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Gastric cancer (GC), which has high morbidity and low survival rate, is one of the most
common malignant tumors in the world. The increasing evidences show that the tumor
microenvironment (TME) is related to the occurrence and progression of tumors and the
prognosis of patients. In this study, we aimed to develop a TME-based prognostic
signature for GC. We first identified the differentially expressed genes (DEGs) related to
the TME using the Wilcoxon rank-sum test in a training set of GC. Univariate Cox
regression analysis was used to identify prognostic-related DEGs. To decrease the
overfitting, we performed the least absolute shrinkage and selection operator (LASSO)
regression to reduce the number of signature genes and obtained three genes (LPPR4,
ADAM12, NOX4). Next, the multivariate Cox regression was performed to construct the
risk score model, and a three-gene prognostic signature was developed. According to the
signature, patients were classified into high-risk and low-risk groups with significantly
different survival. The signature was then applied to three independent validated sets and
obtained the same results. We conducted the time-dependent Receiver Operating
Characteristic (ROC) curve analysis to evaluate our signature. We further evaluated the
differential immune characters between high-risk and low-risk patients to reveal the
potential immune mechanism of the impact on the prognosis of the model. Overall, we
identified a three-gene prognostic signature based on TME to predict the prognosis of
patients with GC and facilitate the development of a precise treatment strategy.

Keywords: gastric cancer, prognostic signature, tumor microenvironment, survival analysis, three-gene prognostic
signature

INTRODUCTION

Gastric carcinoma (GC) is one of the third leading causes of cancer-related deaths in the world,
which has highmorbidity andmortality (Morbidity � 5.7%;Mortality � 8.2%) (Bray et al., 2018). The
death rate of gastric cancer has indeed decreased, but gastric cancer is still one of the major diseases
endangering human life (Siegel et al., 2021). Although many studies have explored the pathogenesis
of the GC, it remains to be further confirmed (KankeuFonkoua and Yee, 2018). A large number of
studies have suggested that TME is related to tumor progression and patient survival outcomes in
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recent years (Quail and Joyce, 2013). More and more evidence
shows that TME has clinic pathological significance in predicting
the effect of treatment (Binnewies et al., 2018; Zeng et al., 2019).

Therefore, it is essential to develop a TME-based model to predict
the prognosis of patients with GC and guide a more effective
treatment strategy.

FIGURE 1 | Flow diagram of the study.
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The TME is a complex tissue that consists of tumors,
mesenchymal stem cells, fibroblasts, endothelial cells,
inflammatory cells, and extracellular matrix. As the main
components of TME, immune infiltrating cells and stromal
cells have attracted more and more attention. The evaluation
of the status of these two types of cells in TME will help to more
accurately evaluate the prognosis of tumor patients. Nowadays,
many bioinformatics tools can be used to evaluate the distribution
of immune cells and stromal cells in TME. Among them, the
Estimation of STromal and Immune cells in MAlignant
(ESTIMATE) is widely applied for the quantitative analysis of
TME (Yoshihara et al., 2013). It can infer the infiltration of
stromal and immune cells using gene expression signatures. This
algorithm has been employed in glioblastoma (Jia et al., 2018), cell
renal cell carcinoma (Xu et al., 2019), and colon cancer (Alonso
et al., 2017) successfully in recent years. However, there is no
detailed analysis of the immune, extracellular matrix, and
estimate scores of the GC.

The study of cancer prognosis plays an important role in
cancer research. With the development of high-throughput
sequencing, several risk-stratification models which can predict
the prognosis of patients with GC have been produced, but few of
them were useful in clinical practice. At present, the prognosis of
the GC patients mainly depends on clinic pathological features,
such as tumor histology, stage, and grade. However, the existing
conventional methods are insufficient to meet the current rapidly
increasing clinical demand. Therefore, we established a risk score
model based on gene expression data and the list of genes related
to the TME for predicting the prognosis of the GC patients.

