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The realization of many protein functions is inseparable from the interaction with ligands; in
particular, the combination of protein and metal ion ligands performs an important
biological function. Currently, it is a challenging work to identify the metal ion ligand-
binding residues accurately by computational approaches. In this study, we proposed an
improved method to predict the binding residues of 10 metal ion ligands (Zn2+, Cu2+, Fe2+,
Fe3+, Co2+, Mn2+, Ca2+, Mg2+, Na+, and K+). Based on the basic feature parameters of
amino acids, and physicochemical and predicted structural information, we added another
two features of amino acid correlation information and binding residue propensity factors.
With the optimized parameters, we used the GBM algorithm to predict metal ion ligand-
binding residues. In the obtained results, the Sn and MCC values were over 10.17% and
0.297, respectively. Besides, the Sn and MCC values of transition metals were higher than
34.46% and 0.564, respectively. In order to test the validity of our model, another method
(Random Forest) was also used in comparison. The better results of this work indicated
that the proposed method would be a valuable tool to predict metal ion ligand-binding
residues.

Keywords: metal ion ligand, binding residues, correlation features, propensity factors, GBM algorithm

1 INTRODUCTION

The realization of protein functions requires interaction with ligands; in particular, metalloproteins
formed by the combination of proteins and metal ion ligands play a vital role in biological functions
(Barondeau and Getzoff, 2004). For example, the binding of Cu2+ ligand can promote in situ
oxidation modification reaction (Cecconi et al., 2002), and the oxygen-promoting compound formed
by the combination of Mn2+ ligands and proteins can be used as a catalyst in the process of
photosynthesis (Reed and Poyner, 2000). In fact, the mechanism of protein–metal ion ligand binding
is that some special protein functions need the precise binding of proteins and ligand-binding
residues, while the abnormal binding would lead to many related diseases. For example, abnormal
binding residues of Cu2+ ligand can lead to the diseases of Wilson and Menkes (Yuan et al., 1995;
Petris et al., 1996). In addition, metal ions have a direct influence on the formation of Alzheimer’s
and Parkinson’s diseases (Barnham and Bush, 2008). Therefore, the study of protein–metal ion
ligand-binding residues is helpful to understand the mechanism of protein functions, the treatment
of diseases, and the design of molecular drugs.
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Many reported literatures showed that the appropriate feature
parameters were the basis of recognizing metal ion ligand-binding
residues (Horst and Samudrala, 2010; Lu et al., 2012; Yang et al.,
2013a; Jiang et al., 2016; Cao et al., 2017; Wang et al., 2020). For
example, in 2010, Horst and Samudrala (2010) extracted amino acids,
local conservatism, and other features of Ca2+ ligand in prediction, and
Matthew’s correlation coefficient (MCC) was up to 0.6. In 2012, Lu
et al. (2012) adopted a method of fragment conversion, and the
prediction accuracy (ACC) of 6 ligands reached 94.6%. In 2016, Jiang
et al. (2016) used the information of increment of diversity, matrix
score, and autocross covariance as prediction parameters, the ACC
values of the Ca2+ ligand exceeded 75.0%, and the MCC value
exceeded 0.50. In 2017, Cao et al. (2017) extracted the component
and site-conserved information of amino acids, physicochemical
features, and structural information, the ACC values were higher
than 74.8%, and the MCC values were higher than 0.5.

In terms of algorithms, manymachine learning algorithms were
used in the recognition of metal ion ligand-binding residues (Hu
et al., 2016a; Hu et al., 2016b; Liu et al., 2019; Wang et al., 2019; Liu
et al., 2020). For example, in 2016, Hu et al. (2016a) used SVM
algorithm and the 9 metal ion ligands; Ionseq obtained good
prediction results. In 2019, Wang et al. (2019) applied the SMO
algorithm to predict 10 metal ion ligand-binding residues and
obtained better prediction results. In 2019, Liu et al. (2019) applied
the K-nearest neighbor classifier, and the ACC values of 6metal ion
ligands were higher than 80.0%. In 2020, Liu et al. (2020) used
Random Forest (RF) algorithm in predicting the 10 kinds of ion
binding residues, and the MCC values were higher than 0.55.

