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In the last four years, advances in Deep Learning technology have enabled the inference of
selected mutational alterations directly from routine histopathology slides. In particular,
recent studies have shown that genetic changes in clinically relevant driver genes are
reflected in the histological phenotype of solid tumors and can be inferred by analysing
routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning.
However, these studies mostly focused on selected individual genes in selected tumor
types. In addition, genetic changes in solid tumors primarily act by changing signaling
pathways that regulate cell behaviour. In this study, we hypothesized that Deep Learning
networks can be trained to directly predict alterations of genes and pathways across a
spectrum of solid tumors. We manually outlined tumor tissue in H&E-stained tissue
sections from 7,829 patients with 23 different tumor types from The Cancer Genome
Atlas. We then trained convolutional neural networks in an end-to-end way to detect
alterations in the most clinically relevant pathways or genes, directly from histology images.
Using this automatic approach, we found that alterations in 12 out of 14 clinically relevant
pathways and numerous single gene alterations appear to be detectable in tissue sections,
many of which have not been reported before. Interestingly, we show that the prediction
performance for single gene alterations is better than that for pathway alterations.
Collectively, these data demonstrate the predictability of genetic alterations directly
from routine cancer histology images and show that individual genes leave a stronger
morphological signature than genetic pathways.
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INTRODUCTION

Genetic changes can influence the cell and tissue morphology of
solid tumors (Figure 1A). This morphology can be observed in
routine histopathology images which are available for almost
every patient with any solid tumor. Routinely, histopathologists
reviewH&E stained tissue sections to establish a diagnosis, stage a
disease etc. Due to recent advances in computer vision, automatic
image analysis can extract subtle features from digital tissue
sections which seem to be elusive to the human eye (Echle
et al., 2020b). In particular, Deep Learning (DL), an artificial
intelligence method, has been used to analyze histology images
(Kather and Calderaro, 2020) and multiple studies demonstrated
that Deep Learning can link morphological changes in cancer
histology images to specific genetic alterations. Early studies in

the field predicted clinically relevant genetic mutations in lung
cancer (Coudray et al., 2018), colorectal cancer (Kather et al.,
2019), breast cancer (Naik et al., 2020) and other tumor types
from histological whole slide images. More recently, multiple
studies suggested that many genetic alterations are predictable
from routine histology alone across different tumor types (Fu
et al., 2020; Kather et al., 2020; Schmauch et al., 2020; Loeffler
et al., 2021; Muti et al., 2021). Previous studies focused on
predicting single gene alterations. However, it is well known
that certain gene products act together in functional pathways
and mutations (MUT) of different genes of the same pathway
may have a similar effect such as pathway activation (Ben-Hamo
et al., 2020). To understand the effect of genetic alterations on
tumor biology, potential genetic alterations need to be considered
in the context of their functional significance in the affected

FIGURE 1 | (A) Biological hypothesis of this study. TME: tumor microenvironment. (B)Workflow for selection of data and Deep Learning methods. (1) Tumors from
TCGAwere analyzed. (2)Genes were selected based on theMSKCC cohort and OnkoKB platforms. (3) Alterations were grouped based on different sources. (4)Genes
were grouped into pathways (see Supplementary Table S1). (5) Processing of images and training of the network for genes alone and grouped into pathways. (images
from https://smart.servier.com, and Twitter Twemoji under a CC-BY license). TME: tumor microenvironment, TCGA: The Cancer Genome Atlas, MSKCC,
OnkoKB, WT: wild type, MUT: mutation present.
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pathway. For example, it has been shown that both, PTEN loss
and PIK3CA mutation can lead to the activation of the PI3K or
MAPK pathway in cancer of the breast, colorectum, stomach or
lung (Dhillon et al., 2007; Jiang et al., 2020). This phenomenon,
can be of therapeutic relevance, as targeted therapies may not
only affect one specific gene, but also affect other downstream
genes. Instead of focusing on a single gene, in some cases it might
even be sufficient to identify pathway activation or inhibition to
predict treatment response or failure (Schumacher et al., 2019;
Ben-Hamo et al., 2020).

We hypothesized that alteration of a particular signaling
pathway leads to histomorphological changes which can be
predicted from routinely stained pathology slides using Deep
Learning technology.

The aim of the current study was to systematically compare
the predictability of an “overall altered signaling pathway” to a
“single altered gene” of the same pathway. To this end, we
analyzed the 69 most frequently mutated genes in 23 cancer
types, representing 12 oncogenic pathways, and trained end-to-
end Deep Learning networks to predict single gene mutations or
signaling pathway alterations. Furthermore, we aimed to extend
the evaluation of Deep Learning-based detection of genetic
alterations from FFPE slides to a broad range of tumor types,
beyond the findings of previous studies which were limited in
their selection of genetic alterations (Kather et al., 2020).

MATERIALS AND METHODS

Ethics Statement
All experiments were conducted in accordance with the
Declaration of Helsinki and the International Ethical
Guidelines for Biomedical Research Involving Human
Subjects. Anonymized scanned whole slide images were
retrieved from The Cancer Genome Atlas (TCGA) project
through the Genomics Data Commons (GDC) Portal (https://
portal.gdc.cancer.gov/).

