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Hormone binding protein (HBP) is a soluble carrier protein that interacts selectively with
different types of hormones and has various effects on the body’s life activities. HBPs play
an important role in the growth process of organisms, but their specific role is still unclear.
Therefore, correctly identifying HBPs is the first step towards understanding and studying
their biological function. However, due to their high cost and long experimental period, it is
difficult for traditional biochemical experiments to correctly identify HBPs from an
increasing number of proteins, so the real characterization of HBPs has become a
challenging task for researchers. To measure the effectiveness of HBPs, an accurate
and reliable prediction model for their identification is desirable. In this paper, we construct
the predictionmodel HBP_NB. First, HBPs data were collected from the UniProt database,
and a dataset was established. Then, based on the established high-quality dataset, the
k-mer (K � 3) feature representation method was used to extract features. Second, the
feature selection algorithm was used to reduce the dimensionality of the extracted features
and select the appropriate optimal feature set. Finally, the selected features are input into
Naive Bayes to construct the prediction model, and themodel is evaluated by using 10-fold
cross-validation. The final results were 95.45% accuracy, 94.17% sensitivity and 96.73%
specificity. These results indicate that our model is feasible and effective.
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INTRODUCTION

With the rapid development of society, people have higher and higher requirements for medical and
health care (Lin, 2020). Therefore, it is urgent to learn more about the structure and function of
proteins in order to explain more of the meaning of life and promote the development of biomedicine
and other fields (Wang et al., 2020a; Qu et al., 2021). However, there is a difficulty in the current
research, that is, how to use its sequence information to predict proteins effectively. Although
effective prediction of protein sequences can be made using physical, chemical and biological
experiments, these methods are costly and time consuming.

Hormone binding proteins (HBPs) are carrier proteins that bind specifically to targeted hormones
and were first identified in the plasma of pregnant mice, rabbits and humans (Mortezaeefar et al.,
2019; Niu et al., 2021a). They are involved in hormonal regulation in living organisms. HBPs not only
regulate the amount of hormones reaching the target cell to produce the desired effect (Wang et al.,
2018) but also regulate non-protein-binding or free-circulating active steroid hormones, which are
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thought to be the main gatekeepers of steroid effects. Sexual
HBPs, mainly produced in the liver, combine with sexual steroid
hormones to regulate their bioavailability. The incorrect
expression of HBPs, however, can cause various diseases (Tan
et al., 2019).

Therefore, understanding the function and regulatory
mechanism of HBPs has become very important. Accurately
identifying HBPs is the first step in studying their function.
Traditional HBPs identification methods involve wet
biochemical experiments, such as immunoprecipitation,
chromatography, or cross-linking (Sohm et al., 1998; Zhang
and Marchant, 1999; Einarsdóttir et al., 2014; Cheng et al.,
2016; Fang et al., 2019). These experimental methods are
time-consuming and expensive, and with the discovery of a
large number of protein sequences, it is difficult to determine
HBPs through biochemical experiments. Therefore, it is
necessary to establish an effective recognition model to
identify HBPs (Akbar et al., 2020). The description of the
characteristics of the protein sequence method contains a lot
of information, such as the chemical and physical properties of
amino acids, sequence characteristics, feature extraction
algorithm for classification algorithm which has great impact
on the design and the classification of results. Generally,
prediction techniques based on machine learning consist of
three steps: feature extraction, construction of predictors, and
performance evaluation (Liu, 2017; Wang et al., 2018; Zhang
et al., 2019). In 2018, Tang et al. (Hua et al., 2018). developed a
method based on support vector machines to identify HBPs,
which uses the optimal characteristic coding protein obtained by
using the optimized dipeptide composition. Subsequently, Basith
et al. developed the computational predictor iGHBP, which
combined the dipeptide composition and the value of the
amino acid index to obtain the optimal selection and predict
the construction model (Basith et al., 2018). In this paper, we
constructed a prediction model, HBP_NB, to correctly identify
HBPs. First, the k-mer (Liu et al., 2008; Christopher et al., 2013;
Liu et al., 2015a; Manavalan et al., 2019) method was used to
obtain the frequency characteristics of protein sequences, and
then the F-score value method was used to select the feature
subset. Finally, input the obtained features into Naive Bayes
(Gong and Tian, 2010; He et al., 2010; Gumus et al., 2014; Hu
et al., 2020; Hu et al., 2021a; Hu et al., 2021b) to construct the
prediction model.

