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Phages have seriously affected the biochemical systems of the world, and not only are
phages related to our health, but medical treatments for many cancers and skin infections
are related to phages; therefore, this paper sought to identify phage proteins. In this paper,
a Pseudo-188D model was established. The digital features of the phage were extracted
by PseudoKNC, an appropriate vector was selected by the AdaBoost tool, and features
were extracted by 188D. Then, the extracted digital features were combined together, and
finally, the viral proteins of the phage were predicted by a stochastic gradient descent
algorithm. Our model effect reached 93.4853%. To verify the stability of our model, we
randomly selected 80% of the downloaded data to train the model and used the remaining
20% of the data to verify the robustness of our model.

Keywords: model pseudo-188D, phage, stochastic gradient descent, dimensional disaster, digital characteristics

INTRODUCTION

The term bacteriophage is actually a generic name for viruses or microorganisms. Phage virus
proteins can be either viruses that invade bacteria or genetic material. According to the literature,
phages are the most diverse entities in the ocean and affect biochemical systems around the world
(Jahn et al., 2019; Cheng et al., 2020). Phages also affect the development of anticancer drugs because
phage fusion proteins can promote the amplification and manufacturing of combinatorial chemistry
products and nanotechnology to be applied in clinical trials for cancer treatment (Petrenko and
Jayanna, 2016; Cheng et al., 2018; Yu et al., 2021a; Yu et al., 2021b). Phages may also cause acute or
chronic skin infections and, in severe cases, may lead to death in patients with multidrug resistance
(Al-Wrafy et al., 2019). Phages may play a part in the spread of antibiotic resistance, and thorough
investigation must determine whether they contain antibiotic-resistance genes (Lekunberri et al.,
2017). Individual glycoside hydrolases have been identified in the phage virion, which may facilitate
phage annotation during infection (Yuan and Gao, 2016). However, experimental methods for the
identification of phage viral proteins are time-consuming, and the cost is very high. Additionally, the
identification of phage viral proteins presents challenges due to the diversity of phages and their
abundant physical functions, and databases for phage annotation are rare (Seguritan et al., 2012;
Bhakta and Tsukahara, 2020; Cheng et al., 2021). This also increases our difficulties with phage
identification, so novel methods are needed to overcome these shortcomings. Therefore, we must
develop accurate and affordable methods to predict phage viruses. Meeting these requirements based
on the sequence calculation method can overcome these difficulties (Zeng et al., 2017; Hong et al.,
2019; Zou et al., 2019; Cai et al., 2020a; Cai et al., 2020b; Fu et al., 2020; Hasan et al., 2020; Hu et al.,
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2020; Li et al., 2020a; Meng et al., 2020; Naseer et al., 2020; Zhang
et al., 2020a; Hu et al., 2021a; Hu et al., 2021b;Wang et al., 2021a),
and using bioinformatics methods to identify phage proteins,
such as analysing protein and amino acid composition (Wu et al.,
2019; Xu et al., 2021a), can facilitate the extraction of features,
combined with artificial neural networks (Chen et al., 2020) and
the use of random forest (Ao et al., 2020; Chen et al., 2020; Zhang
et al., 2020b; Ahmed et al., 2021) integrated indicators to identify
protein phages (Zhang et al., 2015; Ba Lachandran et al., 2018;
Wu and Yu, 2021). For the development of phage virus protein
identification, we need not only an affordable identification
method but also the accuracy to judge whether the method
can be used.

In this paper, we established a model of Pseudo-188D. The
process of establishing this model involved first selecting suitable
phage virus protein data and downloading the data fromUniProt,
which constituted our benchmark dataset, as our database for
phage protein identification. Second, we used the pseudoKNC
method to extract the digital characteristics of phages. In this
process, we selected the appropriate value of ktuple (k) after
tuning. Then, to reduce the impact of the dimensional disaster on
the experimental results, the AdaBoost tool was used to select the
appropriate vector. After selecting the appropriate feature vector,
SVMprot-188D (188D) was used to extract the feature vector of
the phage protein. After extracting the 188D feature, the features
extracted by the two tools were combined. Finally, the random
gradient descent (SGD) algorithm was used to predict phage
proteins. To establish a model with stability and good robustness,
we randomly selected 80% of the data as a test set to train the
model and the remaining 20% of the data as a validation set to
prove the stability of our model. At the same time, our model not
only shows good stability and robustness but also very high
accuracy. Readers can refer to Figure 1 for our model-
building process, which clearly expresses our ideas.