Patient Cohorts
Digitized hematoxylin/Eosin (H and E) stained slides and
molecular data from all solid tumor types with more than 100
cases in the GDC database were included in the analysis: bladder
urothelial carcinoma [BLCA, n = 332 patients, (Robertson et al.,
2017)], breast cancer [BRCA, n = 977, (Cancer Genome Atlas
Network, 2012b)], cervical cancer [CESC, n = 253, (Cancer
Genome Atlas Research Network et al., 2017a)], colorectal
cancer [COAD and READ, merged as CRC, n = 499, (Cancer
Genome Atlas Network, 2012a)], esophageal cancer [ESCA, n =
153, (Cancer Genome Atlas Research Network et al., 2017b)],
glioblastoma [GBM, n = 200, (Brennan et al., 2013)], head and
neck squamous cell carcinoma [HNSC, n = 429, (Cancer Genome
Atlas Network, 2015a)], clear cell renal cell carcinoma [KIRC, n =
376, (Cancer Genome Atlas Research Network, 2013)], papillary
renal cell carcinoma [KIRP, n = 240, (Cancer Genome Atlas
Research Network et al., 2016)], low grade glioma [LGG, n = 480,
(Cancer Genome Atlas Research Network et al., 2015)],
hepatocellular carcinoma [LIHC, n = 352, (Cancer Genome

Atlas Research Network, 2017b)], lung adenocarcinoma
[LUAD, n = 457, (Cancer Genome Atlas Research Network,
2014b)], lung squamous cell carcinoma [LUSC, n = 410,
(Cancer Genome Atlas Research Network, 2012)], ovarian
cancer [OV, n = 97 after exclusion of non-analyzable samples;
nine patients were excluded during analysis, (Cancer Genome
Atlas Research Network, 2011)], pancreatic cancer [PAAD, n =
166, (Cancer Genome Atlas Research Network, 2017c)],
pheochromocytoma and paraganglioma [PCPG, n = 169,
(Fishbein et al., 2017)], prostate adenocarcinoma [PRAD, n =
397, (Cancer Genome Atlas Research Network, 2015)], sarcoma
[SARC, n = 247, (Cancer Genome Atlas Research Network,
2017a)], melanoma primary tumors [SKCM, n = 72, (Cancer
Genome Atlas Network, 2015b)] and melanoma metastases
[SKCM-M, n = 136], gastric cancer [STAD, n = 318, (Cancer
Genome Atlas Research Network, 2014a)], thymoma [THYM,
n = 120, (Radovich et al., 2018)], papillary thyroid cancer [THCA,
n = 479, (Cancer Genome Atlas Research Network, 2014c)],
endometrial carcinoma [UCEC, n = 470, (Cancer Genome
Atlas Research Network et al., 2013)]. In total, 23 solid tumor
types with more than 100 patients per tumor type were included.
Ten of them were adenocarcinomas (UCEC, CRC, STAD, BRCA,
LIHC, THCA, PRAD, LUAD, PAAD, OV), four were mainly
squamous cell carcinomas (HNSC, LUSC, CESC, ESCA) and nine
were other tumor types, so neither adeno carcinoma or squamous
cell carcinoma (LGG, KIRP, GBM, KIRC, BLCA, SARC, PCPG,
SKCM, THYM). Although the total patient number was higher
than 100, Germ Cell Tumor (TGCT) was not analyzed because
this dataset included a wide variety of tumor differentiation
patterns, with less than 100 cases per tumor type. Slides from
7,829 patients from the TCGA archive were all from formalin-
fixed paraffin-embedded (FFPE) samples.

Image Preprocessing
Regions with tumor were manually annotated with QuPath v0.1.2
(Bankhead et al., 2017) by trained observers in every whole slide
image (WSI). The non-pathologist observers were initially trained
by experienced histopathologists and consulted the
histopathologist to resolve difficult cases. Cases were excluded
if the image was of poor quality or did not contain any tumor.
Subsequently, the tumor regions within whole slide images were
tessellated into tiles of 256 × 256 μm2 at 0.5 μm per pixel. All data
was pre-processed according to the “Aachen Protocol for Deep
Learning Histology” (Muti et al., 2020).