In this study, we conducted a differential expression analysis of
the gene signatures related to the TME. The Cox regression
analysis and LASSO regression analysis were performed on
further screening gene signatures related to the prognosis of
patients with GC. We then constructed a risk score model and
identified a TME-based three-gene prognostic signature with the
ability to predict the overall survival of patients with GC. The
signature prognostic value was validated in three independent
data sets. Finally, we applied the time-dependent ROC curve
analysis to verify our signature and analysis the immune status
between high-risk and low-risk groups to reveal the potential
immune mechanism of the impact on the prognosis of the model.

MATERIALS AND METHODS

In this study, we explored biomarkers related to the TME of the
GC based on mRNA expression profiles via bioinformatics
approaches. We describe the flow of this study in Figure 1.
This study mainly consists of five parts: (Bray et al., 2018) the
mRNA expression profile of the GC samples and the signature
genes related to the TME were sorted into a gene expression
profile, which was related to the immune microenvironment of
GC; (Siegel et al., 2021) genes that were significantly differentially
expressed between normal samples and disease samples were
identified using the Wilcoxon rank-sum tests and Fold Change;
(KankeuFonkoua and Yee, 2018) the univariate Cox regression
analysis and LASSO regression analysis were used to further

screen prognostic-related signature genes; (Quail and Joyce,
2013) the three identified signature genes were incorporated
into the multivariate Cox regression analysis for constructing
risk score model; (Zeng et al., 2019) the samples were divided into
a high-risk group and a low-risk group based on the risk score
model and then the prognostic ability and robustness of the risk
score model were evaluated.

Datasets
Fragments per Kilobase Million (FPKM) normalized expression
profile data of the patients for Stomach Cancer (STAD) of GDC
TCGA were downloaded from the UCSC Xena database (https://
xena.ucsc.edu/). And then the clinical information of the GC
patients was also downloaded from the database and combined
into a single file for further analysis. A total of 407 samples were
obtained. Three independently validate data sets containing
microarray expression data and related clinical information of
the GC patients, GSE26901, GSE13861, and GSE15459, were
collected from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/). Detailed information and sources of the above datasets
used in this study are listed in Supplementary Table S1. For each
dataset, the average expression value was calculated when the
same gene corresponds to multiple probes. And we performed
z-score standardization on the three independent validation sets.

Identification of Differentially Expressed
Genes Related to GC Tumor
Microenvironment
ESTIMATE is an algorithm to infer the level of immune cell and
stromal cell infiltration in tumor tissues based on transcriptome
data of TME-related genes containing a set of immune and
stromal signature genes (Yoshihara et al., 2013). The algorithm
contains 282 feature genes related to the TME, including 141
immune feature genes and 141 stromal feature genes. Here we
studied the expression profile of TCGA-STAD containing 282
feature genes related to the TME. After removing the genes whose
expression value is 0 in all samples, we obtained an expression
profile containing 280 feature genes related to the TME. We
identified TME-related genes that are significantly differentially
expressed between normal samples and tumor samples using the
Wilcoxon rank-sum test, and controlled the False Discovery Rate
(FDR) in multiple comparisons by the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995). The screening
criteria were |log2(Fold Change)| > 1 and FDR < 0.05.

To explore the main biological functions of differentially
expressed genes related to the TME, we performed Gene
Ontology (GO) enrichment analysis on the differentially
expressed genes using the clusterProfiler package (Yu et al.,
2012). The GO terms with FDR < 0.05 were statistically
significant enrichment analysis results.

Construction of the Risk Score Model and
Evaluation of its Prediction Performance
We performed z-score standardization on gene expression data
for the next steps. The univariate Cox regression analysis was
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performed on 333 samples with both gene expression and
survival data to determine the relationship between
differentially expressed TME genes and the overall survival
(OS), and screened genes with p < 0.05. Then, LASSO
regression analysis was further performed to identify signature
genes by the glmnet package in R software. LASSO regression is a
method commonly applied for fitting selecting variables in high-
dimensional generalized linear models (Friedman et al., 2010). It
obtains a more refined model by constructing a penalty function,
effectively avoiding overfitting. Recently, the LASSO regression
has been expanded to the Cox proportional hazard regression
model for survival analysis (Tibshirani, 1997). With the identified
signature genes from LASSO regression, we finally constructed a
risk score model by using the multivariate Cox regression
analysis. The formula for the risk score is given as:

Riskscore � ∑
k∈S

βkαk (1)

where S is a set of the signature genes obtained from the LASSO
regression; ak is the expression level of signature genes k; βk is
the regression coefficient of the multivariate Cox proportional
hazard regression model estimated on ak and the overall
survival data.