MATERIALS AND METHODS

Data
To better study phage proteins, we used data mainly from the
literature (Meng et al., 2020). The data cited in this paper have
been used in most studies for the identification of phage viral proteins
because of their reliability and application to compare levels between
different identifiers. The positive samples in the data were phages with
viruses in subcellular positions, whereas the negative samples were
nonphages. The sequences containing unrecognizable characters such
as “Z”, “X”, “U”, and “B”were removed from the selected data. Finally,
to avoid excessive homology of the data, redundant data were
removed to ensure that the consistency between any data was not
more than 40%, so our data included 99 phage virus protein-positive
samples and 208 nonphage-negative samples. We will deposited the
data at the website https://github.com/gxm123456/gxm.

PseudoKNC
PseudoKNC is a kind of software for extracting the digital
features of DNA, RNA, and protein, and the features extracted
by this software are all digital features (Muhammod et al., 2019;
Yang et al., 2020; Ao et al., 2021a; Cao et al., 2021; Jiao et al., 2021;
Sheng et al., 2021). Because the characteristics of protein, DNA,
and RNA sequences are different, the dimensions of the extracted
features are also different (Zuo et al., 2017; Zheng et al., 2019; Ao
et al., 2021b). When vis guaranteed, and when the extracted
feature sequence is a DNA or RNA sequence, the extracted digital
feature dimension is ∑n

i�14i; when the extracted feature sequence
is a protein sequence, the extracted digital feature dimension is∑n

i�120i. For the value of k, how the k value affects the number and
style of features we select will be introduced in detail below:

When the k value is set to 1, the extracted DNA and RNA
sequence feature dimension is 4, the extracted protein sequence
feature dimension is 20, and the extracted feature is X;

FIGURE 1 | Establishing model Pseudo-188D process.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7963272

Gu et al. Pseudo-188D

https://github.com/gxm123456/gxm
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


When the k value is set to 2, the extracted DNA and RNA
sequence feature dimension is 20, the extracted protein sequence
feature dimension is 420, and the extracted feature is X,XX;

When the k value is set to 3, the extracted DNA and RNA
sequence feature dimension is 84, the extracted protein sequence
feature dimension is 8,420, and the extracted feature is X,XX,

Therefore, let us define X here: X stands for DNA, RNA, and
protein sequences.

When the sequence is DNA, X � {A, C, G, T};
When the sequence is RNA, X � {A, C, G, U};
When the sequence is protein, X �

{A, C,D, E, F, G,H, I, K, L,M,N, P,Q, R, S, T, V,W, Y}.
Figure 2 can be used as an example to show the protein

sequences we extracted. There are 8,420 features extracted by us.
The first 20 feature styles are X, which simply form the protein
sequence string arrangement, the middle 400 feature styles are
XX, which form the protein sequence string arrangement in
pairs, and the last 8,000 feature styles are XXX, which form the
protein sequence string arrangement in three strings. Finally, the
frequency of these permutations and combinations in the protein
is counted, and the resulting vector is the feature we extracted.

AdaBoost
Themodel AdaBoost is the SCRIT package used in Python, and to
avoid any possible overfitting states, RNA and protein data are
used as case studies, which can assess the generality of the model
(Zhu et al., 2006; Cheng et al., 2016; Chen et al., 2019; Ramzan
et al., 2021). After data selection is completed, n features with the
best score are selected for training. The AdaBoost model only
runs once and can select suitable features, which is more effective
than other methods. The AdaBoost model incorporates different

instance weight distributions into the impurity measurement and
simultaneously increases the diversity of feature selection, so the
adverse effects of multicollinearity features are reduced in the
feature selection process.

