

5.18E-
04

7.41E-
06

PAD, CAD,
BMI

PNPLA3 rs2076211a 22 44329078 C T +/+/+ 0.84 7.56E-10 2.47E-
03

4.55E-
04

3.13E-
06

PAD, CAD,
SMK

HMBS rs1006195 11 118958869 G T −/−/− 0.60 1.92E-09 2.97E-
04

1.03E-
06

3.90E-
03

PAD, CAD SATB1 rs9826966 3 18737796 A G −/− 0.27 2.14E-09 2.53E-
05

4.01E-
06

NA

PAD, TG ATAD5 rs7342938 17 29189830 A G +/+ 0.88 2.45E-09 1.86E-
04

2.47E-
07

NA

PAD, T2D ARL17 rs2458203 17 44336651 T C −/− 0.67 3.11E-09 3.51E-
03

8.36E-
08

NA

PAD, TG NUP85 rs2291031 17 73228173 C T +/+ 0.82 3.55E-09 2.50E-
03

7.45E-
08

NA

PAD, T2D ZN536 rs73022871 19 30990705 C G +/+ 0.85 4.70E-09 2.48E-
03

1.29E-
07

NA

PAD, LDL BPTF rs12602912 17 65870073 C T −/− 0.79 5.24E-09 1.20E-
06

2.42E-
05

NA

PAD, BMI OPN5 rs9381618 6 47780081 T C −/− 0.72 6.35E-09 1.24E-
05

9.57E-
07

NA

PAD, TG OR4CD rs10839321 11 49670562 T C −/− 0.91 6.51E-09 3.86E-
03

1.08E-
07

NA

PAD, CAD,
SMK

ZN268 rs61960706 12 133777822 G A −/−/− 0.74 7.18E-09 2.56E-
03

3.27E-
05

6.10E-
04

PAD, CAD VDAC2 rs7088974 10 76891096 T C −/− 0.57 7.73E-09 1.26E-
05

2.08E-
05

NA

PAD, TG ATG7 rs2606736 3 11400249 C T −/− 0.38 8.21E-09 2.59E-
03

1.73E-
07

NA

PAD, CAD CBPC2 rs11602961 11 47727748 C T −/− 0.94 8.83E-09 5.81E-
04

2.07E-
06

NA

PAD, T2D L2HDH rs72683923 14 50735947 T C +/+ 0.98 9.75E-09 7.24E-
05

1.24E-
06

NA

PAD, T2D MPPD2 rs1765131 11 30404538 G C +/+ 0.65 1.05E-08 1.45E-
04

1.43E-
06

NA

PAD, TC S4A8 rs9795910a 12 51795623 A G +/+ 0.62 1.83E-08 1.81E-
03

1.04E-
06

NA

PAD, TC SORCS3 rs11599236 10 106454672 T C +/+ 0.59 2.38E-08 3.66E-
05

1.24E-
05

NA

PAD, BMI LTOR3 rs185238112 4 100801033 C T −/− 0.94 2.49E-08 1.59E-
03

7.91E-
07

NA

PAD, SMK KPCD1 rs10149845 14 30177079 C T −/− 0.59 3.00E-08 3.92E-
05

2.10E-
05

NA

(Continued on following page)
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quantitative trait locus (sQTL) signal with the intron ID:
101365044:101366196:clu_14775. We also identified this intron
signal in the Phenotyping Lipid traits in iPS derived hepatocytes
Study (PhLiPS) hepatocyte-like cell (HLC) sQTL data by lifting
over the start and stop of this intron to hg19 (101905249:
101906401) (Gawronski et al., 2019). We then performed
colocalization analysis between the HLC sQTL signal and the
PAD signal as well as the HLC sQTL signal and the GTEx v8 liver
tissue sQTL signal (Figure 2).