According to the risk score model, the risk score of each
sample is calculated, and the samples were divided into a high-
risk group and a low-risk group based on the median risk score.
Kaplan-Meier (KM) survival analysis and time-dependent
receiver operating characteristic (ROC) curve analysis were
used to evaluate the predictive performance of the risk score
model. The prognostic effects of other clinicopathologic factors
were also evaluated.

Evaluation of the Correlations of Immune
Characters and Risk Score
To reveal the potential immune mechanism of the impact on the
prognosis of the model, we evaluated the correlations of TME-
related characters and risk scores. The infiltration levels of
immune cells were inferred based on the feature genes of cells
with the single-sample gene-set enrichment analysis (ssGSEA)
method, which was implemented by the SMDIC package
developed by our group (https://CRAN.R-project.org/
package�SMDIC) (Jiang et al., 2021). The Wilcoxon rank-sum
test was used to test the differential infiltrated levels of cells
between the high-risk group and low-risk group. Then, the
ESTIMATE algorithm was applied to calculate the immune
score, stromal score, ESTIMATE score, and tumor purity of
the GC patients. We explored the correlation between these
four features and the risk score using the linear fitting method.

Immune checkpoints are a class of genes that suppress
immune effects. They are expressed on immune cells to
regulate the degree of immune activation and prevent
autoimmune effects. The role of immunotherapy is to
overcome the immune suppression caused by the tumor and
its microenvironment so that the immune system can play a
normal role and target cancer cells (Billan et al., 2020). Abnormal
expression and function of immune checkpoint genes can cause

many diseases. For example, overexpression or over-functioning
of immune checkpoint molecules can inhibit immune function,
reduce the body’s immunity, and prone to diseases such as
tumors. Therefore, to further learn the potential immune
mechanism of the impact on the prognosis of the model, we
assessed the differences in the gene expression of the three
immune checkpoints: programmed cell death 1 (PD-1) or
ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen-4
(CTLA-4) between the high-risk group and the low-risk group.

Moreover, Human Leukocyte Antigen (HLA) is a protein
molecule that exists on the surface of antigen-presenting cells
and is responsible for antigen presentation. It is a sign that
different individual immune cells recognize each other,
participates in the immune response, and have very important
biological functions (Dendrou et al., 2018). We also analyzed the
differences in HLA gene expression between the high-risk group
and low-risk group based on gene expression data.

Functional Enrichment Analysis of the
Signature Genes
We then detected the biological function of the signature genes in
the risk score model. For each signature gene, we classified the
samples into two classes according to the median of gene
expression level, and the GSEA method was applied to identify
the pathways affected when the expression level of the signature
gene changes to explore the biological pathways affected by the
gene (Subramanian et al., 2005). The KEGG pathways were used
and were downloaded from the MSigDB database (https://www.
gsea-msigdb.org/gsea/msigdb/) (Subramanian et al., 2005).

RESULTS

Identification of Differential Expression
Genes Related to TME in GC
A number of studies have shown that the occurrence and
development of tumors and the prognosis of patients are
related to the TME. We intend to develop a TME-based gene
prognostic signature for GC. To do this, we collected 282 TME-
related signature genes (141 immune feature genes and 141
stromal feature genes) from ESTIMATE (Yoshihara et al.,
2013), which were annotated to gene expression data of STAD
in TCGA. TheWilcoxon rank-sum test and Fold Change analysis
were used to identify the TME-related differentially expressed
genes between normal samples and tumor samples. With FDR <
0.05 and |log2(Fold Change)| > 1, 23 differentially expressed
genes (20 significantly up-regulated genes and 3 significantly
down-regulated genes) were identified (Figure 2A). As shown in
the heatmap of these 23 differentially expressed genes, they are
classified into two distinct blocks between normal and tumor
samples (Figure 2B).

