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Research on the genetics of complex traits overwhelmingly focuses on the additive effects
of genes. Yet, animal studies have shown that non-additive effects, in particular
homozygosity effects, can shape complex traits. Recent investigations in human
studies found some significant homozygosity effects. However, most human
populations display restricted ranges of homozygosity by descent (HBD), making the
identification of homozygosity effects challenging. Founder populations give rise to higher
HBD levels. When deep genealogical data are available in a founder population, it is
possible to gain information on the time to the most recent common ancestor (MRCA) from
whom a chromosomal segment has been transmitted to both parents of an individual and
in turn to that individual. This information on the time to MRCA can be combined with the
time to MRCA inferred from coalescent models of gene genealogies. HBD can also be
estimated from genomic data. The extent to which the genomic HBD measures
correspond to the genealogical/coalescent measures has not been documented in
founder populations with extensive genealogical data. In this study, we used
simulations to relate genomic and genealogical/coalescent HBD measures. We based
our simulations on genealogical data from two ongoing studies from the French-Canadian
founder population displaying different levels of inbreeding.We simulated single-nucleotide
polymorphisms (SNPs) in a 1-Mb genomic segment from a coalescent model in
conjunction with the observed genealogical data. We compared genealogical/
coalescent HBD to two genomic methods of HBD estimation based on hidden Markov
models (HMMs). We found that genomic estimates of HBD correlated well with
genealogical/coalescent HBD measures in both study genealogies. We described
generation time to coalescence in terms of genomic HBD estimates and found a large
variability in generation time captured by genomic HBD when considering each SNP.
However, SNPs in longer segments were more likely to capture recent time to
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coalescence, as expected. Our study suggests that estimating the coalescent gene
genealogy from the genomic data to use in conjunction with observed genealogical
data could provide valuable information on HBD.

Keywords: homozygosity by descent, founder populations, genealogical data, coalescent models, most recent
common ancestor, simulations

1 INTRODUCTION

Inbreeding leads to increased homozygosity and has a negative effect
on phenotypes (Charlesworth andWillis, 2009). This phenomenon is
referred to as inbreeding depression and is well documented in plants
and animals (Roff, 1997). In humans, inbreeding depression has long
been reported from small-scale pedigree studies (Lebel andGallagher,
1989; Shami et al., 1991; Scriver, 2001), but the quantification of
inbreeding depression effects on human phenotypes from these
studies is limited. More recently, the availability of large study
samples with genome-wide genotypic data has allowed the
detection of homozygosity effects on a wide range of phenotypes
and has also allowed some quantification of the effect of inbreeding
depression on human phenotypic variation (Joshi et al., 2015; Zhu
et al., 2015; Johnson et al., 2018; Clark et al., 2019; Yengo et al., 2021).
However, most human populations display restricted ranges of
homozygosity by descent (HBD), making the identification and
quantification of the effect of inbreeding depression challenging in
humans (Keller et al., 2011; Yengo et al., 2021).

Founder populations give rise to higher HBD levels. The French-
Canadian founder population originated at the beginning of the 17th
century with the immigration of French settlers (Charbonneau et al.,
1993), which ended in 1759 after the British conquest. The French-
Canadian population expanded rapidly and was relatively isolated
because of linguistic, religious, and geographic barriers (Bouchard
and De Braekeleer, 1990). Approximately 8,500 founders
contributed to the genetic background of the French-Canadian
founder population (Charbonneau et al., 2000). As population
size grew, new regions of Quebec were settled, including remote
and isolated regions, which resulted in population structure (Roy-
Gagnon et al., 2011). In the isolated region of Saguenay–Lac-Saint-
Jean (SLSJ), French-Canadian settlement was initiated around 1840
by inhabitants of the neighboring region of Charlevoix, and until
about 1910, 75% of the 30,000 immigrants to Saguenay came from
Charlevoix (Pouyez et al., 1983). In contrast, urban regions like the
Montreal region saw more diverse immigration patterns (McInnis,
2000; Piché, 2003), including migration from other regions of
Quebec and more mixing.