RESULTS

Multi-Trait GWAS Analysis Results
We first calculated the genetic correlation between PAD and CAD
and the seven atherosclerosis risk factors (BMI, smoking, T2D,
LDL-C, HDL-C, TC, and TG) using the summary statistics files for
these GWAS using LD score regression (Supplementary Figure
S1; Supplementary Table S7). We then performed 15 N-
GWAMA scans centered around PAD and CAD to detect novel
loci not previously reported as genome-wide significant for any of
their respective traits (Supplementary Table S8). A total of 150
sentinel SNPs were multivariate genome-wide significant with all
single trait p-values between <5 × 10−3 and >5 × 10−8

(Supplementary Table S3). Of these sentinel SNPs, 31 were
nominal genome-wide significant (multi-trait p < 5 × 10−8) and
met our trait-to-trait colocalization criteria, and thirteen were
experiment-wide significant (multi-trait p < 4.3 × 10−9) and met
our trait-to-trait colocalization criteria. If we had used the
Bonferroni correction threshold, only one locus, NUP85 (p �
3.55 × 10−9), would change from experiment-wide significant to
genome-wide significant. The nominal genome-wide significant
sentinel SNPs represent 25 independent loci and 11 experiment-
wide significant independent loci (>1Mb from any of our other
reported loci, Table 1, Supplementary Figures S2–S34). Fourteen
of the nominal genome-wide significant sentinel SNPs and eight
experiment-wide significant sentinel SNPs colocalized with one or
more single-tissue eQTLs (Supplementary Table S5). Finally, five
loci colocalized with eQTLs for genes that have been implicated in
atherosclerosis by previous studies.

We noted that two of our signals that exceeded multi-trait
experiment-wide significance mapped to a previously established
locus for several cardiometabolic traits. That signal was tagged by
rs2076211, and associated with PAD, CAD, and BMI (bivariate p �
7.6 × 10−10) or PAD, CAD, and LDL (bivariate p � 4 × 10−9). This
variant mapped to the nearby gene PNPLA3, a well-established locus
associated for non-alcoholic fatty liver disease (Speliotes et al., 2011),
multiple liver enzymes measures (Yuan et al., 2008), hemotological
traits (Kamatani et al., 2010), sex-hormone binding globulin levels
(Ruth et al., 2020), and T2D (Mahajan et al., 2018). Our sentinel SNP
that tagged both multi-trait signals was in strong LD with rs738409
(r2 � 0.73 1 kG EUR), the previously reported sentinel variant
associated with these additional traits. A previous multi-trait scan
for T2D and LDL reported strong association for both traits at this
locus (Klimentidis et al., 2020). However, association with this locus
and atherosclerotic disease (PAD, CAD) or to BMI to our knowledge
has not been previously reported, but are compelling given the
extensive pleiotropy for atherosclerotic causal risk factors here.

PCSK6 Locus
We detected a signal that exceeded multi-trait experiment-wide
significance with PAD and LDL-C (bivariate p � 3.2 × 10−10) at
the PCSK6 locus. A rare coding variant in this region has been
reported to associate with LDL-C (Klimentidis et al., 2020; Sinnott-
Armstrong et al., 2021), however, the coding variant (NP_002561.1:
p.Thr964Met, rs34631529) and our sentinel SNP (rs1531817) are not
in linkage disequilibrium (r2 � 0.0086 1 kG EUR) based on data from
the 1,000 Genomes Project (Purcell et al., 2007), indicating that we
detected a different signal at this locus. To further differentiate whether
our signal was novel, we performed an additional conditional analysis
on the coding variant rs34631529 in PAD data without any notable
changes in the PCSK6 locus signal (Supplementary Figure S36). We
further note that previousGWAShave found that variants at this locus
are associated with inflammatory markers (Iyengar et al., 2015;
Hackinger et al., 2018; Nath et al., 2019; Folkersen et al., 2020;
Richardson et al., 2020; Ruotsalainen et al., 2021).

To better understand how genetic variation at the PCSK6 locus
influences circulating lipid levels, we investigated the association
of the bivariate sentinel SNP at this locus in the publicly available
GWAS of NMR lipid subfractions: extra-small subfrations (XS),

TABLE 1 | (Continued) Atherosclerosis trait N-GWAMA analysis and results. Trait 3 p value will have a value of NA if there were only 2 traits analyzed. Conditional posterior
probability represents the probability of the trait-to-trait colocalization analysis (e.g., PP4/(PP3 + PP4)).