SVMProt-188D
This method can extract a total of 188 feature dimensions, so it is
also called 188D (Li et al., 2020b). The 188D top 20 extraction
dimension vectors were used to calculate the frequency of the
arrangement for 20 kinds of natural amino acids (A, C, D, E, F, G,
H, I, K, L, M, N, P, Q, R, S, T, V,W, Y) (Zheng et al., 2020). Mainly
refer to Formula (1) for calculation:

(V1, V2, ..., V20) � Ni

L
(1)

In Formula (1), Ni represents the number of the ith amino
acid present in the protein sequence, and L represents the total
number of amino acids contained in the sequence.

The next 168 features are associated with eight
physicochemical properties, all represented by descriptors C
(composed of amino acids), T (transition), and D
(distribution). These three properties are made up of numbers,
where C is composed of 3, representing the frequency of amino
acids in a particular class; T is made up of three and represents the
percentage of amino acids in the two different categories; D is
made up of 15, representing the chain length ratios of the first,
quarter, half and last amino acids in a given category, and then
expanding the calculation by another hundred times. In this way,
we extracted 168-dimensional features later:

(C + T + D) × 8 � 168 (2)

FIGURE 2 | Extraction process of vector features by PseudoKNC.
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This process encompasses the entire process for the extraction
of 188 dimension features and the meaning of each feature.

Stochastic Gradient Descent
The stochastic gradient descent algorithm determines an optimal
path, and under the selection of this path, the optimal result is
achieved by choosing the nearest shortcut. The main process of
stochastic gradient descent is as follows:

h(θ) � θ0x0 + θ1x1 + θ2x2 + ... + θnxn � ∑ θixi (3)

The stochastic gradient descent algorithm obtains the optimal
data by taking partial derivatives of the coefficients many
times. The θ value in Formula (3) decreases along the
direction of the fastest gradient descent and finally obtains
the optimal solution:

z

zθj
J(θ) � z

zθj

1
2
(hθ(x) − y)2

� 2 · 1
2
(hθ(x) − y) · z

zθj
(hθ(x) − y)

� (hθ(x) − y) · z

zθj
⎛⎝∑n

i�0
θixi − y⎞⎠ � (hθ(x) − y)xj (4)

In this way, the optimal value can be calculated, and the
formula of the optimal solution can be calculated as follows:

θ � θ − α · zJ(θ)
zθ

(5)

In Formula (5), α is the decreasing coefficient, and the initial
value of θ can be randomly selected.

Model Evaluation Criteria
In this paper, sensitivity (Sn), specificity (Sp), accuracy (ACC), and
Matthew correlation coefficient (MCC) were still used as indicators
to measure the performance of the model (Jiang et al., 2013; Wei
et al., 2017a; Wei et al., 2017b; Wei et al., 2017c; Ding et al., 2019; Jin
et al., 2019; Manavalan et al., 2019; Riaz and Li, 2019; Shen et al.,
2019; Zeng et al., 2019a; Zeng et al., 2019b; Ding et al., 2020; Ding
and JijunGuo, 2020; Hasan et al., 2020; Huang et al., 2020; Tao et al.,
2020; Wan and Tan, 2020; Wang et al., 2020; Zeng et al., 2020; Zhai
et al., 2020; Zhao et al., 2020; Zhang et al., 2020c; An and Yu, 2021;
Ao et al., 2021a;Wang et al., 2021b; Xu et al., 2021b; Zhu et al., 2021).

Sn � Tp
Tp + Fn

(6)

Sp � Tn
Tn + Fp

(7)

ACC � Tp + Tn
Tp + Tn + Fp + Fn

(8)

MCC � Tp × Tn − Fp × Fn






































(Tp + Fn) × (Tn + Fn) × (Tp + Fp) × (Tn + Fp)√
(9)

Here, Tp indicates that the model correctly predicts the value of
the phage virus protein; Fn represents the value of the model

incorrectly predicting phage virus protein as non-phage protein; Fp
represents the number of bacteriophage proteins incorrectly predicted
by the model as non-phage viral proteins; and Tn indicates that the
model correctly predicts the value of non-phage viral proteins.

Summary
Phages, although very small in size, have affected our lives, not only
in the environment but also in terms of our health. If a phage enters
a human, it will take on a bacterial host, live in the human, and even
pass on to the next generati on. This requires us to identify phages
quickly and accurately, so we built a model, Pseudo-188D, to
predict phage proteins. The Pseudo-188D model is roughly the
overall content of Chapter 2. First, the required protein digital
features were extracted by PseudoKNC software. After the lower
dimensional disaster of the model AdaBoost, the features extracted
by model 188D are combined with the gradient descent algorithm
to predict phage virus proteins.