In the prediction works of metal ion ligands, many researchers
found several important feature parameters such as amino acid,
secondary structure, relative solvent accessibility,
hydrophilic–hydrophobic, and polarization charge at the fragment
level. In this study, through the statistical analysis for the correlation of
amino acids, we found that there exists a high probability of the
occurrence of the adjacent, secondary neighbor, and thirdly neighbor of
the binding residues. Therefore, we took the amino acid correlation
information of amino acids into consideration when extracting feature
parameters. In addition, because the binding of metal ion ligands to
specific amino acids residues has a certain tendency, we counted the
difference between non-binding residues and binding residues bound
by different metal ions. Thus, we further took the binding residue
propensity factors as feature parameters. In the datasets of this work,
the serious imbalance of the positive and negative sets would result in a
high false positive in the prediction results. In this study, we chose the
GBM (Gradient Boostling) algorithm, which has a comparative
advantage in the above problem. The algorithm can optimize the
model by continuously reducing the sample errors and improve the
prediction overall accuracy by optimizing the algorithm parameters in
the prediction.

2 MATERIALS AND METHODS

2.1 Dataset
In this paper, 10 kinds of metal ion ligand-binding residues were
studied. In order to ensure the authenticity and reliability of the
experimental data source, the datasets constructed by our group

(Cao et al., 2017) were from the semi-manual Biolip database
(Yang et al., 2013b), which was measured by experiments with
high accuracy. The 10 metal ions in the datasets contain Zn2+,
Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+, Mg2+, Na+, and K+. In the
datasets, the arbitrary protein sequence was longer than 50 amino
acids. In addition, the resolution and sequence identity thresholds
were lower than 3 Å and 30%, respectively.

Since the surrounding residues also have an influence on the
binding of metal ion ligands, we considered the binding residues and
surrounding residues in the datasets. In the work, we used the sliding
window method to intercept fragments from the beginning of the
protein chains. To ensure that each amino acid can appear in the
center of a fragment, we added (L−1)/2 pseudo-amino acids to both
ends of a protein chain, in which the pseudo-amino acid was
represented by X. If the central position of one fragment was a
binding residue, then we defined the fragment as a positive sample;
otherwise, it was a negative one. The datasets are shown in Table 1.
According to the physicochemical properties of ions, we also divided
the 10 metal ion ligands into 3 categories: transition-metal ions (Zn2+,
Cu2+, Fe2+, Fe3+, Co2+, andMn2+), alkaline-earthmetal ions (Ca2+ and
Mg2+), and alkali-metal ions (Na+ and K+).

2.2 Selection and Extraction of Feature
Parameters
2.2.1 Basic Features Parameters
On the basis of the primary sequence of the protein, we selected the
amino acids, and physicochemical and predicted structural
information as basic feature parameters. These parameters have
been widely used in previous works (Hu et al., 2016a; Cao et al.,
2017; Liu et al., 2019; Wang et al., 2019; Liu et al., 2020; Wang et al.,
2020). The physicochemical features contain
hydrophilic–hydrophobic and polarization charge information.
According to the hydrophilic–hydrophobic of amino acids (Pánek
et al., 2005), we divided the 20 amino acids into 6 categories.
Depending on the charged condition of amino acids after the
hydrolysis, we divided the 20 amino acids into 3 categories
(Taylor, 1986). The detailed classification is presented in Figure 1.

By using the ANGLOR software (Wu and Zhang, 2008), we
obtained the predicted structural features including secondary
structure and relative solvent accessibility from the primary
sequence of protein. Here, we divided the secondary structure
into three categories: α-helix, β-sheet, and coil. In addition, we
divided the relative solvent accessibility into two categories:
exposed and buried. If the Boolean values of amino acid were
larger than 0.25, then the amino acids were defined as “exposed"
ones; otherwise, they were defined as “buried” ones.

2.2.2 Amino Acid Correlation Features
We took a detailed statistical analysis for the correlation features
of amino acids. According to the analysis results, we calculated
the correlation information of amino acids; the detailed steps
were as follows:

2.2.2.1 Sequence-Based Correlation Statistical Analysis
Due to protein folding in the 3D structure, one spatial binding site of a
metal ion ligand usually refers to several surrounding binding
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residues. In this way, although the spatial distance of these
surrounding residues is very close, the sequence distance may be
very long. For example, on the BS01 binding site of the protein
(3I11A), the binding residues bound with Co2+ ligands were located
at 86, 88, 90, and 149 positions in the same sequence, respectively.
These binding residues may have long-range correlation (Chen et al.,
2018; Zhang et al., 2020). Then, for every protein chain, we scanned
from the first binding residue and counted the distance between the
two binding residues sequentially. Taking Ca2+ and Co2+ ligands as
examples, the binding residues are shown in Figure 2.