To insight into the biological function of the differentially
expressed genes, we performed GO enrichment analysis by using
the clusterProfiler package. With FDR<0.05, these differential
expression genes were mainly annotated in nine GO terms, such
as extracellular matrix organization (GO:0030198), extracellular
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structure organization (GO:0043062), and collagen-containing
extracellular matrix (GO:0062023), etc. (Figure 2C). Several
genes, such as EGFL6 (EGF Like Domain Multiple 6), COMP
(Cartilage Oligomeric Matrix Protein), and SULF1 (Sulfatase 1),
have been found to be related to multiple terms (Figure 2D), and
they are all research-proven cancer-related biomarkers. For
example, EGFL6 and COMP are highly associated with colon
cancer (Cao et al., 2018; Nfonsam et al., 2020). SULF1 can
promote drug-induced apoptosis of cancer cells in vitro, and
inhibit tumorigenesis and angiogenesis in vivo (Lai et al., 2008).

Construction and Verification of a
TME-Based Three-Gene Prognostic
Signature
We applied the univariate Cox proportional hazard regression to
the 23 TME related differentially expressed genes, and five
statistically significant genes were identified (p < 0.05)
(Figure 3A). Then, we applied LASSO regression analysis to
the five genes to further identify the minimal feature genes. Three
feature genes, LPPR4 (Lipid Phosphate Phosphatase-Related
Protein Type 4), ADAM12 (ADAM metallopeptidase domain
12), and NOX4 (NADPH Oxidase 4), were obtained to
constructing a prognostic signature (Figure 3B). Finally, we

derived a formula to calculate the risk score of the signature
for every patient from the expression values of the three genes
weighted by the multivariate Cox proportional hazard regression
coefficient (Supplementary Table S2):

riskscore � 0.205 × LPPR4 expression + 0.146

× ADAM12 expression + 0.131

×NOX4 expression (2)

According to the median risk score (0.403), a patient in the
TCGA-STAD data set was classified as high risk if the risk score
was higher than the median risk score and as low risk if was not.
The Kaplan-Meier curve and time-dependent ROC curve were
employed to evaluate the effect of the risk model for the three-
gene prognostic signature in predicting the survival outcome of
patients with GC. The overall survival (OS) difference between
the high-risk group and low-risk group classified by the risk score
model was showed to be significant in the TCGA training set (log-
rank tests, p � 0.00096) (Figure 3C). The area under the ROC
curve (AUC) for predicting 1–5 years survival rate was 0.605,
0.636, 0.602, 0.639, and 0.779 (Figure 3D), which suggests that
the three-gene prognostic signature could predict the patient
survival of GC. To test if our risk score is an independent
prognostic factor, we further performed multivariate Cox

FIGURE 2 | Differentially expressed genes related to the tumor microenvironment. (A) The volcano map of the TME-related differential expressed genes. The
screening criteria were |log2(Fold Change)| > 1 and FDR < 0.05. The red, green, and black points represent genes that were significantly up-regulated, down-regulated,
and insignificant. (B) Heatmap of significantly TME-related differentially expressed genes. (C) Bar graph of GO enrichment analysis of significantly TME-related
differentially expressed genes. (D) The main terms and related genes for GO enrichment analysis. The size of the circle corresponds to the number of genes
annotated to the terms.
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FIGURE 3 | Forest plots, Kaplan-Meier plots, and time-dependent ROC curves of the risk score model. (A) Forest plots of univariate Cox proportional hazards
regression analysis identified five prognostic genes related to the TME. (B) LASSO regression analysis showed the partial likelihood deviation curve of the minimum
number genes corresponding to the covariates used for multivariate Cox analysis. (C) The Kaplan-Meier curves of the high-risk and low-risk group. (D)ROC curves chart
of the risk score model predicting the 1–5 years survival rate. (E) Multivariate Cox regression analysis of risk score and other prognostic factors.
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proportional hazard regression to analyze the prognostic effects
of the risk score and other common clinical factors, including age,
grade, stage, and lymph node count (Figure 3E). The results
showed that the three-gene signature could be used as an
independent prognostic factor to predict the overall survival of
GC patients.