RESULTS

In this chapter, we will prove the stability and robustness of the
Pseudo-188 days model from various perspectives. First, the model
that we established is compared with othermethods, and the stability
of the model is evaluated by Sp, Sn, MCC, and Acc. Second, we used
different classifiers to identify phages. By comparing the values of Sp,
Sn, MCC, and Acc, it was proven that SGD was a highly correct
decision for ourmodel. Finally, we used different cross-validations to
more fully prove the accuracy of our model.

Performance Comparison of Different
Characterization Methods
This section mainly proves that our model is superior to other
methods and models in terms of method performance. We tried
many methods to identify phage proteins, but the results were all
unsatisfactory, such as those obtained with monoTriKGap
(Muhammod et al., 2019), SC-PseaACC (Chou, 2005), and the
188D method for comparison. The performance of our model is
stable compared with other methods. Table 1 shows the high
accuracy and stability of the Pseudo-188 days model numerically,
and the Sp, Sn, MCC, and Acc values are 0.89, 0.96, 0.93, and 0.85,
respectively. These data indicate that the model we established is
indeed suitable for phage protein identification.

Performance Comparison of Different
Classifiers
To confirm the accuracy of the classification method we selected, we
compared features extracted by the PseudoKNCmethod at the same
time, combined with features extracted by the 188Dmodel AdaBoost
with less dimensional disaster, and then verified the accuracy and
stability of SGD by using 10-fold cross-validation. Finally, different
classificationmethods were used to verify the accuracy and stability of
SGD. We chose several classification methods, such as NaiveBayes
(Ahmed et al., 2021), Logistic (Hosmer et al., 2015; Sikandar et al.,
2019), and multilayer Perceptron (Lek and Park, 2018;
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Ahmad et al., 2020).Table 2 fully shows that the classificationmethod
we chose is correct. According to comparison with other methods,
NaiveBayes algorithm is not stable, MCC value is only 0.49, while the
ACC value is 0.94. By comparing ACC value and MCC value, it is
found that the NaiveBayes classification algorithm for our model is
not stable. Logistic algorithm for processing our data, Sn,Sp, ACC,
MCC values are not more than 0.9, accuracy is not as high as SGD
classification method; The stability of multi-layer perceptron
algorithm is relatively stable, but the accuracy is 0.02 lower than
SGD, so we choose SGD as the classification algorithm. Because the
classifier we choose has shown its advantages, not only fast but also
better accuracy than other methods.

Performance Comparison of Different
Cross-Validations
To further prove that our model can show good performance in
the identification of phage protein vector features, we used
Pseudo-188D processed features of the model to evaluate with
different cross-validations. According to Table 3, the results of 5-
fold cross-validation, 6-fold cross-validation and 8-fold cross-
validation were all stable. However, it can be seen from Table 3
that when 5-fold cross-validation is selected, MCC value is 0.8,
0.05 smaller than 10-fold cross-validation, and other values are
also slightly smaller than 10-fold cross-validation.When selecting
the 8-fold cross-validation, the VALUE of MCC was 0.83, 0.02

smaller than the value of 10-fold cross-validation. From various
indicators, the actual effect of 10-fold cross-validation was more
stable and accurate than that of other methods, so 10-fold cross-
validation was selected to evaluate the performance of our model.

Performance Comparison of Different
Ktuple
Previously, we have introduced the influence of ktuple (k) value on
the number and style of feature extraction. In this summary, we
compare the accuracy and stability when k is 1,2 and 3. According
to Table 4, when k value was 1, 20 feature vectors were extracted.
Combined with 188 vectors extracted from 188D, the SGD
classification method was used to predict phage classification, and
the prediction result was 73.6156% through the performance
verification of 10 fold cross validation. Not only the accuracy rate
is not high, but also the stability of the classification effect is poor, the
MCC value is only 0.379. When k value is 2, a total of 420 feature

TABLE 1 | Performance comparison of different methods under 10-fold cross-validation.