In Figure 2, the correlations of the adjacent, secondary
neighbor and thirdly neighbor between binding residues
accounted for a large proportion. Since the occurrence
probability of d > 6 is not high, we showed the probability of
d < 6 for the 10 metal ions in Table 2.

From Table 2, we found that the probabilities of the adjacent,
secondary neighbor, and thirdly neighbor correlations for the ten

TABLE 1 | The benchmark datasets of ten metal ion ligands.

Metal ion ligand Chains P N Metal ion ligand Chains P N

Zn2+ 1,428 6,408 405,113 Mn2+ 459 2,124 156,625
Cu2+ 117 485 33,947 Ca2+ 1,237 6,789 396,957
Fe2+ 92 382 29,345 Mg2+ 1,461 5,212 480,307
Fe3+ 217 1057 68,829 Na+ 78 489 27,408
Co2+ 194 875 55,050 K+ 53 535 18,777

The second column is the number of protein chains; P is the number of binding residues; N is the number of non-binding residues.

FIGURE 1 | Classification of physicochemical features of amino acids. Note: (A) is 6 categories of the hydrophilic–hydrophobic; (B) is 3 categories of the
polarization charge.

FIGURE 2 | Correlation probability of Ca2+and Co2+ ligand-binding residues. Note: the abscissa d is the correlation of the binding residues (e.g., d � 0 is the
adjacent, d � 1 is the secondary neighbor, d � 2 is the thirdly neighbor). The ordinate p is the probability of correlation between the binding residues.

TABLE 2 | The correlation probability of 10 metal ion ligand-binding residues.

Ligands d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Zn2+ 0.040 0.120 0.184 0.082 0.046 0.022 0.016
Cu2+ 0.087 0.180 0.071 0.087 0.082 0.016 0.011
Fe2+ 0.028 0.190 0.087 0.066 0.024 0.017 0.014
Fe3+ 0.082 0.126 0.105 0.072 0.017 0.018 0.006
Co2+ 0.134 0.144 0.066 0.072 0.032 0.009 0.007
Mn2+ 0.150 0.161 0.058 0.041 0.016 0.005 0.011
Ca2+ 0.247 0.240 0.097 0.032 0.035 0.012 0.008
Mg2+ 0.216 0.165 0.090 0.048 0.016 0.007 0.006
Na+ 0.434 0.139 0.080 0.017 0.005 0.010 0.007
K+ 0.547 0.108 0.035 0.025 0.008 0.010 0.010
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ions were different. For a metal ion ligand, we selected the
correlation information with probability >10% to extract
parameters. In this way, for Co2+, Mn2+, Ca2+, Mg2+, Na+, and
K+, we extracted the adjacent and secondary neighbor correlation
information. For Zn2+ and Fe3+, we extracted the secondary
neighbor and thirdly neighbor correlation information. For
Fe2+ and Cu2+, we extracted the second-neighbor correlation
information.

2.2.2.2 Further Screening of Related Features
The probability of the occurrence of 400 pairs of amino acids in
the positive and negative sets of each ion ligand was counted
separately. We used vector B to represent 20 kinds of amino acids
and then made a 20*20 matrix J for the 400 pairs of amino acids.
The matrix J of the pairs of amino acid was defined as follows:

J � BTB �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
C
D
..
.

W
Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
20×1

(A C D / W Y )1×20

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AA AC AD / AW AY
CA CC CD / CW CY
DA DC DD / DW DY
..
. ..

. ..
.

1 ..
. ..

.

WA WC WD / WW WY
YA YC YD / YW YY

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
20×20

Then, we calculated the D-values of the probability of 400
pairs of amino acids between the negative sets and the positive
sets. For example, the D-value differences of correlation
information of Cu2+ secondary neighbor and Fe3+ thirdly
neighbor are given in Figures 3, 4, respectively.