Experimental Design and Preprocessing of
Mutation Data
Mutation data of all cases was obtained from www.cbioportal.org,
accessed on 05/17/19. We included all genes with a mutation
prevalence above 5% in cancer populations. In order to select a
set of clinically relevant genes, the target genes were selected based on
the prevalence of mutations in the MSK-IMPACT Clinical
Sequencing Cohort (MSKCC) and OnkoKB (https://www.oncokb.
org/, accessed on 06/12/19). In total, 69 genes were analyzed
(Figure 1B): 18 oncogenes, 44 tumor suppressor genes and seven
other genes (Supplementary Figure S1). We then ran four different
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experiments as described as follows. Experiment #1, “single gene
predictability experiment”: For each mutation in each gene, we
manually checked whether it is a likely predicted oncogenic
mutation based on OnkoKB, Cancer Hotspots, 3D Hotspot or
My Cancer Genome (accessed via cbioportal). Based on this, each
patient was assigned a status for each gene: mutated (mutated,
mutation clinically relevant), wild type (not mutated, mutation not
clinically relevant) or inconclusive (no data). For each genetic
alteration (mutation of a given gene), we subsequently trained a
Deep Learning system to distinguish mutated from wild type cases,
counting inconclusive cases as wild type (WT) in order to only
include mutated genes in the analysis. Experiment #2, “pathway
predictability experiment”: For the analysis of alterations in
pathways, the 69 genes were manually assigned to signaling
pathways based on a reference publication (Sanchez-Vega et al.,
2018). Genes that were not included in the reference publication
were manually assigned to pathways based on an additional review
of OncoKB (https://www.oncokb.org/), cbioportal (www.cbioportal.
org), Gene cards (https://www.genecards.org/, accessed on 06/12/19)
and MyCancerGenome (https://www.mycancergenome.org/,
accessed on 06/12/19) databases, literature and expert opinion
(Supplementary Table S1). In total, 59 genes could be assigned
to 12 pathways (Supplementary Figure S1):MAPK, p53, PI3K, Cell
cycle, TGFbeta, Hippo, Notch, FOXA1/ESR1, SWI/SNF complex, Jak-
STAT,Wnt, HistoneMethylation. The remaining 10 genes could not
be assigned to a particular pathway and grouped as “unknown”
pathway. Whenever at least one gene assigned to a particular
pathway was found to be mutated, the whole pathway was
classified as mutated (“pathway-altered”) in the tumor; whenever
none of the genes were mutated, the pathway was labelled as wild
type (“not pathway altered”). For each pathway in each tumor type,
we then trained the Deep Learning network to distinguish tumors
with altered from those with non-altered pathways (Figure 1B).
Experiment #3, “pathway predictability experiment with
exclusion of dominant genes”: In addition, we investigated if the
predictability of alterations in the pathway was only driven by
alterations in a small set of “dominant” genes. To do this, the
prediction experiments of pathway-alterations were repeated for
three tumor types (UCEC, STAD andCRC) for three pathways (p53,
MAPK, PI3K), excluding the following genes: TP53 in p53 pathway,
BRAF andKRAS inMAPK pathway, and PIK3CA and PTEN for the
PI3K pathway. The aim of this experiment was to investigate if the
predictability of alterations in pathways is driven by alterations in
one or two genes or by alterations in a larger set of genes.
Experiment #4, “allele frequency experiment”: Lastly, we
performed a correlation analysis between the Deep Learning
patient scores and allele frequency for the genes KRAS and TP53
genes across all tumor types.

Deep Learning and Statistics
The general aim of our study was to predict the status of binary
targets (single gene mutations or pathway alterations present
versus absent) directly from H&E-stained histology image data
by Deep Learning. We trained a modified shufflenet for every
target as described before (Kather et al., 2020). For each target,
the cohort was randomly split into three parts in a stratified
way, preserving the proportions of each target level (mutated

or wild type). Then, the Deep Learning network was trained in
a 3-fold cross-validation approach on the level of patients,
ensuring that no image tiles from the same patient were ever
part of the training and test set at the same time. Image tiles
were only generated from manually annotated tumor regions.
Once trained on all tiles in the training set, the network was
used to predict the target in each test set tile. Tile-level
predictions were subsequently aggregated on the level of
patients by simple majority vote and classifier performance
was evaluated with a receiver operating curve with 10x
bootstrapped 95% pointwise confidence intervals. The
primary statistical endpoint was the patient-wise area under
the receiver operating curve (AUROC) for each target in each
patient cohort. The patient-level prediction scores between
patients in the wild type and mutated group for each target
were compared by a two-tailed unpaired t-test to assess the
significance of the separation of groups based on the Deep
Learning system. Additionally, for all targets, confusion
matrices, F-Score and Matthew correlation coefficient
(MCC) with a patient level prediction threshold of 0.5 were
calculated and are available in (Supplementary Figure S2 and
Supplementary Table S2). Only genes or pathways with at
least four patients in each group were analyzed. All source
codes are publicly available at https://github.com/jnkather/
DeepHistology. A re-implementation of these Matlab codes
in Python is available in the histology image analysis package
HIA at https://github.com/KatherLab/HIA. All raw
histopathology images are available at the TCGA data
portal https://portal.gdc.cancer.gov/. All genetic data are
available at http://www.cbioportal.org.