Methods Cross validation Classification
method

Sn Sp ACC MCC

monoTriKGap 10-Cross
validation

SGD 0.79 0.96 0.93 0.85
SC-PseAAC 0.66 0.87 0.80 0.54
188D 0.52 0.87 0.76 0.41
Pseudo-
188D

0.89 0.96 0.93 0.85

TABLE 2 | Performance comparison of the same method in different classifiers.

Methods Cross validation Classification
method

Sn Sp ACC MCC

Pseudo-188D 10- Cross validation NaiveBayes 0.59 0.88 0.79 0.49
Logistic 0.69 0.84 0.79 0.79
Multi-layer perceptron 0.88 0.94 0.92 0.83
SGD 0.89 0.96 0.93 0.85

TABLE 3 | Performance comparison of Pseudo-188D models under different cross-validations.

Methods Classification
method

Cross
validation

Sn Sp ACC MCC

Pseudo-
188D

SGD 5 0.86 0.94 0.91 0.80
6 0.87 0.95 0.93 0.84
8 0.88 0.94 0.92 0.83
10 0.89 0.96 0.93 0.85

TABLE 4 | Performance comparison under different Ktuple (k).

Ktuple (k) Dimension Sn Sp ACC MCC

1 208 0.54 0.83 0.74 0.379
2 335 0.65 0.85 0.78 0.503
3 448 0.89 0.96 0.93 0.85
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vectors are selected, 167 vectors are selected through model
AdaBoost, and then combined with 188 feature vectors extracted
from 188D, 335 feature vectors are finally selected. After selecting
features, the SGD classification method was used to predict phage
classification, and the performance verification of 10 fold cross
validation was performed, and the prediction result was
78.5016%. The prediction result obtained was far better than the
final result of our model Pseudo-188D, and theMCC value was only
0.503, so we did not choose k values of 1 and 2.

Summary
In this chapter, we have compared the monoTriKGap, SC-
PSEaAC, and 188D methods and different classification
methods. We have also compared different cross-validations,
and our model Pseudo-188D shows good performance. To
demonstrate Pseudo-188D performance more clearly, we
combined the phage proteins extracted by the PseudoKNC
method with the features extracted by 188D after AdaBoost
treatment of the model. Then, 80% of feature vectors were
randomly selected as the test set, and the training model and
the remaining 20% of feature vectors were selected as the test set to
verify the robustness of our model. The experimental results show
that the model pseudo-188 days still shows good performance, and
the accuracy of the results reaches 95.082%.Moreover, the values of
Sp, Sn, MCC, and Acc also show good stability, reaching 0.94, 0.93,
0.95, and 0.89, respectively. These values fully demonstrate the
stability and accuracy of Pseudo-188D.

Phages affect human lives all the time, and some of them are
latent and inherited in the human body. Phages can also be used if
they are understood. Many years ago, phages successfully
prevented Pseudomonas aeruginosa infection in burn patients.
Therefore, we need to accurately identify phages so that they
can be used for medical research or prevention and control of
life inconveniences caused by phages.When establishing the model
in this paper, we choose PseudoKNC to extract features. When the
k value is 3, a total of 8420-dimensional features are extracted. After
processing the AdaBoost model, 260 features with the best
performance are selected, and combined with features extracted
from 188D, there are 448-dimensional features. The 448-
dimensional vectors were classified by SGD, and the accuracy
was 93.4853% under 10-fold cross verification. To further improve
the rigor of the experiment, we randomly selected 80% of the data
as the test set and the remaining 20% as the validation set. After this
validation, our model pseudo-188 days still showed stability and
accuracy and, most importantly, significantly saved time and cost.

CONCLUSION

This paper mainly introduces the Pseudo-188D model that we
established, which accurately predicts phage proteins andmakes a
small contribution to phage prediction, improving the accuracy of
phage prediction. In addition, our model greatly reduces the time
and expense of predicting phage proteins, which saves
considerable time and money. The greatest innovation in this
paper is the combination of PseudoKNC and 188D, which can
improve the predictive accuracy of phages. This will facilitate
phage research, whether it is using phages for medical problems,
anticancer methods based on phages, or solving environmental
problems around us. That is where the value of phage research is
realized.
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