In Figures 3, 4, the abscissa was the 400 amino acid pairs
from matrix J, the corresponding vector (AA, AC, AD, . . .,
AY, CA, CC, CD, . . ., CY, . . ., YA, YC, YD, . . ., YY). The
ordinate was the D-values between the positive sets and the

negative sets. In Figure 4, If the bars were above the x-axis, it
represents that the occurrence probability of amino acids
pairs of the positive sets was greater. Otherwise, the
probability of the negative sets was greater. In Figure 3,
the abscissa values of Cu2+ secondary neighbor correlation
were 7, 127, 187, and 327; the corresponding AH, HH, LH,
and TH pairs of amino acids had a great difference in
probability between positive and negative sets. They
tended to appear in positive sets; in particular, the HH had
a larger difference in probability. In Figure 4, the abscissa
values of the Fe3+ thirdly neighbor correlation were 67, 126,
147, 187, 327, and 347 corresponding to EH, HG, IH, LH, TH,
and VH. They had great probability differences between the
positive and negative sets, and preferred to appear in positive
sets. Among them, EH, LH, and TH were more obvious. The
probability difference of EK, LK, LL, and RA between the
positive and negative sets was greater, and these pairs
preferred to appear in negative sets.

2.2.2.3 Feature Parameters of Amino Acid Correlation
Due to the fact that the 400 pairs of amino acids appear differently
between positive and negative sets, the ones with little difference
would cause information redundancy of prediction parameters.
Therefore, we sorted the absolute values of the probability
difference in descending order obtained from the top 100
features. Then, we divided them into 10 groups in order.
Within each group, there were 10 features. Finally, we took
the amino acid correlation features as feature parameters.

2.2.3 Binding Residues Propensity Factors
Previous studies on predicting the ligand-binding residues were
usually based on the binding residues and their surrounding
residues. However, the features of the binding residues alone were
not taken into consideration. In fact, the ligand-specific binding
also has a selective preference for different amino acid residues.
Therefore, we counted the amino acid residues that the 10 metal
ion ligands preferred to bind. For example, Zn2+ and Fe2+ are
shown in Figure 5.

FIGURE 3 | The probability difference of the secondary neighbor correlation of Cu2+ positive and negative fragments. Note: the abscissa 1–400 is AA, AC, AD, . . .,
AY, CA, CC, CD, . . ., CY, . . ., YA, YC, YD, . . ., YY. The ordinate is the D-values of the positive sets minus the negative sets.
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In Figure 5, among the 20 amino acids, the four amino acids of
C, D, E, and H were more likely to be the binding residues.
However, for Zn2+ and Fe2+ ligands, the four amino acids were
used differently. In comparison, C and H were more easily bound
by Zn2+ ligands, while H was more easily bound by Fe2+ ligands.
Therefore, we extracted propensity factor of binding residues as
feature parameters. The formula of the propensity factor (Chou
and Fasman, 1974) was as follows:

Fij � pij

pj
(1)

The statistical samples were binding residues and non-binding
residues, pij � nij

Ni
, pj � Nj

Nt
; i is 20 amino acids (i � 1,2, . . . 20); j is

binding residues or non-binding residues (j � 1,2); nij represents
the number of amino acid i in binding residues or non-binding
residues; Ni represents the number of amino acid i in the
statistical samples; Nj represents the number of binding or
non-binding residues; Nt represents the number of residues in
the statistical samples. If Fij is larger than 1, it means that type
amino acid i is more inclined to be amino acid j. Taking Mn2+ as
an example, the values of propensity factor of amino acids D, E,
H, and N were larger than 1, indicating that the 4 amino acids
were more likely to become binding residues (Table 3).

2.2.4 Extraction of Feature Parameters
Besides the propensity factors for feature parameters, we also used
components, matrix scoring, and information entropy to extract
parameters. First, the component information of amino acids,
correlation features, secondary structure, and relative solvent
accessibility were extracted. Then, the position weight matrix was
used to extract the conservative information of the site as a predictive
parameter (Hu et al., 2016a; Liu et al., 2019; Wang et al., 2019; Liu

FIGURE 4 | The probability difference of the thirdly neighbor correlation of Fe3+ positive and negative fragments. Note: the abscissa 1–400 is AA, AC, AD, . . ., AY,
CA, CC, CD, . . ., CY, . . ., YA, YC, YD, . . ., YY. The ordinate is the D-values of the positive sets minus the negative sets.