RESULTS

Prediction of Clinically Relevant Mutations
Directly From Histology
First, we performed a comprehensive screen for the predictability
of single gene mutations in the tumor types with more than 100
cases in the GDC database (n = 23 tumor types, experiment #1).
We systematically tested whether the mutation status of the
preselected 69 genes with potential clinical relevance with a
mutation prevalence above 5% according to the MSKCC and
OnkoKB database is directly predictable from histology slides (a
list of all genes and prevalence of their mutations in the analyzed
data sets is shown in Supplementary Figure S3A and
Supplementary Table S3). We found that mutations in 44 out
of 69 genes were detectable in one or more tumor types. Most
consistently, mutations in TP53 were predictable in 11 out of 23
cohorts (Figure 2A) with an average AUROC of 0.6812, ranging
from 0.597 in hepatocellular carcinoma (LIHC) (0.5320130.677,
p = 0.035) to 0.787 (0.758–0.823, p < 0.001) in low grade glioma
(LGG). In addition, in four of the 23 tumor types, alterations in
PTEN, SETD2 and KRAS were identified. PTEN prediction
reached AUROCs of up to 0.773 (0.73–0.799, p < 0.001) in
UCEC and 0.773 (0.684–0.826, p = 0.008) in BLCA. SETD2
prediction yielded AUROCs of 0.895 (0.827–0.951, p = 0.035)
in PRAD. KRAS mutations were predictable with an AUROC of
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0.918 (0.844–0.979, p < 0.001) in KIRP. The tumor type with
consistently highest AUROCs was UCEC, in which AUROCs of
0.764 (0.694–0.8, p < 0.001), 0.773 (0.73–0.799, p < 0.001), 0.626
(0.527–0.75, p = 0.017) and 0.653 (0.595–0.721, p < 0.001) were
reached for TP53, PTEN, SETD2 and KRAS, respectively. The
neural network predicted alterations of twenty genes very well
with AUROCs higher than 0.75. Exemplarily seven of these were
selected based on expert opinion by a molecular geneticist (NOB),
because they were either most clinically relevant, or associated
with morphological patterns or prognosis (Table 1). Clinically
relevant mutated genes that were chosen were as follows: FGFR3

in BLCAwith an AUROC of 0.78 (0.72–0.822, p < 0.001), IDH1 in
LGG with 0.764 (0.735–0.805, p < 0.001) and BRAF in HNSC
with 0.79 (0.739–0.977, p = 0.001). Gene mutations associated
with morphological patterns were: BRAF in THCA 0.86
(0.816–0.886, p < 0.001) and E-Cadherin (CDH1) in BRCA
with 0.81 (0.758–0.849, p < 0.001). Prognostically significant
mutated genes were: SETD2 in PRAD with an AUROC of
0.895 (0.827–0.951, p = 0.005), PBRM1 in KIRP with the
lowest AUROC 0.752 (0.571–0.939, p = 0.006) of these all and
lastly NOTCH2 with the highest AUROC’s in CRC 0.934
(0.893–0.978, p < 0.001) and STAD 0.919 (0.846–0.982, p <

FIGURE 2 | Heatmap comparing the area under the receiver operating curve (AUROC) between the different tumor types. On the y-axis all tumor types are listed
and sorted by tumor with most significant results from top to bottom. Number of patients indicated in brackets behind. Pathways are ordered on the x-axis from most
(left) to least (right) significant results. AUROC values for (A) the twelve pathway analysis and (B) for the 69 gene analysis. Coloured values stand for significant detected
(p > 0.05) pathways and grey for not significantly (p > 0.05). TCGA tumor type abbreviations are used (https://gdc.cancer.gov/resources-tcga-users/tcga-code-
tables/tcga-study-abbreviations).
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0.001). All in all, mutations in 25 genes could not be predicted by
the neural network in the gene analysis (Figure 2A). Since
AUROC is susceptible to different group sizes, we also

analyzed the F-Score and MCC (Supplementary Table S2 and
Supplementary Figure S2), which showed consistent findings
with AUROCs. Among the ten highest F-Scores, TP53 was found
four times. F-scores ranged from 0.846 for IDH1 in LGG to 0.875
for TP53 in ESCA and highest MCC correlation of 0.612 for
BRAF in THCA. In a further analysis, we examined how the F-
score, MCC and AUROC changed with different numbers of
patients (half n = 235, third n = 157 and quarter n = 117) for the
genes KRAS, PTEN and TP53 in the tumor type UCEC (n = 470)
(Supplementary Figures S4A–C). For all values, a decreasing
trend was seen with a decreasing number of patients. This effect
was strongest for TP53.

Prediction of Pathway Alterations Directly
From Histology
Next, we tested whether Deep Learning can predict alterations at
the level of the selected twelve signaling pathways more easily
than the level of individual genes (experiment #2). In this

TABLE 1 | Top genes result overview. Single gene analysis results with area under
the receiver operating curve (AUROC), confidence interval and p-Value.
Selected genes were very well predicted by the neural network with AUROCs at
least above 0.75. (1–3) FGFR3, PBRM1, IDH1 are clinically relevant, (4–6) CDH1,
BRAF is associated with different morphological features and (7–9) SETD2,
NOTCH2 have prognostic value.