MATERIALS AND METHODS

Main Process of the Article
Machine learning frameworks have been used to identify multiple
protein types, such as DNA binding proteins (Zeng et al., 2015;
Qu et al., 2017; Shen and Zou, 2020), RNA binding proteins (Xiao
et al., 2017; Lei et al., 2021), lncRNA interacting proteins (Zhang
et al., 2017; Liu, 2020), and drug targets (Yan et al., 2016; Wang
et al., 2020b; Wang et al., 2020c). Since the recognition of protein
sequences includes two important steps sequence feature
extraction and classifier selection the effective combination of
feature extraction algorithms and classifiers has also been

extensively studied (Zhang et al., 2016). In this paper, we
propose a predictive model for identifying hormone-binding
proteins based on Naïve Bayes.

HBPs prediction analysis was carried out through the
following five steps: 1) HBPs and non-HBPs were searched
and downloaded from UniProt, and the similarity threshold of
protein sequences was set by the CD-HIT program to construct a
high-quality dataset (Zou et al., 2020); 2) feature extraction of
protein sequences was performed using the k-mer feature coding
method; 3) the extracted features were selected to improve the
accuracy of classification; 4) different classification methods were
used to classify and predict the selected feature subset and select
the best classification methods; and 5) Performance evaluation.
Figure 1 shows the structural framework for identifying HBPs in
this paper. This section will introduce dataset establishment,
feature selection methods and classification methods in detail.

Dataset
It is necessary to collect sufficient correlation function data as the
basis of statistical model prediction. Therefore, it is first necessary
to construct an objective dataset to ensure the effectiveness and
robustness of the model. Therefore, we adopt the benchmark
dataset constructed by Tang et al. (Tang et al., 2018). To build this
dataset, follow these steps. The first step was to search and collect
HBPs from UniProt (Bairoch et al., 2009; Schneider, 2012) and to
generate the original HBPs dataset by selecting the hormone
binding keywords in the molecular function items of the gene
body (Ashburner et al., 2000). Consequently, 357 HBPs with
manual annotation and review were selected. In the second step,
to avoid the high similarity of protein sequences affecting the
results, we used the CD-HIT (Li and Godzik, 2006; Fu et al., 2012)
program to set the truncation threshold to 0.6 to remove highly
similar HBPs sequences. In the third step, when the protein
sequence in the dataset contains unknown residues (such as “X,”
“Z,” and “B”), it will affect the model prediction results, so protein
sequences containing unknown residues need to be excluded.
After the above steps, a total of 122 HBPs were obtained, which
were regarded as positive data. As a control, 121 non-HBPs were
randomly selected from UniProt as negative data using a similar
selection strategy. The data of the model can be freely download
from https://github.com/GUOYUXINXIN/-. The benchmark
dataset can be expressed as:

D � Dp ∪ Dn (1)

Among them, subset Dpcontains 122 HBPs, and subset
Dncontains 121 non-HBPs.

Feature Extraction
Protein sequence is a string generated by the permutation and
combination of 20 English letters with different lengths.
Currently, general machine learning algorithms can only deal
with feature vectors, so when machine learning methods are used,
protein sequences need to be transformed into numerical vectors
representing the characteristics of protein sequences. As the first
step in building a biological sequence analysis model, feature
extraction is an important part of correctly predicting protein
sequences, an efficient feature extraction method can obtain a
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high performance classification model. The extracted features
should not only retain the protein sequence information to the
maximum extent, but also have a greater correlation with protein
classification. Given a protein sequence, express it as:

P � R1R2R3/RL (2)

where Pstands for protein sequence, Rirepresents theithamino
acid residue of proteinP(i � 1, 2,/, L).

K-Mer
K-mer (Liu et al., 2015b; Niu et al., 2021b) is the most basic method
of expressing protein sequences as digital vectors (Liu et al., 2016),
in which k-mer frequency coding refers to the occurrence
frequency of all possible nucleotide sequences with k length in a
given sequence (Liu et al., 2015c; Bin et al., 2017). The k-mer
feature extraction algorithm is used to convert the protein sequence
into a vector with a fixed length, which is used as the input vector of
themachine learning classifier. For example, setting k to 2 produces
a 400-dimensional vector (AA,AC,AD,/, AY, YA,YC,/, YY).
To avoid the problem of overfitting, we generally setk< 4 because
whenk> 4 , more dimensions will be generated, resulting in
dimension disaster (Wei et al., 2019). Therefore, we set k to 3
so that the input protein sequence could be converted into a vector
with 8,000 dimensions of fixed length.