The probability of an individual’s allele being HBDwithin a fixed
genealogy depends on the number of meiosis on the transmission
paths of the individual’s two copies of the alleles through a specific
most recent common ancestor (MRCA) and also on all the possible
paths linking those two alleles through this common ancestor.When
the MRCA occurs further back in time than the founders of a fixed
pedigree, time toMRCA for two genomic segments is available from
the gene genealogy (Hudson, 1990), which describes the
relationships between genomic segments sampled at present. The
gene genealogy cannot be observed but can be modeled using the
coalescent (Kingman, 1982). The gene genealogy differs from a

family tree by tracking the descent of genetic material in a genomic
region rather than an individual’s actual ancestors. In the presence of
recombination, the gene genealogy can be described by a set of trees
with each giving the ancestral history of the sample at a locus in the
region. In study samples from founder populations with deep
genealogical data available, it is possible to use both the study
and coalescent genealogy to gain information on the time to the
MRCA from whom a chromosomal segment has been transmitted
to both parents of an individual and in turn to that individual. It is
then possible to describe the complex patterns of relatedness, present
in a founder population like the French-Canadians, that give rise to a
wide range of identity-by-descent sharing of chromosomal segments
arising from a large number of complex ancestral sharing paths
(Gauvin et al., 2014; Gauvin et al., 2015).

Sharing of chromosomal segments within individuals can be
observed with genomic data. HBD can then be estimated by
searching for runs of homozygosity (ROHs) exceeding a given
length (e.g., 1,000 or 1,500 kb) along a genomic region (McQuillan
et al., 2008; Howrigan et al., 2011). Alternatively, HBD can be
inferred by modeling the HBD states of each genomic marker in
the region using hidden Markov models (HMMs) (Leutenegger
et al., 2003; Han and Abney, 2011; Han and Abney, 2013; Gazal
et al., 2014a). HMM-based approaches that formally model
identity-by-descent sharing may perform better to capture
complex relatedness in founder populations. The extent to
which genomic inference of HBD captures sharing through
complex ancestral paths in founder populations has not been
studied with simulations using complex genealogical structures.
In this study, we aimed to describe the relationship between
genomic estimates of HBD probability and HBD probability
from simulated genealogies. We used coalescent models in
conjunction with extended genealogical data collected by two
ongoing studies conducted in the French-Canadian founder
population to simulate genomic segments passed down to
individuals from the two studies. From these simulations, we
assessed the correspondence between two genomic estimates of
HBD from two HMM-based methods (IBDLD and FEstim) and
the relationship between these estimates and the time to MRCA
from the gene genealogy observed in the simulations.

2 MATERIALS AND METHODS

2.1 Simulations
Simulations were based on large genealogies from the French-
Canadian founder population. These genealogies come from two
studies with different designs: a hospital-based cross-sectional
study of eye disease and cognitive phenotypes conducted at the
ophthalmology clinics of Maisonneuve-Rosemont Hospital in
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Montreal (Varin et al., 2017; Varin et al., 2020) and a family study of
asthma from the SLSJ region (Laprise, 2014). In the Montreal study,
unrelated (to the investigators’ knowledge) participants with either
glaucoma, age-related macular degeneration (AMD) or normal
vision were recruited. Families in the SLSJ study were recruited
through probands with a diagnosis of asthma. Genealogies were
obtained from the BALSAC database (BALSAC project, Université
du Québec à Chicoutimi, https://balsac.uqac.ca/). BALSAC contains
over 4.3 million records providing information on over 6million
individuals and allowing the reconstruction of ascending genealogies
from present-day individuals going back over four centuries (Vézina
and Bournival, 2020). Participants from the two studies provided
information on the names and location of marriage of their recent
ancestors, which allowed their genealogies to be reconstructed in
BALSAC. A subset of the present-day individuals with French-
Canadian ancestry was selected from the Montreal study as
probands for the simulations. A similar number of probands was
selected from the SLSJ genealogies (all of French-Canadian ancestry)
for comparison purposes.

Haplotypes for the founders of the genealogies were simulated
from a coalescent model using the ms (Hudson, 2002) algorithm
implemented in the phyclust R package version 0.1–30 (Chen,
2011). Simulated haplotypes covered a 1 Mb region. The
recombination and mutation rates for the coalescent model
were both set to be 10–8, and the effective population size was
set to 10,000. In addition to the haplotypes of the founders, the ms
algorithm returns all gene genealogies for the given genomic
region. We then used a new simulation function that we
implemented in the GENLIB R package version 1.1.5 (Gauvin
et al., 2015). GENLIB is specifically designed to analyze large
genealogical datasets and has several functionalities including
genealogical data management, descriptive statistics, and
simulations. The new simulation function, “gen.simuhaplo,”
can be used to pass down haplotypes from founders to
selected individuals (probands) through the genealogy. At each
meiosis, recombination is simulated using the no-chromosome
interference model of meiosis; the crossover events are modelled
as a homogeneous Poisson process, with user-specified
recombination rates for males and females. For our
simulations, given the 1 Mb segments being passed down from
the founders, we used a recombination rate of 0.01 for both sexes.
Mutation events were assumed not to occur within the genealogy.
We simulated 2,000 independent replicates of the genomic region
of size 1 Mb for each of the two large genealogies. Hence, if we
look at the combined replicates, we effectively simulated the
equivalent of 2,000 Mb or almost ∼2/3 of the human genome size.