ID Tumor type Gene AUROC p-Value

1 BLCA FGFR3 0.78 [0.72–0.822] <0.001
2 LGG IDH1 0.764 [0.735–0.805] <0.001
3 HNSC BRAF 0.79 [0.739–0.977] =0.001
4 THCA BRAF 0.86 [0.816–0.886] <0.001
5 BRCA CDH1 0.81 [0.758–0.849] <0.001
6 PRAD SETD2 0.895 [0.827–0.951] =0.005
7 KIRP PBRM1 0.752 [0.571–0.939] =0.006
8 CRC NOTCH2 0.934 [0.893–0.978] <0.001
9 STAD NOTCH2 0.919 [0.846–0.982] <0.001

FIGURE 3 | Comparison of the performance of the single gene area under the receiver operating curve (AUROC) vs. pathway AUROC. The top three pathways (A)
MAPK, (B) PI3K, (C) TP53 AUROC results for the three top tumor cohorts (STAD, CRC, UCEC) are illustrated. AUROC values are compared between single gene vs.
whole pathway. Coloured values stand for significantly detected pathways and grey for not significantly detected (p > 0.05).
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experiment, a pathway in a given tumor was defined to be altered
if at least one of the genes in this pathway were mutated
(Supplementary Figure S3B). We found that alterations in
the pathways p53, MAPK, PI3K and Wnt were mostly
identified by the neural network. The highest number of
altered pathways were predictable in gastric cancer (STAD,
n = 318), endometrial cancer (UCEC, n = 470) and colorectal
cancer (CRC, n = 499) (Figure 2B). In many cases, the detection
AUROC values for altered genes were similar to those for altered
pathways, e.g., for TP53 detection 0.66 (0.627–0.718, p < 0.001)
and the for p53 pathway detection 0.682 (0.668–0.698, p < 0.001)
in CRC or for TP53 detection 0.764 (0.694–0.8, p < 0.001) and for
p53 pathway detection 0.71 (0.677–0.738, p < 0.001) in UCEC. In
summary, the AUROCs for altered pathways were in general
lower than for individual altered genes (Figures 2, 3) and training
on pathway alterations instead of single gene alterations did not
consistently yield a higher performance in the 23 cohorts that we
analyzed. Based on these data we hypothesized that predictability
of alterations in pathways could be primarily driven by the
presence of mutations in one or two genes. To address this,
we repeated the analysis for predictability of pathway alterations,
but excluded the best predictive genes (experiment #3). In this
analysis, alterations in the three pathways p53, MAPK and PI3K
could not be significantly predicted, except in theMAPK pathway
in the STAD cohort with an AUROC 0.633 (0.609–0.699, p =
0.013). The predictability of single gene or pathway alterations
showed a positive correlation with the absolute number of
mutated cases in a given cohort. In BLCA, the status of the
genes PTEN (MUT = 12, WT = 398), ERBB2 (MUT = 39, WT =
371) and FGFR3 (MUT = 64, WT = 346) were all detected with
high AUROCs of 0.773 (0.684–0.826, p = 0.008), 0.747
(0.64–0.837, p < 0.001) and 0.78 (0.72–0.822, p < 0.001),
respectively. In the BRCA cohort, the status of the genes
CDH1 (MUT = 106, WT = 871), TP53 (MUT = 311, WT =
666),MAP3K1 (MUT = 66,WT = 911), ERBB2 (MUT = 17,WT=
960) and PIK3CA (MUT = 312, WT = 661) were significantly (p <
0.05) detected with AUROCs above 0.611. The following tumor
types had the highest number of predictable genes, and also
highest patient numbers: 470 (UCEC), 499 (CRC) and 318
(STAD), while the lowest predictability was seen in tumor
types with 97 (OV), 233 (SKCM primary and metastasis) and
120 (THYM) patients in this cohort. However, this relationship
was not absolute as for example in KIRP (240 patients), more
single gene alterations and pathway alterations were predictable
than in LUSC (410 patients). Therefore, we conclude that patient
number in a given cohort does not explain the predictability of
mutations alone. While alterations of almost all pathways were
detectable in one of the tested tumor types, alterations in the
pathways TGF beta and Hippo were not significantly predictable
from histology in any tumor type. However, alterations in the
gene SMAD4 could be predicted with an AUROC of 0.601
(0.524–0.669, p = 0.045) and likewise mutations of the NF2
gene reached an AUROC of 0.701 (0.522–0.834, p = 0.029).
Furthermore, we hypothesized that the predictability of the
histological phenotype of a given alteration would correlate
with the allele frequency of mutated genes. To test this, we
assessed the correlation between patient-level Deep Learning

scores and the allele frequency for the genes TP53 and KRAS
in all cohorts. However, this analysis failed to demonstrate
a significant correlation (Supplementary Table S4,
experiment #4).

Predictability of Alterations in Different
Tumor Types
Having trained Deep Learning systems to detect single gene and
pathway alterations in solid tumors, we investigated how tumor
types differ in terms of predictability of these alterations. Out of
all 23 different tumor types, only in six tumors (n = 1 LUSC, n = 1
CESC, n = 1 SKCM, n = 1 ESCA, n = 1 OV and n = 1 THYM) no
mutations were detected. Most altered genes were detected in the
cohorts UCEC (15), CRC (15) and STAD (13), all
adenocarcinomas. In general, alteration of genes and pathways
were identified in nine out of ten adenocarcinoma cohorts, (90%).
Three out of the four cohorts of squamous cell carcinomas did not
show any significant results. Similar results were seen for the
pathway analysis: Most pathway alterations were identified in
STAD (9), UCEC (9) and CRC (6). All results are available in
Supplementary Tables S5, 6.