Trait 1,
Trait 2,
Trait 3

Locus
name

Sentinel
SNP

Chr Position
GRCh37

Effect Other
allele

Direction
of effect
for each

trait

Effect
allele

frequency

Multivariate
p

value

Trait
1 p

value

Trait
2 p

value

Trait
3 p

value

PAD, T2D SATB1 rs4269101 3 18763543 T G −/− 0.28 3.59E-08 1.95E-
05

5.78E-
06

NA

PAD, LDL S4A8 rs9795910a 12 51795623 A G +/+ 0.62 3.86E-08 1.81E-
03

2.72E-
06

NA

PAD, BMI CDKL1 rs11570792 14 50847010 C T +/+ 0.95 4.13E-08 1.39E-
03

1.39E-
06

NA

PAD, CAD,
TG

TMM18 rs2867113 2 651,365 G A +/+/+ 0.82 4.67E-08 1.14E-
03

1.50E-
04

1.15E-
03

aindicates that the sentinel SNP was detected in another trait combination scan.
Loci in gray met the experiment-wide significance threshold (p-value < 4.3 × 10–9). BMI, body mass index; CAD, coronary artery disease; Chr, chromosome; HDL-C, high density
lipoprotein; LDL-C, low density lipoprotein; PAD, peripheral artery disease; SMK, smoking; T2D, type 2 diabetes; TC, total cholesterol; TG, triglycerides.
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extra-large subfractions (XL), HDL, intermediate density lipoprotein
(IDL), LDL, and very-low density lipoprotein (VLDL) (Kettunen
et al., 2016). We found our sentinel SNP (rs1531817) had a nominal
associationwithmediumVLDLparticles (β� 0.03, SE� 0.01, p� 9×
10−3), total lipids in medium VLDL (β � 0.03, SE � 0.01, p � 0.02),
TG in mediumVLDL (β � 0.02, SE � 0.01, p � 0.03), serum TG (β �
0.02, SE� 0.01, p� 0.03), and TG in large VLDL (β � 0.02, SE� 0.01,
p � 0.03).

Our sentinel SNPwas a sQTL for PCSK6 in GTEx v8 liver tissue
(Figure 2). To identify a potential experimental model of this
splicing change, we searched for this sQTL in PhLiPS HLC
summary data (PhLiPS Study) (Pashos et al., 2017). The signal
at PCSK6 colocalized with an sQTL in these data as well (Figure 2),
which suggests that derived hepatocyte-like cells could be a good
model for further studied of the effect of this locus on LDL-C and
PAD risk.

SORCS3 Locus
We detected a nominal genome-wide significant signal with PAD
and TC (bivariate p � 2.4 × 10−8) at the SORCS3 locus rs11599236
(Table 1). This locus was previously observed to be genome-wide
significant in GWAS studies of mood disorders (Howard et al.,
2018; Ward et al., 2020) (Supplementary Table S4). This signal
colocalized with SORCS3 mRNA expression in pituitary tissue
(Supplementary Figure S34). The opposite direction of effect
was noted for both traits and the gene-tissue pair: decreased
SORCS3 associated with increased PAD and TC (β � 0.31, SE �
0.05, p � 5.5 × 10−8).

Other Candidate Genes Indicated With
Known Atherosclerotic Biology
We detected a trivariate GWAS signal with PAD, CAD, and
smoking (trivariate p � 1.9 × 10−9) at the HMBS locus
rs1006195 (Table 1). This variant was genome-wide significant
in previous GWAS studies for several cardiometabolic traits
including Apolipoprotein A1 levels, waist-hip ratio, BMI, fat
mass percentage, HDL-C, and T2D (Turcot et al., 2018; Van
Der Harst and Verweij, 2018; Pulit et al., 2019; Richardson
et al., 2020; Zhu et al., 2020). This pleiotropic signal colocalized
with HMBS and VPS11 mRNA expression in several tissues
(Supplementary Figure S14; Supplementary Table S5). HMBS
(β � 0.28, SE � 0.03, p � 4.1 × 10−23) demonstrated the same
direction of effect with PAD, CAD, and smoking, indicating that
increased HMBS expression is associated with increased PAD,
CAD, and smoking risk. VPS11 (β � −0.25, SE � 0.03, p � 6.0 ×
10−15) demonstrated the opposite direction of effect in all tissue
except skeletal muscle and the left ventricle of the heart, meaning
increased VPS11 expression in skeletal muscle and left ventricle is
associated with increased PAD, CAD, and smoking risk.