We then used the risk score of the three-gene signature to
classify patients from the three independent GC data sets
(GSE26901, GSE13861, and GSE15459) to validate whether the
three-gene signature had the same or similar prognostic value in

different populations. Consistent with the results in the training
set, the signature could divide the samples of the GEO data sets
into high-risk and low-risk groups, and the overall survival
between the samples in the high-risk and low-risk groups in
the three data sets showed to be a significant difference (log-rank
tests, p-value in GSE26901 < 0.001, p-value in GSE13861 �
0.00063, and p-value in GSE15459 � 0.0011) (Figures 4A–C).
The AUC values in GSE26901 data set for 1–5 years were 0.652,
0.674, 0.681, 0.675, and 0.673 (Figure 4D). Similar results were
obtained in the GSE13861 and GSE15459 data sets (Figures

FIGURE 4 | Kaplan-Meier plots and time-dependent ROC curves of the risk score model in three GEO data sets. Kaplan-Meier survival curve shows the overall
survival of high-risk and low-risk groups in (A) GSE26901 data set, (B) GSE13861 data set and (C) GSE15459 data set. ROC curve plots for predicting the 1–5 years
survival rate in (D) GSE26901 data set and (E) GSE13861 data set and (F) GSE15459 data set.
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4E,F). The above analysis proved that the three-gene signature
has high accuracy and robustness in predicting the overall
survival of patients with GC.

Functional Enrichment Analysis of the Three
Signature Genes
The three genes (LPPR4, ADAM12, and NOX4) in the prognostic
signature have been reported to be associated with GC. For
example, the expression of LPPR4 was found to be increased
in peritoneal metastasis of GC tissues, and high LPPR4 expression
was associated with poor overall survival in GC (Zang et al.,
2020). ADAM12 is highly expressed in cancer of gastric and is
implicated in the malignant growth of GC cells (Carl-McGrath
et al., 2005). NOX4 was found to be a new genetic target for anti-
cancer therapy in digestive system cancer such as GC (Tang et al.,
2018). Pathways are models containing the interaction,
regulation, modification, and binding, etc. between genes,
which could be used to dictate disease states, tumor marker,
drug response, and altered cellular function (Di et al., 2019; Liu
et al., 2019; Han et al., 2020; Han et al., 2021; Sheng et al., 2021).

To further explore the potential mechanisms of the prognostic
effects of the three signature genes, we performed GSEA to
identify abnormal pathways for each gene in the TCGA data
set. Specifically, for each gene, we classified the samples into two
classes (high-risk and low-risk groups) according to the median
of gene expression value, and the pathways were annotated to the
differential expression gene list between the two classes (see
Method). We presented the top five most significant pathways
for each gene (Supplementary Table S3). The results showed that
the abnormal pathways regulated by the three genes are quite
consistent (Figures 5A–C). Specifically, the high expression of
the three genes was all associated with the cytokine-cytokine
receptor interaction pathway. The cytokines were generally
produced by stimulated cells, mainly immune cells (Zhang and
An, 2007), which suggested that the prognosis of the GC patients
was related to immune activity. The low expression of these genes
was associated with the oxidative phosphorylation pathway.
Inhibition of oxidative phosphorylation has an impact on the
intrinsic antitumor immune response (Boreel et al., 2021).
Moreover, the lowly expressed of ADAM12 and NOX4 was
associated with the metabolism of xenobiotics by the

cytochrome P450 pathway. The cytochrome P450 were
proposed to be key enzymes in cancer formation and cancer
treatment (Rodriguez-Antona and Ingelman-Sundberg, 2006).
These results indicated that the three genes of the prognostic
signature are associated with the process of cancer and immune
response.