DISCUSSION

For more than a century, histopathological tissue slides stained
with H&E have been the gold standard to diagnose solid tumors.
In 2018, a seminal study showed that these images are not only a
valuable resource for tumor diagnosis, but that genetic alterations
in clinically relevant driver genes an be detected by Deep Learning
in lung cancer (Coudray et al., 2018). In 2018 to 2021, a number
of studies extended these findings to other tumor types and a wide
range of genetic alterations (Couture et al., 2018; Sha et al., 2019;
Sun et al., 2019; Zhang et al., 2019; Echle et al., 2020a). In
particular in 2020, multiple studies have applied supervised
Deep Learning for pan-cancer detection of genetic alterations
from snap-frozen samples (Fu et al., 2020; Kather et al., 2020;
Schmauch et al., 2020) of the TCGA database. While in this
previous study, only a subset of all available tumor types was
analyzed, we have now extended the assessment of Deep
Learning-based detection of pan-cancer genetic alterations to a
wider range of tumor types (from 14 to 23) and observed high
detection rates for some clinically interesting genes. Additionally,
we have evaluated our Deep Learning approach on pathway level
in comparison to focussing on single gene alterations, which has
not been tested in previous studies to our knowledge.

We found that alterations in single genes were often better
predictable from histology than pathway alterations, suggesting
that the phenotypic footprint of a pathway is mostly driven by
one or two of the genes and that it might be the gene alteration
that creates a recognizable pattern, not the pathway alterations
itself (Figures 3A–C). TheMAPK pathway, for example, consists
of twelve genes, of whom only three were significantly identified
in two cohorts (Figure 3A). This can also be seen in the PI3K
pathway, where mutations in only two out of eight altered genes
were significantly detected in gastric, colorectal and endometrial
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cancer (Figure 3B). Single gene alteration AUROC’s were similar
to those found for altered pathways, e.g., p53, MAPK and PI3K
(Figure 3C). This suggests that a commonly mutated gene might
determine the outcome of the pathway analysis in some cases.
This hypothesis was verified by our pathway analysis excluding
highly predictive genes, as pathway alterations could not be
significantly predicted. Interestingly, no gene in the STAD
cohort was predicted significantly in the MAPK pathway,

however the AUROC for the altered pathway as a whole was
0.61 (0.55–0.66, p = 0.006) (Figure 3A). Another explanation
could also be the higher patient numbers in these tumor cohorts,
since this also influences the predictability of alterations in genes
and pathways (Figure 3). This was confirmed by a further
exemplary analysis in which the AUROC, F-score and MCC
decreased with a smaller number of patients in the cohort UCEC
(Supplementary Figure S4). Direct prediction of mutated single

FIGURE 4 | Prediction performance for single gene alterations, representative genes in nine tumor types. Receiver operating curve for: (A) FGFR3 alterations in
bladder cancer (BLCA), (B) IDH1 alterations in low grade glioma (LGG), (C) BRAF alterations in head and neck squamous cell carcinoma (HNSC), (D) BRAF alterations in
thyroid carcinoma (THCA), (E) CDH1 alterations in invasive breast carcinoma (BRCA), (F) SETD2 alterations in prostate adenocarcinoma (PRAD), (G) PBRM1 alterations
in renal cell carcinoma (KIRP), (H) NOTCH2 alterations in colorectal adenocarcinoma (CRC), (I) NOTCH2 alterations in stomach adenocarcinoma (STAD), MUT:
mutated, WT: wild type
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genes from histology images is potentially useful, especially if the
alterations have a clinical implication. In general, the neural
network could predict several genes—some of which are
clinically relevant, associated with morphological pattern or
prognostically relevant—very well with AUROCs higher than
0.75. For example, in our study, FGFR3 mutations could be
predicted with an AUROC of 0.78 in bladder cancer
(Figure 4A). Since the FDA approved the first targeted-
therapy with the FGFR inhibitor erdafitinib in advanced
muscle invasive bladder cancer (U.S. Food and Drug

Administration, 2022), detection of FGFR3 could identify
patients who might benefit from this therapy (Loriot et al.,
2019). IDH1 is an important prognostic marker for brain
tumors (Young et al., 2020). In the LGG cohort, 77% (395/
512) were IDH1 mutated, which is associated with a better
outcome. IDH1 could be detected significantly in LGG with an
AUROC of 0.764 (Figure 4B). However, in GBM, where only 6%
of tumors were mutated, IDH1 was not significantly detectable.
Effectiveness of IDH specific enzyme inhibitors in brain tumors
are currently tested in clinical trials (Karpel-Massler et al., 2019).