2.2 Genealogical/Coalescent-Based HBD
Inference
We inferred HBD status of the probands along the simulated
genomic segment using information from both the observed
study and coalescent/gene genealogies. The HBD status for a
genomic segment was defined as the two haplotype segments
finding an MRCA before a threshold time of 30 generations,
either in the observed study genealogy or further back in time in
the coalescent genealogies. Since the two lineages of interest

correspond to a proband’s two haplotypes, then they are HBD
in addition to being identical by descent. We also examined a
continuous measure of genetic relatedness based on the time back
until the MRCA for an individuals’ two alleles at a locus. For each
simulated dataset, both inferred measures of relatedness (status
and the continuous measure) were recorded at each of the single-
nucleotide polymorphism (SNP) locations in the segment.

2.3 Genomic-Based HBD Inference
HBD was also estimated from the probands’ simulated genomic
segments using the HMM-based approaches implemented in the
IBDLD software version 3.13 (Han and Abney, 2011; Han and
Abney, 2013) and the FEstim software version 1.3.2 (Leutenegger
et al., 2003; Leutenegger et al., 2006; Gazal et al., 2014a). Both
methods estimate a probability of HBD at each locus in the
segment. For IBDLD, the genomic-based GIBDLD method was
used with default values for all parameters except the minor allele
frequency cutoff, which was set to 0.02. HBD estimation is
influenced by the linkage disequilibrium (LD) pattern of the
genomic segment considered. IBDLD incorporates LD in the
model used for estimation, while FEstim requires SNPs in low
LD. To obtain a low-LD subset for FEstim, the resulting simulated
haplotypes were pruned using PLINK version 1.91 (Chang et al.,
2015). The pruning was done using the “independent pairwise”
option with window size of 1 Mb, step size of 1, and an r2 threshold
of 0.5. For FEstim, default values were used for all parameters.

2.4 Statistical Analysis
All analyses were performed using the R environment version
4.1.1 (R Core Team, 2021).

2.4.1 Description of Study Genealogies and HBD
Measures
Wecalculated descriptive statistics of the two study genealogies using
GENLIB. These characteristics include the completeness of the
genealogical structures (defined as the number of ancestors
present in the genealogy divided by the expected number of
ancestors in the complete genealogical structure), the number of
lowest common ancestors shared by the parents of the probands, the
kinship coefficients among pairs of probands, and the inbreeding
coefficients of each proband (Gauvin et al., 2015). The length of
simulated segments deemed HBD was obtained from IBDLD HBD
probability estimates using a cutoff of 0.5 and was compared to the
genealogical inbreeding coefficient using scatter plots. Violin plots
were used to compare the distributions of the different HBD
measures: FEstim and IBDLD estimates of HBD probabilities and
the time to coalescence, in generations, obtained from the observed
study and coalescent/gene genealogies.

2.4.2 Correspondence Between Genomic-Based HBD
Inference Methods (IBDLD and FEstim)
Correlations between IBDLD and FEstim HBD probabilities
were calculated. Specifically, in each study, each simulation

1Purcell, S., and Chang, C. PLINK 1.9. Available at: www.cog-genomics.org/plink/
1.9/.
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replicate k (k � 1 ... 2,000) yielded two n × j matrix of HBD
probabilities (one for FEstim and one for IBDLD), where n is the
number of probands and j is the number of SNPs. Two sets of
correlations were obtained for each replicate k. First, the
correlation between FEstim and IBDLD probabilities across
probands was calculated for each SNP, yielding j correlation
coefficients that were then averaged across SNPs to obtain an
overall correlation value for each replicate. We refer to this first
correlation as the average SNP-wise correlation. Second, the HBD
probabilities were first averaged across SNPs, and the correlation
between average FEstim and IBDLD probabilities was calculated
across the proband, yielding one correlation value for each
replicate. We refer to this second correlation as proband-wise
correlation. We also displayed the relationship between the
average (across SNPs and replicates) FEstim and IBDLD
probabilities using scatter plots.