Evaluation of Differential Immune-Related
Cells and Genes Between High-Risk and
Low-Risk Groups
The 24 immune cell type-specific gene signatures were obtained
from the Bindea et al. publication (Bindea et al., 2013), and the
ssGSEA method was applied to infer the relative tumor
infiltration levels of the 24 immune cells. This process was
implemented with our SMDIC package (https://CRAN.R-
project.org/package�SMDIC) (Jiang et al., 2021). The
Wilcoxon rank-sum test was used to identify the differentially
infiltrated immune cells between high-risk and low-risk groups.
20 of 24 cells showed a significant difference (p < 0.05), and most
of which were upregulated in the high-risk groups (Figure 6A).
For example, the infiltration level of CD8+ T cell was higher in the
high-risk group than in the low-risk group. It has been reported
that tumors with either high CD8+ T cell density had worse
overall survival (Thompson et al., 2016).

As the HLA-related genes play a key role in the induction and
regulation of immune responses (Mosaad, 2015), we then
evaluated the difference of HLA-related genes between high-
risk and low-risk groups. The results showed that most HLA-
related genes were expressed higher in the high-risk group
(Figure 6B). It indicated that the patients in higher-risk group
had higher immune cell activity and poor prognosis, which may
be regulated by the high expression of HLA-related genes. We
further evaluated the differential expression levels of three
immune checkpoint genes (PD-1, PD-L1, and CTLA-4)
between high-risk and low-risk groups to explore the
relationship between immune checkpoint genes and risk score.
We found that the expression levels of PD-1, PD-L1, and CTLA-4
in the high-risk group were all higher than those in the low-risk
group (Wilcoxon rank-sum test, p-value of PD-1 � 3.4e-05,
p-value of PD-L1 � 2.5e-08, and p-value of CTLA-4 � 4e-09)
(Figures 6C–E). These results showed that the high expression of

FIGURE 5 |GSEA enrichment analysis of three signature genes related to TME. The top five most significant pathways were shown for each gene. (A) LPPR4. (B)
ADAM12. (C) NOX4.
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immune checkpoint genes correlated with the poor prognosis of
patients, and patients with high expression of immune
checkpoints might be more suitable for corresponding
immunotherapy.

Evaluation of the Correlation of Risk Score
With the Immune Score, Stromal Score, and
Tumor Purity
We calculated the immune score, stromal score, ESTIMATE
score, and tumor purity of the high-risk and low-risk groups
with the ESTIMATE algorithm to explore the correlation between
the patient’s immune activity and risk score. Our results indicated
that the four scores showed significant differences between the
high-risk and low-risk groups. The immune score, stromal score,
and tumor purity of the high-risk group were significantly higher
than those of the low-risk group (Wilcoxon rank-sum test,
p-value<0.001) (Supplementary Figures S1A–C), while the

tumor purity was significantly lower than that in the low-risk
group (Supplementary Figures S1D). We also explored the
relationship of risk score with the immune score, stromal
score, ESTIMATE score, and tumor purity using linear fitting.
The risk score was positively correlated with the immune score
(R-squared � 0.12, p-value � 1.155e-12), stromal score
(R-squared � 0.53, p-value � 3.52e-69), and ESTIMATE score
(R-squared � 0.35, p-value � 1.62e-39) (Figures 7A–C), but
negatively correlated with tumor purity (R-squared � 0.36,
p-value � 5.706e-41) (Figure 7D). The above results suggested
that the higher the immune activity of patients with GC, the more
likely they are to have a poor prognosis.

DISCUSSION

The TME plays an important role in the occurrence and
development of cancer. In order to identify the prognostic

FIGURE 6 | Differential immune-related cells and genes between the high-risk group and low-risk group. (A) Heatmap of the activities of 24 immune cells between
high-risk and low-risk groups analyzed by ssGSEA. The p-value was calculated by the Wilcoxon rank-sum test. Immune cells with red labels referred to p < 0.05. (B) The
expression ofHLA-related genes between high-risk and low-risk groups. ns:p> 0.05, *p <0.05, **p <0.01, ***p< 0.001, ****p< 0.0001. (C–E)Genes expressionof the PD-1,
PD-L1, CTLA4 in the high-risk and low-risk groups.
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signature genes associated with the TME of GC, we first
identified 23 differentially expressed TME-related genes
between normal samples and GC samples. Then, we further
identified 3 prognostic-related genes via univariate Cox
regression analysis and LASSO regression analysis. Finally,
we obtained a three-gene signature (LPPR4, ADAM12, NOX4)
through a risk score model constructed using multivariate Cox
regression analysis in the TCGA-STAD dataset, and verified
the accuracy of the model for predicting the overall survival in
three independent GEO datasets. The results indicated that the
risk score model could divide the patients in TCGA-STAD
dataset and three GEO datasets into high-risk and low-risk
groups, and the high-risk group had a poor prognosis. The
time-dependent ROC curve analysis in the TCGA-STAD and
GEO datasets also confirmed the accuracy and robustness of
the risk score model.