FIGURE 5 | Deep learning predicted heatmaps. Visualization of manually annotated histological slides hematoxylin & eosin (H&E) with corresponding prediction
maps for altered genes. Blue areas are wild type (WT) predicted regions and red areas are identified as mutated (MUT) parts by the neural network. (A) H&E slide of a
BRAF WT patient (ID: TCGA-CQ-5333) from the head and neck squamous cell carcinoma (HNSC) cohort. The homogenous blue heatmap is consistent with the wild
type status of the patient. (B)H&E slide of aBRAFmutated patient (ID: TCGA-EL-A3H7) from the thyroid carcinoma (THCA) cohort. The heatmap is more than 50%
red, whichmeans the patient was correctly classified as MUT. Intermingled blue areas in tumor regions reflect stroma and artifacts that disturb these areas. (C)H&E slide
of a CDH1mutated patient (ID: TCGA-PE-A5DD) of the breast invasive carcinoma (BRCA) cohort. The prediction heatmap shows that stroma tissue is mostly predicted
as WT (blue areas condensed connective tissue) and diffuse invasive-lobular cancer is mostly red.
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The V600E mutation of the BRAF kinase gene, which is part of
the MAPK pathway, plays an important role in tumorigenesis
across many types of solid tumors and is in fact a highest level
evidence gene of OnkoKB. Although the MAPK pathway is
altered in many tumor types, BRAF mutations are not very
common in HNSC (Weber et al., 2003), including the TCGA-
HNSC cohort, where only five out of 515 patients showed a BRAF
alteration. Still, BRAF alterations were recognized with a
performance of 0.79 in our analysis (Figure 4C and
Figure 5A). This makes Deep Learning based identification of
subgroups that might benefit from targeted therapy in HNSC
conceivable, as specific BRAF and MEK inhibitors are already an
integral part of guideline-directed therapy in other entities.
However, interestingly most of the detected mutations in
HNSC were indeed non-V600 class II or class III mutations
(Yaeger and Corcoran, 2019). In contrast, more than 40% of the
thyroid cancers show a BRAF V600 mutation which is associated
with the papillary tumor type and found rarely in follicular
thyroid cancer type (Nikiforov, 2011) (Figure 5B). In fact,
BRAF mutational status could be predicted significantly with
an AUROC of 0.86 (Figure 4D). Another example is E-cadherin,
a tumor suppressor gene which is mostly involved in cell
adhesion, which is associated with the lobular subtype of
breast cancer (Cancer Genome Atlas Network, 2012b)
(Figure 5C). In our analysis it was detectable with an AUROC
of 0.8 (Figure 4E). Another example is the PBRM1 gene, which
belongs to the SWI/SNF chromatin remodelling complex. PBRM1
is often altered in renal papillary carcinoma, however, recent
studies have shown that a PBRM1 mutation correlates with
decreased survival (Ricketts et al., 2018). In our analysis,
PBRM1 was identified with an AUROC of 0.752 (Figure 4F).
As PBRM1 alterations are not very common in papillary renal cell
carcinoma, its significance in terms of a potential biomarker
remains to be elucidated (Ho et al., 2015; Liu et al., 2020). In
KIRP, loss of PBRM1 has been described to be associated with
checkpoint inhibitor resistance (Ho et al., 2015; Liu et al., 2020).
Highly predictive image tiles of the five genes mentioned above
are collected in Supplementary Figure S5. Other significantly
detected prognostic alterations in genes were found in SETD2 in
PRADwith an AUROC of 0.895 (Yuan et al., 2020) andNOTCH2
in CRC and STAD (Chu et al., 2011) with an high AUROC of
0.934, 0.919 (Figures 4G–I). However, these two genes did not
show any relevant pathological features in the top tiles analysis.
Analysis of phenotypic footprint of an alteration did not correlate
with the allele frequency of mutated genes (Supplementary
Table S4).

Based on our overall results, genetic alterations in
adenocarcinomas were better predictable than alterations in
other tumor types, such as squamous cell carcinomas
(Figure 2). This is consistent with previous studies (Schmauch
et al., 2020) and leads us to hypothesize that in tumor types with
glandular architecture genetic changes might more frequently
result in morphological changes and therefore better detectable.
Some tumors, predominantly UCEC, CRC and STAD, had more
numerous significant findings than others. Interestingly, these are
not the tumors with high mutational burden (Kandoth et al.,
2013).

In summary, H&E stained tumor images contain subtle
morphogenetic information which is detectable by Deep
Learning. Our findings correlate with similar results of
other Deep Learning analyses and mutational landscape
across cancers (Kandoth et al., 2013; Fu et al., 2020; Kather
et al., 2020).