FIGURE 5 | The probability of 20 amino acids in Zn2+ and Fe2+ bounding residues. Note: The abscissa values represents 20 amino acids, the letters of an alphabet
in ordinate represents the probability. P represents the binding residue, and N represents the non-binding residue.

TABLE 3 | The binding and non-binding residue amino acid propensity factors
of Mn2+.

Fp Fn — Fp Fn

A 0.1691 1.0113 M 0.1871 1.011
C 0.8155 1.0025 N 1.0771 0.999
D 5.0717 0.9448 P 0.0799 1.0125
E 2.5358 0.9792 Q 0.397 1.0082
F 0.3309 1.0091 R 0.4359 1.0076
G 0.2841 1.0097 S 0.4785 1.0071
H 9.1739 0.8892 Y 0.4109 1.008
I 0.1966 1.0109 V 0.1349 1.0117
K 0.5819 1.0057 W 0.2386 1.0103
L 0.0599 1.0127 Y 0.4079 1.008

Fp is the propensity of binding residues; Fn is the propensity of non-binding residues.
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et al., 2020; Wang et al., 2020). In this paper, based on the above
matrix, the 2L-dimensional site conservative information of amino
acids, secondary structure, and relative solvent accessibility were
obtained. The position weight matrix formula was as follows:

mi,j � ln⎛⎝pi,j

p0,j

⎞⎠ (2)

pi,j �
ni,j +




Ni

√
q

Ni + 



Ni

√ (3)

Where i denotes the site, j represents 20 amino acids and pseudo-
amino acid X, Pi,j represents the probability of occurrence of
amino acid sites at the ith position, and P0,j represents the
background probability. ni,j represents the number of amino
acids j at the ith position, Ni represents the number of all
amino acids at the ith position, and q represents the number
of categories q � 21. Two scoring matrices can be obtained by
using positive and negative training sets, and a 2L (L is the
window length)-dimensional feature vector can be obtained for
arbitrary fragment. Similarly, for the secondary structure (q � 4)
and relative solvent accessibility (q � 3), 2L-dimensional site
conservation features can also be obtained.

As the number of amino acids included in the classification of
the hydrophilic–hydrophobic and polarized charges of amino
acids was not uniform, information entropy (Liu et al., 2020;
Wang et al., 2020) was used to extract the

hydrophilic–hydrophobic and polarized charges. The formulas
for information entropy were as follows:

TABLE 4 | A summary of prediction parameters.

Features Extraction of feature parameters and dimensions

Amino acid (1) amino acid: 21-dimensional component information + 2L-dimensional position conservation information
Structure (2) secondary structure: 4-dimensional component information + 2L-dimensional position conservation information
— (3) relative solvent accessibility: 3-dimensional component information + 2L-dimensional position conservation information
Physicochemical (4) hydrophilic–hydrophobic: 1-dimensional entropy value
— (5) charge: 1-dimensional entropy value
Two feature parameters (6) correlation features: 20-dimensional component information (Fe2+ and Cu2+ correlation features are 10-dimensional)
— (7) 2-dimensional binding residue propensity factors

FIGURE 6 | The work flow of identifying the ion ligand binding sites.
Note: (1), (2), (3), . . ., (7) represent the different types of features.

TABLE 5 | Comparison of 5-fold cross-validation results.

Ligands Method L Sn (%) Sp (%) Acc (%) MCC

Zn2+ GBM(1) 11 29.82 99.85 98.76 0.473
GBM(2) 11 38.17 99.90 98.94 0.570
RF 11 39.18 99.77 98.83 0.531
Ionseq 13 43.56 99.57 99.21 0.504

Cu2+ GBM(1) 15 40.82 99.86 99.03 0.570
GBM(2) 15 59.38 99.95 99.38 0.747
RF 15 33.20 99.83 98.89 0.488
Ionseq 15 50.65 99.69 99 0.01 0.587

Fe2+ GBM(1) 13 37.17 99.85 99.04 0.527
GBM(2) 13 55.50 99.92 99.35 0.705
RF 13 21.20 99.88 98.87 0.383
Ionseq 9 54.08 99.51 98.84 0.577

Fe3+ GBM(1) 15 18.45 99.86 98.63 0.349
GBM(2) 15 44.75 99.93 99.10 0.634
RF 15 27.25 99.78 98.69 0.420
Ionseq 11 55.27 99.81 99.21 0.637