In order to understand the impact of other factors on the genes
we screened, we analyzed some covariates including age, gender,
grade, and stage. First, we employed the multivariate logistic
regression to test if the differentially expressed genes were
significant after adjusting with other clinical characteristics in
the training set. The results showed that each differentially
expressed gene was still significant in the logistic regression
analysis (p < 0.05, Supplementary Table S4). Then we
included the clinical characteristics and five prognostic-related
genes into the LASSO regression analysis, and the three signature
genes were still identified (Supplementary Table S5). To further

test if our risk score is an independent prognostic factor, we
performed multivariate Cox proportional hazard regression to
analyze the prognostic effects of the risk score and other common
clinical factors, including age, grade, stage, and lymph node
count, and the risk score also showed to be significant
(Figure 3E). Therefore, the three-gene signature could be used
as an independent prognostic factor to predict the overall survival
of GC patients.

The three genes in our signature are all stromal signature
genes. A number of studies have revealed that the signature genes
of stromal cells and immune cells interact extensively in the TME.
Fibroblasts as the major stromal cells form a protective barrier,
and generally avoid tumor cells to be recognized and eliminated
by the immune cells. They are further found to regulate the
extracellular matrix and growth factors to promote tumor growth
and metastasis (Orimo et al., 2005; Scherz-Shouval et al., 2014).
Among the three identified TME-based prognostic genes (LPPR4,
ADAM12, NOX4), ADAM12, which was found to be
overexpressed in small cell lung cancer patients, has been
proven to be a potential prognostic biomarker for cancer (Iba
et al., 1999). Current research shows that NOX4 can predict the
recurrence of GC patients after surgery (Lee et al., 2014).
Although there is no research about LPPR4 in GC, its
function in the early stage and progression of GC deserves
further study.

We also performed function enrichment analysis with
GSEA to explore the potential molecular mechanisms of

FIGURE 7 | Scatter plots of the linear fit of risk score with (A) immune score, (B) stromal score, (C) ESTIMATE score, and (D) tumor purity.
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the three signature genes. Interestingly, the results showed
that the high expression of the three signature genes is all
associated with the cytokine-cytokine interaction (Figures
5A–C), which was proposed to be a promising approach
for diagnosis, classification, and prognosis of GC (Quan
et al., 2017). To further explore the activity of immunity in
TME, we evaluate the differential infiltration of immune cells
between high-risk and low-risk GC patients. The most
immune cells in the high-risk group showed higher levels
than that of the low-risk group. Moreover, most of the HLA-
related genes in the high-risk group were also highly
expressed, which indicated that the local immune
regulation or immune response was more active in high-
risk GC patients. We finally tested the correlation of risk
score with the immune score, stromal score, ESTIMATE
score, and tumor purity. It was shown that the higher the
risk score, the higher the immune score and stromalscore. The
above results indicate that the high-risk GC patients may
possess high immune activity. Overall, our study revealed that
some TME cells are more active in the non-immunotherapy
GC patients, and it is also consistent with the result of lower
immune activity but longer survival time in the low-
risk group.

After analyzing the expression of immune checkpoint genes in the
TCGA-STAD data set, we observed that the expression of immune
checkpoint genes in the high-risk group was higher than that in the
low-risk group. It implied that the high-risk group may be more
responsive to immunotherapy, but whether patients in the high-risk
group are more suitable for corresponding immunotherapy than the
low-risk group remains for further study.
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