We also detected a nominal genome-wide significant signal
with PAD and CAD (bivariate p � 7.8 × 10−9) at the VDAC2 locus
rs7088974 (Table 1). Variants at this locus have been found to be
associated with BMI in previous GWAS(Pulit et al., 2019)
(Supplementary Table S4). Although variants near this locus
have also been associated with smoking behavior, our results
suggest that the locus we detected is independent of smoking

behavior (Liu et al., 2019) (Supplementary Figure S35). This
signal colocalized with VDAC2 mRNA expression in multiple
vascular tissues relevant to atherosclerosis, including aorta and
tibial artery (Supplementary Table S5). The direction of effect in
all tissue was opposite to the direction of effect for PAD and CAD:
the allele associated with increased VDAC2 expression (EA � C,
EAF � 0.57) is associated with decreased PAD and CAD (β �
−0.14, SE � 0.02, p � 7.7 × 10−9).

Finally, we detected a trivariate signal with PAD, CAD, and
HDL-C (trivariate p � 3.4 × 10−11) at the LRCH1 locus rs9526214
(Table 1). This locus had evidence of allelic heterogeneity when
we reviewed the regional association plots, which led us to
perform approximate conditional analyses on the pleiotropic
signal sentinel SNP rs9316223 and the resulting conditional
probability of colocalization met our criteria (Supplementary
Table S5). This locus has been found to be genome-wide
significant in previous GWAS studies for platelets, systolic
blood pressure, and stroke (Evangelou et al., 2018; Malik et al.,
2018) (Supplementary Table S4). This signal colocalized with
LRCH1mRNA expression in tibial artery, whole blood, and other
tissues (Supplementary Figure S12; Supplementary Table S5).
The opposite direction of effect was noted for all three traits and
the gene tissue pair: the allele associated with increased LRCH1
was also associated with decreased PAD, CAD, and HDL-C (β �
−0.09, SE � 0.02, p � 1.3 × 10−8).

DISCUSSION

To advance our understanding of the genetic etiology of
atherosclerosis, different combinations of nine known
atherosclerotic or atherosclerosis risk factor traits were used
to perform 15 N-GWAMA scans which resulted in 25 unique
novel pleiotropic loci (Figure 1). Colocalization with single-
tissue eQTLs identified 34 candidate causal genes across 14 of
the detected signals. Five of these loci had candidate causal genes
previously associated with atherosclerosis through other studies.
While candidate causal genes remain elusive for the remaining
loci, the patterns of association represent physiology that
appears compelling. For example, our top association at the
SATB1 locus was modestly associated with CAD, PAD, and T2D
in the same direction of effect, implying that a perturbation
informed by the human genetics data might be expected to be
ameliorative for all three traits. Functional work to elucidate
causal variant, genes, and mechanism at these loci thus may
provide new insights into the etiological pathways for this
collection of disease endpoints.

PCSK6 Activity Effects Lipid Levels, Plaque
Formation and Stability
We identified a signal at the PCSK6 locus that has a bivariate
association with PAD and LDL-C and provide strong evidence in
support of PCSK6 as the causal gene at the PCSK6 locus. PCSK6 is
a calcium-dependent serine endoprotease that cleaves proteins to
active and inactive forms depending on the target protein (Kiefer
et al., 1991).
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There is convincing experimental evidence to suggest that
PCSK6 directly influences plaque development and plaque
stability. Smooth muscle cell migration in injured arteries is
facilitated by cytokine induced PCSK6 expression that activates
matrix metalloproteinases (MMP14/MMP2) (Perisic et al., 2013).
This smooth muscle cell mechanism may explain the association
of PCSK6 with carotid intima-media thickness in a candidate
gene study (Rykaczewska et al., 2020). The sentinel SNP
associated with maximum progression of carotid intima-media
thickness was the same as the sentinel SNP identified in our
bivariate scan between LDL-C and PAD. There is also evidence
that PCSK6 activates MMP9, which enhances degredation of the
extra cellular matrix and thus promotes plaque instability (Li
et al., 2020; Testa et al., 2021).

Our data suggest PCSK6 also influences lipid metabolism, a
known upstream cause of atherosclerotic progression. This is in
agreement with the known role of PCSK6 in lipid metabolism,
where it cleaves and inactivates endothelial lipase (EL) and
lipoprotein lipase (LPL) (Jin et al., 2005), which can lead to
hyperlipidemia (Choi and Korstanje, 2013). This finding is
further supported by the recently reported rare coding variant
in PCSK6 associated with decreased LDL-C (Klimentidis et al.,
2020; Sinnott-Armstrong et al., 2021).