Distance-Based Residual
DR (Liu et al., 2014) is a feature expression method based on
protein sequences that uses the distance between residue pairs to

represent the feature vector of the protein. The feature vector is
expressed by calculating the number of occurrences of residual
pairs within a certain distance threshold. The feature vector
dimension obtained by the DR feature extraction method is
20 + 20 × 20 × dMAXdimensions, where in 20 in
20 + 20 × 20 × dMAXrepresents the types of amino acids that
make up the protein; dMAXis a distance threshold that can be
set manually, which represents the maximum distance between
pairs of amino acid residues.

Profile-Based Cross-Covariance
Since machine learning-based technologies such as random
forest (RF) and logistic regression (LR) require the input of
fixed-length vectors as input vectors for training, it is necessary
to convert protein sequences of different lengths into fixed
length vectors as input vector machine learning. Because
each residue in a protein has many physical and chemical
properties, protein sequences can be regarded as time series
with similar properties. Therefore, CC-PSSM (Dong et al., 2009)
is used in this article to convert protein sequences of different
lengths into fixed length vectors. PSSM algorithm is a common
algorithm in the field of bioinformatics, known as the “position-
specific scoring matrix,” which can store the evolutionary
information of protein sequences so that it can be used for
protein prediction. It is a matrix that calculates the percentage of
different residues at each position in a multi sequence
alignment, the matrix size is L × 20 (L for protein sequence
length). Among them, CC is a measure of correlation between

FIGURE 1 | Structure flow chart. The first step is to search and download HBPs and non-HBPs from the protein resource database and then use CD-HIT to
perform protein de-redundancy operations. The threshold is set to 60%. Finally, protein sequences containing unknown residues are removed to generate the final
protein dataset. The second step is to extract features of the protein, and the third step is to use different classification methods to classify the selected features.
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two different properties of amino acid residues and can be
calculated using the following equation:

CC(i1, i2, lag) � ∑
L−lag

j�1
(Si1,j − �Si1)(Si2,j+lag − �Si2)/(L − lag) (3)

wherei1, i2represents amino acids, and �Si1, �Si2 represents the
average score of i1, i2along the protein sequence. LAG is the
maximum lag, lag is an integer value from 1 to LAG, and the total
number of CC variables is 380 × LAG. In this paper, we set the
value ofLAG to 2 to obtain a 720(380 × 2)-dimensional vector.

Feature Selection
When the feature size is large, there may be irrelevant features or
inter-dependence between features, which will easily affect the
accuracy of the prediction results. In particular, the more feature
dimensions, the more likely it is to lead to “dimension disaster,”
model complexity and model generalization ability decline.
Therefore, removing irrelevant or redundant features through
feature selection can improve the accuracy of classification
performance and reduce the running time of the model (Polat
and Güneş, 2009; Quan et al., 2016; Zou et al., 2016; Guohua and
Jincheng, 2018;Wei et al., 2018; Riaz and Li, 2019; He et al., 2020).
In this paper, the F-score value is used to select the optimal
feature (Chen and Lin, 2008; Cheng et al., 2019; Wei et al., 2019),
which is a method to measure the distinguishing ability of
features between the two categories, and the most effective
feature selection can be achieved through this method.
Therefore, we can use (Eq. 4) to describe the contribution of
each feature and perform feature selection:

F(i) � s2b(i)
s2w(i)

(4)

whereF(i) is the score of theith feature of the F-score. Generally,
the larger the value of F(i) is, the stronger the ability to recognize
samples.s2w(i) is the intragroup variance, ands2b(i) is the
intergroup variance. Their calculation formula is as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s2b(i) �
ssb(i)
K − 1

s2w(i) �
ssw(i)
N − K

(5)

wheressb(i)is the sum of squares between groups; ssw(i)is the
sum of squares within the group; Kis the total number of classes;
andNis the total number of samples.

Classifier
In this paper, Naive Bayes, Random forests, logistic regression,
linear discriminant and other classification algorithms are used to
predict HBPs.