2.4.3 Correspondence Between Genomic- and
Genealogical/Coalescent-Based Inference
HBD status inferred from the time in generations to MRCA
within 30 generations (as described above) was averaged across
SNPs in the simulated genomic region to obtain an estimate of the
HBD probability in the region. This estimate was then compared
graphically to IBDLD and FEstim HBD probabilities using scatter
plots with fitted regression lines. Lastly, we used scatter plots to
examine the relationship between genomic HBD probabilities
from FEstim and IBDLD and time to coalescence in generations
for each k × n × j simulation results. Different HBD probability
cutoffs were explored in terms of the generations to coalescence
captured by each cutoff. The distribution of generations to
coalescence for each HBD probability cutoff was examined
using boxplots.

3 RESULTS

3.1 Description of Study Genealogies and
HBD Measures
The completeness of the genealogies at each generation is shown
in Figure 1A for each study sample. The Montreal study
genealogy includes 9,095 founders of 227 present-day
individuals selected as probands for this analysis and includes
16 generations with completeness of 89% and 73% at the 8th and
10th generations, respectively. Median kinship among the 227
probands is 0.0003, ranging from 0 to 0.016. The SLSJ study
genealogy includes 7,608 founders of 226 present-day individuals
selected as probands and includes 19 generations with
completeness of 91% and 86% at the 8th and 10th
generations, respectively. Both studies have low completeness
after the 13th generation, corresponding to the time of arrival of
the first European immigrants. Median kinship among the 226
probands is 0.005, ranging from 0.00005 to 0.072. For each study
genealogy, the average inbreeding coefficients calculated from the
genealogical data considering genealogical data at each
generation (e.g., for inbreeding calculated at generation 2, all
ancestors above generation 2 are removed) are also shown in
Figure 1A, while the distribution of inbreeding coefficients
calculated at the highest generation with available data is
shown in Figure 1B. A few Montreal study participants share
common ancestors earlier in the genealogy, leading to higher
inbreeding at lower generations (Figure 1A) and some high,
outlying values of inbreeding coefficients (Figure 1B). In fact, five
participants from the Montreal study are children of first cousins
and share additional common ancestors higher up in their
genealogy (number of lowest common ancestors ranging from
10 to 24). However, the SLSJ study has higher inbreeding when

FIGURE 1 | Characteristics of the SLSJ and Montreal study genealogies. (A) Average across probands of the genealogical completeness and inbreeding
coefficients calculated at each generation. (B) Violin plots of the distribution of inbreeding coefficients across probands (points are the inbreeding coefficients of the
probands).
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calculated at later generations (Figure 1A). Inbreeding
coefficients are also overall higher in the SLSJ study
(Figure 1B). On average, the number of lowest common
ancestors shared by the parents of the study participants was
92 (standard deviation, SD � 43, range � 0–306) for the SLSJ
study and 44 (standard deviation, SD � 23, range � 0–110) for
the Montreal study.

3.2 Correspondence Between
Genomic-Based HBD Inference Methods
(IBDLD and FEstim)
In Figure 2, for each study, we relate the genealogical inbreeding
coefficients of the participants to the total length of their
simulated genomic segments deemed HBD across all 2,000
replicates. A SNP is deemed HBD if the probability of HBD
estimated by IBDLD is at least 0.5. Summing across simulations
mimics the length of a proband’s genome that is HBD, which
should be highly correlated with the genealogical inbreeding
coefficient. The size of a proband’s point on the graph is
proportional to the number of replicates in which the
proband has a segment HBD, which gives an idea of the
number of HBD segments in a proband’s genome. As
expected, the length of genomic segments HBD and
genealogical inbreeding correlate well (0.93 for SLSJ and 0.98
for Montreal), and probands with higher inbreeding also have a
higher number of HBD segments. The distributions of average
HBD probability estimated by IBDLD, FEstim, and generation
of coalescence are shown in Figure 3. For the same study data,
FEstim HBD probability estimates are overall higher than
IBDLD estimates. As noted above, the Montreal study
displays inbreeding arising from more recent generations,
while the SLSJ study has overall higher HBD.