Co2+ GBM(1) 11 12.69 99.94 98.57 0.308
GBM(2) 11 43.54 99.95 99.06 0.632
RF 11 12.77 99.81 98.45 0.252
Ionseq — — — — —

Mn2+ GBM(1) 13 9.60 99.93 98.73 0.249
GBM(2) 13 34.46 99.97 99.09 0.564
RF 13 16.62 99.82 98.71 0.299
Ionseq 11 31.07 99.82 99.01 0.455

Ca2+ GBM(1) 13 3.79 99.97 98.36 0.161
GBM(2) 13 10.75 99.97 98.47 0.302
RF 13 6.94 99.75 86.21 0.214
Ionseq 9 22.72 99.04 98.18 0.211

Mg2+ GBM(1) 15 1.80 99.99 98.92 0.108
GBM(2) 15 10.17 99.98 99.02 0.297
RF 15 7.12 99.96 98.96 0.214
Ionseq 15 5.57 99.98 99.49 0.183

Na+ GBM(1) 13 8.38 99.96 98.35 0.254
GBM(2) 13 16.97 99.97 98.52 0.392
RF 13 0.2 100 98.25 0.045
Ionseq 13 77.14 74.04 74.09 0.152

K+ GBM(1) 13 7.28 99.98 97.41 0.253
GBM(2) 13 25.61 99.96 97.90 0.488
RF 13 0.93 100 97.26 0.095
Ionseq 11 8.52 99.88 97.32 0.228

L is the optimal window; GBM(1) is the result of the default setting of the GBM, algorithm
parameters; GBM(2) is the result of optimizing the GBM, algorithm parameters.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7938006

Xu et al. Metal Ion Ligand-Binding Residues Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


H(x) � −Σ
q

pj log2 pj (4)

pj �
(nj + 



N
√
q )(N + 


N

√ ) (5)

Where j � 1, 2, . . . q, q represents the number of categories,
N � ∑q

j�1nj, nj represents the frequency of occurrence of
hydrophilic–hydrophobic or polarized charges in the
classification, and pj represents the probability of occurrence
of a certain category, hydrophilic–hydrophobic (q � 7) and
polarized charge (q � 4). For arbitrary fragment, one-
dimensional hydrophilic–hydrophobic information entropy
and one-dimensional polarization charge information entropy
can be obtained.

2.3 Gradient Boosting Machine Algorithm
As an improved Boosting algorithm, GBM algorithm was
proposed by Friedman (2001). It achieved excellent results in
many data mining competitions and was widely used in many
fields (Feng and Li, 2017; Rawi et al., 2017; Hu et al., 2020).
The advantage of the GBM is that it inherits the advantages of
a single decision tree and discards its shortcomings. It can fit
complex nonlinear relationships with fast calculation speed,
strong robustness, and high accuracy. The deviation of the

model will not have a serious impact on the algorithm. The
GBM improves the model by adding a new classifier to
continuously decrease the overall residual; after the
iteration, the classifier is as follows:

Fm(x) � Fm−1(x) + ρmhm(x) (6)

Where m is the number of iterations, ρm is the weight value (the
distance the loss function drops in its gradient direction), and
hm(x) is the fitting function of the sample residuals y − Fm−1(x)
in the iteration process.

This article used the “gbm” package in R software version
3.6.3. Here, in the algorithm, we mainly optimized the four
adjustable parameters (i.e., n.trees, interaction.depth,
shrinkage, and n.minobsinnode) (Rawi et al., 2017; Hu et al.,
2020).

2.4 The Validation Methods and Evaluation
Metrics
The 5-fold cross-validation was generally used to identify
binding residues (Hu et al., 2016a; Hu et al., 2016b; Liu
et al., 2019; Wang et al., 2019; Liu et al., 2020; Wang et al.,
2020). The following 4 evaluation indicators were used to
evaluate the recognition ability of the prediction model
(Jiao and Du, 2016; Chen et al., 2019): sensitivity (Sn),
specificity (Sp), accuracy (Acc), and Matthew’s correlation
coefficient (MCC). The formulas were defined as follows:

Sn � TP

TP + FN
× 100% (7)

Sp � TN

TN + FP
× 100% (8)

Acc � TP + TN

TP + TN + FP + FN
× 100% (9)

MCC � (TP × TN) − (FP × FN)




































(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (10)

In the above formulas, TP is the number of correctly
predicted binding residues, FN is the number of
incorrectly predicted binding residues, TN is the number
of correctly predicted non-binding residues, and FP is the
number of incorrectly predicted non-binding residues.