Naïve Bayes
The Naive Bayes method is a classification method based on
Bayes’ theorem and the assumption of the independence of
characteristic conditions. It is characterized by combining
prior probability and posterior probability and a very widely

used algorithm. The main idea of the naive Bayes classifier is to
solve the posterior probability P(Y|X) through joint probability
modeling and use Bayes’ theorem. Then, the category
corresponding to the largest posterior probability is used as
the predicted category. Suppose there is a sample dataset
D � {d1, d2,/, dn}, the feature dataset corresponding to the
sample dataset is X � {x1, x2,/, xd}, features are independent
and random, and the class variable is Y � {y1, y2,/ym}.
According to the Naive Bayes algorithm, the posterior
probability of the sample belonging to categoryycan be
expressed as:

P(Y|X) � P(Y)P(X|Y)
P(X) (6)

WhereP(Y)is the prior probability, Naive Bayes is based on the
independence of each feature. In the case of a given category, Eq.
6 can be further expressed as the following equation:

P(X∣∣∣∣Y � y) � ∏
d

i�1
P(xi

∣∣∣∣Y � y) (7)

The posterior probability can be calculated from the above two
Eqs 6, 7:

P(Y|X) �
P(Y)∏d

i�1
P(xi|Y)

P(X) (8)

Since the magnitude of P(X)is fixed, when comparing the
posterior probability, only the molecular part of the above
equation can be compared. Therefore, a naive Bayesian
calculation of sample data belonging to category yi can be
obtained:

P(yi

∣∣∣∣x1, x2,/, xd) �
P(yi) ∏

d

j�1
P(xj

∣∣∣∣yi)

∏d
j�1
P(xj)

(9)

Random Forests
RF is a flexible, easy-to-use machine learning algorithm that
contains multiple decision trees. It is an optimized version of
bagging (Su et al., 2019; Zeng et al., 2020). The idea of bagging is to
vote on the results of multiple weak classifiers to combine them
into a strong classifier, thereby improving the prediction accuracy
of the model. In the training phase, RF uses the bootstrap sampling
method to collect multiple different subsets from the input training
dataset and then uses the different collected subsets to train the
internal decision tree. Then, in the prediction phase, RF votes for
the prediction results of multiple internal decision trees and then
outputs the prediction results. Its advantages are as follows: 1) it
can process high-dimensional data without feature selection; 2)
accuracy can be maintained even if many of the features are
missing; and 3) it has a fast training speed (Jiao et al., 2021).

Logistic Regression
As a classification model, LR can deal with the 0/1 classification
problem because of the nonlinear factor introduced by the
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sigmoid function. The image of the logical function is an S-shaped
curve with values between (0, 1). The farther away from 0 a
function is, the closer to 0 or 1 the value of the function will be.
Therefore, this feature can be used to solve the problem of binary
classification. The function formula is as follows:

g(z) � 1
1 + e−z

(10)

Among them, z � θTx � ∑n
i�0 θixi �θ0x0 + θ1x1 + θ2x2 +/+

θnxn; therefore, the predictive function of logistic regression can
be expressed as:

hθ(x) � g(θTx) � 1

1 + e−θTx
(11)

Linear Discriminant Analysis
LDA is a classical linear learning method, also known as “Fisher”
discriminant analysis in dichotomies. Unlike the perception
machine, the principle of LDA is dimension reduction. In
other words, given a set of training samples, the article tries to
sample projections to a straight line, keeping the points with the
same classification as close as possible and the classification of
different points as far apart as possible, i.e., maximizing and
minimizing the variance between variance. LDA can, therefore,
make use of sample points in the projection line (or projection
location) to determine the type of sample.

Performance Evaluation
In this article, we use the specificity (SP), sensitivity (SN),
accuracy (ACC) (Yang et al., 2021) and Matthews correlation
coefficient (MCC) to evaluate our proposed method (Snow et al.,
2005; Cheng et al., 2018), which can be expressed as:

1. Accuracy: ACC represents the probability that all positive
and negative samples will be correctly predicted.

ACC � TP + TN

TP + TN + FN + FP
(12)

2. Sensitivity: SN represents the probability that the actual
hormone-binding protein is predicted to be a hormone-binding
protein.

SN � TP

TP + FN
(13)

3. Specificity: SP represents the probability that a non-
hormone-binding protein is predicted to be a non-hormone-
binding protein.