It remains to be determined how changes in PCSK6 activity
result in altered lipid metabolism and risk of PAD. It is possible
that changes in PCSK6 activity alter lipid metabolism and
therefore have downstream effects on PAD or altered PCSK6
activity may effect LDL-C and PAD separately through
independent mechanisms. In all likelihood, it is a combination
of LDL-C dependent and independent mechanisms that link
PCSK6 to PAD.

From a drug targeting standpoint, we would expect that
inhibiting PCSK6 reduces LDL-C levels and PAD risk. There
are several non-FDA approved, non-specific PCSK6 inhibitors
that influence lipid metabolism: alpha1-antitrypsin Portland
(alpha1-PDX) (Gauster et al., 2005), profurin (Jin et al., 2007),
Pf-pep (Byun et al., 2010), and dicoumarols (DC), specifically
DC2 (Komiyama et al., 2009).

SORCS3 Influences Energy Metabolism
We identified a novel pleiotropic association at the SORCS3 locus
between PAD and TC. Colocalization experiments support SORCS3
as the causal gene at this locus. SORCS3 is a type I transmembrane
protein that is a member of the Vps10p receptor family (Hermey,
2009). The post-synaptic sorting receptor SORCS3 is highly
expressed in the hippocampus and binds NGF and PDGF-BB to
modulate several signal transduction pathways involved in neuronal
activity (Hermey, 2009; Christiansen et al., 2017). A recent knockout
mouse study has shown that even loss of one Sorcs3 allele decreases
lipid metabolism as a source of energy and increases adiposity
(Subkhangulova et al., 2018). The proposed mechanism for this
occurrence is that loss of SORCS3 expressed in agouti-related peptide
(AGRP) neurons leads to unchecked production of circulating
AGRP (Henry et al., 2015). ARGP is well described to cause
enhanced food intake, decreased locomotor activity, decreased use
of lipids as metabolic fuel, and overall increased adiposity (Maier
et al., 2018; Beutler et al., 2020). One limitation ofGTEx data is a very

small sample size of hypothalamus data, our data show that reduced
expression of SORCS3 in the pituitary gland is related to high levels
of TC and an increased overall risk for PAD, potentially through
increased circulating AGRP diverting energy metabolism away from
lipid sources.

Limitations
We acknowledge there are several limitations to this study. First,
there is sample overlap between several of our single trait
summary statistics files. The N-GWAMA method attempts to
account for this, but if the correction for the overlap was
insufficient this could inflate our false discovery rate. Second,
in using the null Z-score resampling strategy to estimate the
appropriate multiple testing correction, we assume that the
correlation of the Z-scores across the entire genome that
resulted from the N-GWAMA multi-trait GWAS are a
reasonable approximation of the correlation between the
multivariate null distribution of Z-scores. This assumption
could be broken due to highly associated SNPs leading to an
altered correlation matrix compared to the true null distribution
and the Z-scores having an inflated variance from confounders
that may not have been corrected for by LDSC. Finally, we
selected nine atherosclerotic and cardiometabolic traits based
on conventional relationships with atherosclerosis; however,
there are likely multifactorial and multidirectional
relationships within this group of traits. It is possible that
some of the novel loci represent the interaction between traits
instead of the intended representation of atherosclerosis as we
have interpreted it. It is also possible that including other sets of
cardiometabolic risk factors may identify additional novel loci.

CONCLUSION

We have shown that publicly available GWAS data can be leveraged
to perform multi-trait scans with N-GWAMA methods to identify
novel loci that unify atherosclerosis. In this study, 25 nominal
genome-wide significant loci were associated jointly with PAD
and other atherosclerotic traits. These loci may represent novel
genetic etiologies of atherosclerosis. A total of 34 candidate causal
genes were identified across 14 novel pleiotropic loci and among
those, PCSK6 represents possible causal biology with known
inhibitors that has large potential to be a therapeutic target for
atherosclerosis. These results highlight the biological underpinnings
of atherosclerosis and the potential to develop non-invasive medical
treatments for atherosclerosis.
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