TABLE 6 | The results of 5-fold cross-validation.

Ligand Method Sn (%) Sp (%) Acc (%) MCC

Cu2+ (a) 29.28 99.85 98.86 0.461
(b) 31.13 99.85 98.88 0.479
(c) 39.38 99.85 99.00 0.533
(d) 40.82 99.86 99.03 0.570

Na+ (a) 1.84 99.99 98.27 0.116
(b) 7.16 99.96 98.33 0.228
(c) 5.32 99.97 98.32 0.202
(d) 8.38 99.96 98.35 0.254

The prediction parameter of (a) is (1)+(2)+(3)+(4)+(5); the prediction parameter of (b) is
(1)+(2)+(3)+(4)+(5)+(6); the prediction parameter of (c) is (1)+(2)+(3)+(4)+(5)+(7); the
prediction parameter of (d) is (1)+(2)+(3)+(4)+(5)+(6)+(7).

FIGURE 7 | The ROC curve of optimal algorithm parameters for Cu2+and K+ ligands. Note: (A) is Cu2+ ligand; (B) is K+ ligand.
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3 CALCULATION RESULTS AND
DISCUSSION

3.1 The Prediction Framework
The prediction parameters from Sections 2.2.3, 2.2.4 are
summarized and shown in Table 4. The work flow of
identifying the ion ligand binding sites is shown in Figure 6.

3.2 Results and Discussion
In prediction, we used the full parameters of Table 5 and input
the combined features into the GBM algorithm. Then, we
calculated the results of 7 window lengths (i.e., 5, 7, 9, 11, 13,
15, and 17) on a 5-fold cross-validation test. In the process, we
defined the corresponding window lengths as the optimal ones
(L) with higher Sn and MCC values. The predicted results of
GBM(1) with the optimal window are shown in Table 5.

In the results of GBM(1) (Table 5), the predicted results of
transition-metal ion ligands were better. The Sn and MCC values
of Zn2+, Cu2+, and Fe2+ ligands were higher than 29.82% and
0.473, respectively. The Sn and MCC values of Fe3+, Co2+, and
Mn2+ ligands were higher than 9.6% and 0.249, respectively. The
Sn and MCC values of alkali–metal ion ligands were higher than
7.28% and 0.253, respectively.

In order to test the validity of the amino acid correlation
information and binding residue propensity factor, we removed
correlation features or propensity factors from the full feature
sets. Taking Cu2+ and Na+ ligands as examples, the results are
shown in Table 6.

In comparison with (a), for Cu2+ ligand: the Sn and MCC
values of (b) were higher, and Sn and MCC values of (c) increased
by 10.1% and 0.072, respectively. When parameters of correlation
feature and propensity factor were added, the Sn and MCC value
were significantly increased by 11.54% and 0.109, respectively.
For Na+ ligand: the Sn and MCC values of (b) were significantly
improved by 5.32% and 0.112, respectively. The Sn and MCC
values of (c) were increased. When correlation feature and

propensity factor were added, the Sn and MCC values
increased by 6.54% and 0.138, respectively.

On the addition of feature parameters, different metal ion
ligands have different sensitivities. For instance, the Cu2+ ligand
was more sensitive to the propensity factor, while the Na+ ligand
wasmore sensitive to the correlation feature. Above all, the results
of adding two parameters were better than those of adding
one alone.

In order to further improve the prediction accuracy, we
optimized the four parameters (e.g., n.trees, interaction.depth,
shrinkage, and n.minobsinnode) in the GBM algorithm.
According to the reported literature (Rawi et al., 2017; Hu
et al., 2020), the parameter range was set as follows: n.trees in
n{100,150,200,250,300,350,400,450,500}, interaction.depth in d
{3,5,7,9}, shrinkage in r{0.01,0.1}, and n.minobsinnode in m
{10,20,30,40,50}. The AUROC values were used as the
evaluation indicator to obtain the optimal algorithm
parameters by the grid search method. Taking Cu2+ and K+

ligands as examples, the optimal parameters of Cu2+ ligand were
(5,250,0.1,40), and the AUROC value was 0.985. The optimal
parameters of K+ ligand were (9,200,0.1,10), and the AUROC
value was 0.963. The ROC curves corresponding to the optimal
parameters of Cu2+ and K+ ligands are shown in Figure 7.