SP � TN

TN + FP
(14)

4. MCC: MCC represents the reliability of the algorithm
results.

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (15)

5 Precision: Indicates howmany of the samples predicted to be
positive are true positive samples.

pre � TP

TP + FP
(16)

6. F1-Score: The F1 score is balanced by taking into account
both accuracy and recall, so that both are maximized at the same
time.

F1 − Socre � 2 × pre × recell

pre + recell
(17)

Where, the recall rate is: recell � TP
TP+FN

7. The ROC curve: Receiver operating characteristic curve (the
area under the curve is AUROC), X-axis is false positive rate
(FPR), Y-axis is true positive rate (TPR):

TPR � TP

TP + FN
(18)

FPR � FP

FP + TN
(19)

8. PRC: PRC takes precision rate as Y-axis and recall rate as
X-axis.

Where TPrefers to the model correctly predicting positive
category samples; FPrefers to the model incorrectly predicting
negative category samples as positive category; TN refers to the
model correctly predicting negative category samples; and
FNrefers to the model incorrectly predicting positive category
samples as negative category (Ding et al., 2020a; Ding et al.,
2020b).

In machine learning, a test set is needed to test the model
and describe its generalization ability. However, in practical
applications, due to the limited number of datasets, cross
validation is used as a test method. There are three types of
cross validation: K-fold cross validation, fold cross validation
and independent data verification. In this article, we use
K-fold cross-validation to test the constructed model.
K-fold cross-validation divides the training data into K
parts, of which (K-1) pieces of data are used to train the
model, and the remaining 1 piece of data is used to evaluate
the quality of the model. This process is cycled K times, and
the K evaluation results obtained are combined, such as
averaging or voting. The flow chart of K-fold cross
verification is shown in Figure 2.

RESULTS AND DISCUSSION

In machine learning, the predicted results of the model can be
tested through cross-validation. In this article, we use 10-fold
cross-validation to evaluate the built model.

Performance Comparison of Different
Feature Expression Methods
According to the feature extraction part, protein sequences are
transformed into feature vectors of different sizes through
different feature extraction methods. Therefore, in this study
we tested the performance of three feature extraction methods:
k-mer (K � 2), k-mer (K � 3), DR and CC-PSSM.
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First, use the F-score feature selection method to reduce the
dimensionality of the feature vectors obtained by different feature
extraction methods to 250 dimensions, then use the selected best
feature vector as the input vector of the naive Bayes algorithm and
perform 10-fold cross-validation, and finally draw forecast
results. The prediction results are shown in Table 1 (the
maximum value is in bold). As shown in Table 1, the k-mer
(k � 3) feature extraction algorithm used in this model performs
best in all indicators, among which the values of ACC, MCC, SP
and SN are, respectively, 95.45,91.36, 96.73, and 94.17%. These
results prove the validity of our model.

Comparison With Other Classifiers
To show the superiority of naive Bayes in HBPs recognition, we
can compare the HBPs recognition performance of different
classification algorithms based on the same feature subset (i.e.
250 optimal features). In this paper, we used the constructed
HBP_NB model to perform performance comparison with RF,
LDA, Logistic regression and other models under the condition of
10-fold cross-validation, and the comparison results are shown as
follows. Table 2 shows the specific values of different
classification models under SN, SP, ACC, MCC and other
indicators (the maximum values are in bold). As can be seen
from Table 2, HBP_NB prediction model achieved better results

than other classification algorithms in identifying hormone-
binding proteins, in which ACC, MCC, SN and SP were 95.45,
91.36, 94.17 and 96.73%, respectively. Figures 3, 4 respectively
show the boxplot diagram of different models, ROC and PRC
curves schematic diagram. These results show that our model has
good classification ability. Therefore, we construct the final model
based on naive Bayes. Where, the line in the middle of the box in
the boxplot is the median of the data, representing the average
level of the sample data; The top of the box represents the upper
quartile and the bottom quartile represents the lower quartile,
which means the box contains 50% of the data, so the width of the
box reflects, to some extent, how much the data fluctuates; at the
same time, the lines above and below the box represent the
maximum and minimum values of data. The ROC curve is a
curve that evaluates the effect of binary model on positive

FIGURE 2 | K-fold cross-validation diagram. Divide the data into K parts, where k-1 parts are used as the training dataset, and the remaining part is used as the test
set. The mean value of the results of the k groups is calculated as the performance index of the current k-fold cross-validation evaluation model.

TABLE 1 | Prediction results of different feature extraction algorithms based on the Bayesian classifier.