Limitations
Our study has a number of limitations. first and foremost the
use of TCGA as our only resource for histopathological whole
slide images, which means that validation on additional
cohorts is necessary to confirm the results. In addition, a
potential confounder in our study is the unequal dataset
size for different tumor types in TCGA. It is possible and
likely that our study underestimated the number of predictable
genes in some tumor types. Especially for small cohorts in this
study, future studies should re-analyze the same set of genes in
larger cohorts, once such cohorts become available. Finally,
while this archive is undoubtedly the most comprehensive
multicentric resource available to computational pathology
researchers, it has been shown to carry a risk of bias due to
the patient selection process in TCGA (Howard et al., 2020).
However, a full genetic characterization of thousands of tumor
samples like in TCGA is an almost impossible task for
academic research groups, which is why TCGA remains
very useful and unique to develop and test new
computational pathology approaches. Yet, even the genomic
characterization in TCGA carries some ambiguity, e.g., due to
the presence of non-tumor tissue in sequenced samples as well
as different methods for mutation calling. We focussed on
single nucleotide variants and small deletions/insertions, and
did not take into account fusion genes, copy number changes
or expression data. We also relied on a conservative variant
classification and therefore might have created a bias regarding
the inclusion of “false negative” samples. In future studies, it
could be interesting not only to include clinical variant
classification data but instead also narrow down the number
of included unclassified variants by using prediction
algorithms as e.g., BoostDM (https://www.intogen.org/
boostdm/search). The most promising candidates for
clinical translation should be evaluated in other multicentric
image collections obtained via academic consortia. Another
limitation of our study is that the tissue slides which we used
for our prediction do not necessarily contain the same region
that the DNA for genetic characterization has been extracted
from. Therefore, it is conceivable that intratumor
heterogeneity could dilute our results, potentially leading to
a lower performance. Further studies are needed to
systematically quantify the impact of intratumor genetic
heterogeneity on the inference of genetic alterations from
pathology images.
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Supplementary Figure S1 | Overview of the genes and pathways arrangement.
Following 59 genes were grouped into twelve different cancer pathways. Legend
shows characteristics of the genes (orange, oncogenes; blue, tumor suppressor
genes; green, both). Information was taken from OnkoKB (https://oncokb.org/).

Supplementary Figure S2 | Diagram of F-Score and Matthews Correlation
Coefficient vs. AUROC. (A) Shown are the F-Score values vs. area under the
receiver operating curve (AUROC) for each investigated target of all 23 tumours. (B)
Shown are the Matthews Correlation Coefficient (MCC) values vs. AUROC for each
investigated target of all 23 tumours.

Supplementary Figure S3 | Prevalence of mutations in genes and pathways in all
tumor types. (A) Mutation prevalence in the analyzed data set. (B) Prevalence of
pathway alterations in the analyzed data set.

Supplementary Figure S4 | Diagram AUROC, F-Score and Matthew Correlation
Coefficient (MCC) for different patient numbers. (A) Changes in area under the
receiver operating curve, F-Score and MCC with half, third and fourth patient
numbers in tumor type UCEC for target KRAS. (B) Changes in area under the
receiver operating curve, F-Score and MCC with half, third and fourth patient
numbers in tumor type UCEC for target PTEN. (C) Changes in area under the
receiver operating curve, F-Score and MCC with half, third and fourth patient
numbers in tumor type UCEC for target TP53.

Supplementary Figure S5 | Highly predictive image tiles selected by deep
learning. Comparison of the highly ranked mutated (MUT) and wild type (WT)
tiles. This visualization helps to identify morphological changes due to
alterations of the tumor. (A) FGFR3 in BLCA: MUT top tiles exhibit more
papillary structured parts, whereas WT tiles are more diffuse infiltrative tumor
parts. (B) PBRM1 in KIRP: MUT tiles are more solid with rosette-like
arrangements, whereas WT tiles have a papillary architecture. (C) IDH1 in
LGG: MUT tiles show more glial and fibril appearance. In contrast, WT tiles
have a higher nuclear density. (D) CDH1 in BRCA: MUT tiles show the diffusely
infiltrating, indian file pattern of lobular-invasive breast cancer, while WT tiles
have the trabecular, nodular or tubular architecture of no-special type
carcinomas. (E) BRAF in HNSC: MUT tiles are high grade cancers without
any squamoid/cornified elements, whereas in the WT tiles squamous cells and
cornification can be found. (F) BRAF in THCA: MUT of BRAF is associated with
papillary tumor types and WT tiles show a more organ specific follicular/
colloidal histology.

Supplementary Table S1 | Raw results (Microsoft Excel file) of all genes and
grouping based on different data sources.

Supplementary Table S2 |Confusion matrices, F-Score andMatthews Correlation
Coefficient (MCC) for each target, based on a patient-level cutoff of 0.5.

Supplementary Table S3 | Mutation prevalences for pathway and gene analysis.

Supplementary Table S4 | Correlation analysis of allele frequency with mutation
score for TP53 and KRAS.

Supplementary Table S5 | Excel File for all AUROC combined Pathway and
Genes.

Supplementary Table S6 | Prediction results for all tumor types with all statistics.
AUROC_avg, average area under the receiver operating curve (AUROC);
AUROC_low, lower bound of AUROC confidence interval (CI); AUROC_high,
upper bound of AUROC CI; AUCPR_avg, average area under the precision
recall curve (AUCPR); AUCPR_low, lower bound of AUCPR CI; AUCPR_high,
upper bound of AUCPR CI.; meanCat, mean prediction values for patients in this
category; meanOth, mean prediction values for other patients; pVal, p-value for
comparison of prediction scores between patients in target category vs. not in target
category (according to the ground truth). nPatsTotal, total number of patients (sum
of patients in category and not in category).
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