As can be seen in Figure 6, the AUROC values of Cu2+ and K+

ligands both exceed 0.96. For the convenience of comparison, the
results after optimizing the algorithm parameters were also added
in Table 6.

From the results of GBM(2) in Table 6, it can be seen that the
values of Sn and MCC of transition metal ion ligands were higher
than 34.46% and 0.564, respectively. The values of Sn andMCC in
the results of alkaline Earth metal ion ligands were higher than
10.17% and 0.297, respectively. The values of Sn and MCC in the
results of alkali metal ion ligands were higher than 16.97% and
0.392, respectively. In comparison with the results of GBM(1), the
results of GBM(2) were significantly improved, in which the Sn
and MCC values of the nine ligands (i.e., Cu2+, Fe2+, Fe3+, Co2+,

FIGURE 8 | The comparison of identification results. Note: The first row is the protein sequence, the second row is the experimental results, the third row is the
optimal predicted results, and the fourth row is the predicted results using the basic parameters. “0” is the non-binding residue, “1” is the binding residue. The red ones
indicate TP. The white ones indicate TN. The yellow ones indicate FN. The green ones indicate FP.
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Mn2+, Ca2+, Mg2+, Na+, and K+) increased by more than 6.96%
and 0.141, respectively.

To verify the stability of those parameters in prediction, the
Random Forest (RF) algorithm was also used on the same
parameters. The number of decision trees in the RF was set as
500 (Liaw and Wiener, 2002; Liu et al., 2020). The results of the
RF were added in Table 6. Except for the alkali metal ion ligands,
the Sn and MCC values of the other ion ligands were higher than
6.94% and 0.214. The predicted results of transition metal ion
ligands were better. The Sn and MCC values of Zn2+, Cu2+, and
Fe3+ ligands were higher than 27.25% and 0.420, respectively. The
Sn and MCC values of Fe2+, Co2+, and Mn2+ ligands were higher
than 12.27% and 0.252, respectively. Taken together, with the
same parameters by using RF, we also obtained good predicted
results. Except for Zn2+, the results of GBM(2) were better than
those of RF algorithm. For Cu2+, Fe2+, Co2+, Na+, and K+ ligands,
the Sn and MCC values were at least 26.18% and 0.259 higher in
the GBM algorithm. For Fe3+ and Mn2+ ligands, the Sn and MCC
values were at least 17.5% and 0.214 higher, respectively.

In the field of predicting metal ion ligand-binding residues, Hu
et al. (2016a) proposed several predicted methods and obtained
well-predicted results. At present, the Ionseq is a method with
better predicted results on the unbalanced datasets. Thus, we took
a comparison with the method of Ionseq in Table 6. It can be seen
that the Sn and MCC values of Cu2+, Fe2+, Mn2+, Mg2+, and K+

ligands were better than those of Ionseq. Due to the fact that the
number of binding residues was far less than the number of non-
binding residues, it would lead to a high false positive. In order to
show the improvement, we took a random protein chain (2 ×
11A) bound by Cu2+ ligand as an example. Based on the above
optimal model, we made a prediction for this protein chain. The
predicted results obtained are shown in Figure 8.

By comparing the second and third rows, we obtained that the
prediction results of the optimal model (GBM(2)) were TP � 7, TN
� 509, FP � 6, and FN � 11. By comparing the second and fourth
rows, the prediction results of the prediction model with basic
feature parameters were TP � 4, TN � 514, FP � 6, and FN � 9.
The comparison showed that the prediction results were
significantly improved after adding correlation features and
propensity factors.

5 CONCLUSION

In this paper, based on the primary sequence information, the
amino acid correlation features and binding residue

propensity factors were added as feature parameters for
the prediction of the metal ion ligand-binding residues. In
comparison with previous works, our improved results
proved that the features of amino acid correlation
information and propensity factor information were
beneficial to the identification of the metal ion ligand-
binding residues. With the optimized parameters, the
results of GBM were better than those of RF on the same
parameters. Therefore, we believe that our proposed method
was a valuable tool to identify metal ion ligand-binding
residues.
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