Feature extraction SN(%) SP(%) ACC(%) MCC(%) AUROC(%) PRC(%)

K-mer(k � 3) 94.17 96.73 95.45 91.36 95.17 96.55
K-mer(k � 2) 65.51 78.46 71.96 44.50 77.89 76.97
DR 83.46 37.12 60.39 25.64 66.35 75.99
CC-PSSM 64.10 80.13 72.09 45.29 78.24 80.27

TABLE 2 | Performance comparison of different classifiers under 10-fold cross
validation

Classifier SN(%) SP(%) ACC(%) MCC(%) AUROC(%) PRC(%)

NB 94.17 96.73 95.45 91.36 95.17 96.55
RF 77.95 87.57 82.71 66.26 89.45 91.19
LDA 72.24 70.13 71.20 43.08 94.53 95.32
LR 96.92 17.50 57.00 14.42 76.35 79.43
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FIGURE 3 | Boxplot diagram of different classification models, this figure shows the distribution of LDA, LR, RF and NB under SN, SP, accuracy, ACC, MCC, F1-
Score, AUROC and AUPRC successively from left to right and from top to bottom. At the same time, it can be seen from the figure that NB can achieve good results
under different indicators.

FIGURE 4 | As can be seen from the ROC curves and PRC curves of different classification models, the ROC curves of LDA, RF, LR and NB are 0.7635, 0.894 and
0.9453, respectively. The dotted line represents the ROC curve of a completely random classifier, and the ROC curve of a good classifier should be as far away from the
dotted line as possible, as close as possible to the upper left corner; The PRC curve values of LDA, RF, LR and NB were 0.7943, 0.9071, 0.9532 and 0.9655,
respectively, the closer the curve was to the upper right corner, the better the model classification ability was. Therefore, we constructed the final model based
on NB.
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category prediction. X-axis is false positive rate (FPR), Y-axis is
true positive rate (TPR), which indicates that the optimal
classifier with the best performance is located in the upper left
corner of the image (coordinate 0,1), and the area under its ROC
curve is AUROC, with an area value between 0,1. PRC takes
presion rate as Y-axis and recall rate as X-axis, and lines are
drawn according to changes in the value of probability threshold.
The ideal model would be at the point (1,1). The model with
excellent performance is as close to this point as possible.

Performance Comparison With the Existing
Optimal Algorithm
This section compares the model constructed in the article with
other existing methods, in which the results of HBPred (Hua
et al., 2018) and iGHBP (Basith et al., 2018) are directly obtained
from the literature. The comparison results are shown in Table 3
(the maximum value is in bold). As seen from Table 3, the
HBP_NB model constructed in this paper has the best
performance in all indicators, among which ACC, SP and SN
have reached maximum values of 95.45, 96.73 and 94.17%,
respectively. The effect is significantly better than that of the
other two methods, which also proves the effectiveness of the
HBP_NB model constructed in this paper.

CONCLUSION

As a carrier protein related to the regulation of hormones in the
circulatory system, HBPs can cause various diseases when they
are abnormally expressed. Therefore, it is very important to
understand their function and regulatory mechanism, and the
correct identification of HBPs is the first step in understanding
their biological process and is necessary to further study their
function. There is growing evidence that it is crucial to develop an
efficient computational model to identify hormone-binding
proteins. In this study, we used a reliable predictive model for
HBP_NB to identify HBPs. First, the model uses the k-mer
feature extraction method to extract the features of HBPs.
Then, to remove redundancy and noise and improve the
accuracy of model prediction, the F-score value is used to sort
the features and select the optimal features. Secondly, the reduced
feature set is input into naive Bayes classifier and the 10-fold cross

validation is used to judge the quality of the prediction model.
Finally, the accuracy, sensitivity and specificity of the HBP_NB
model reached 95.45, 94.17 and 96.73%, respectively, in 10-fold
cross validation. The feasibility and validity of our model are
illustrated.

However, there is room for improvement in our current
approach. Since the data set selected in this experiment is
small, we will collect more data for model training and
independent test set experiments in the future to improve the
model’s robustness and generalization ability. At the same time,
we will further learn more effective feature representation
methods and classification algorithms to gain an in-depth
understanding of machine learning and establish a more stable
model. In addition, we also hope that our work can help scholars
to study hormone binding proteins, to promote research on
hormone-binding protein drugs.
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