The relationship between average (over SNPs and simulation
replicates) FEstim and IBDLD HBD probabilities is illustrated in
Figure 4 for each study. We can see a strong linear relationship
between the two HBD measures, and, as also noted in Figure 3,
we see that FEstim estimated probabilities are overall higher than
IBDLD estimates. We further investigated the correlation
between the two methods. Across 2,000 simulation replicates,
the mean/median average SNP-wise correlation between IBDLD
and FEstim SNP HBD probabilities were 0.7780/0.7813 for the
SLSJ study and 0.7694/0.7742 for the Montreal study. When the
HBD probabilities were first averaged across the simulated SNPs
in the region before calculating the proband-wise correlation,
then the mean/median correlations betweenmethods were higher
with a mean/median of 0.8991/0.9066 for the SLSJ study and
0.8860/0.8943 for the Montreal study. These results show that
there is some variability in estimated HBD probabilities when the
correlation is assessed on a SNP-by-SNP basis. However, when
the HBD probabilities for probands are averaged across the
region, the correlation between the two methods is greater.

3.3 Correspondence Between Genomic-
and Genealogical/Coalescent-Based
Inference
It is clear that IBDLD and FEstim differ in their estimated HBD
probabilities. To better understand which probabilities might be
closer to the true HBD probabilities, we define a gene genealogy-
based measure that captures similar information as the HBD
probability. For each SNP, we determine if the MRCA of each
individual two alleles occur within 30 generations (i.e., this could
be within the study genealogy or above but within 30 generations
in the coalescent genealogy). Given the small number of
generations since the ancestor, the two alleles are very likely to

FIGURE 2 | Genomic and genealogical homozygosity by descent (HBD). For each proband, the total length of simulated segments inferred HBD based on IBDLD
HBD probabilities of at least 0.5 is plotted against the proband’s genealogical inbreeding coefficient. The size of the points is proportional to the number of replicates in
which the proband has a segment HBD. (A) SLSJ study; (B) Montreal study.
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FIGURE 3 | Distributions of inferred homozygosity by descent (HBD). Violin plots of the distributions across probands, averaged across SNPs and simulation
replicates, of (A) HBD probabilities estimated from FEstim; (B) HBD probabilities estimated from IBDLD; (C) time to coalescence, in generations, obtained from the
observed study and coalescent/gene genealogies.

FIGURE 4 | Probability of homozygosity by descent (HBD) from FEstim and IBDLD. Scatter plots of the average (across SNPs and simulation replicates) HBD
probabilities estimated by FEstim and IBDLD for (A) the SLSJ study and (B) the Montreal study.
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be identical. We then average across the region to obtain an
estimate of the HBD probability for each individual in the
region. We compare this genealogical/coalescent-based HBD
probability to the average HBD probability from both FEstim
and IBDLD in Figure 5 by regressing the genealogical/
coalescent-based HBD measure on the genomic HBD
measure. There is a strong linear relationship between the
genomic and genealogical/coalescent-based HBD measures.
IBDLD estimates are closer to the genealogical/coalescent-
based estimates as indicated by smaller absolute values of the
intercepts of the fitted regression lines for IBDLD-compared
FEstim. For the SLSJ study, the intercept of the regression line
was −0.030 for IBDLD and −0.051 for FEstim, while for the
Montreal study, the intercept was −0.034 for IBDLD and −0.056
for FEstim. Hence, in addition to FEstim HBD probability
estimates being overall higher compared to IBDLD estimates,
FEstim estimates were further from the estimates obtained from
the study and coalescent genealogies.

Finally, in Figure 6, the estimated HBD probability from
FEstim and IBDLD for each SNP of each proband is plotted
against the generation of coalescence (set to 0 if coalescence
occurred within the study genealogy) for all 2,000 simulation
replicates. HBD segments coalesced within the study genealogy in
0.63% and 0.33% of all simulation replicates for the SLSJ and
Montreal study, respectively. When restricting the study sample
to probands with genealogical inbreeding coefficients of at least
0.02 (corresponding to an offspring of parents slightly more
related than second cousins), HBD segments coalesced within
the study genealogy in 3.8% and 5.2% of all simulation replicates
for the SLSJ and Montreal study, respectively.

The distribution of coalescence generation time captured
when different genomic HBD probability cutoffs are used is
displayed by boxplots in Figure 6. Summary statistics of the
distribution of coalescence generation time are shown in Table 1.

The figures show a wide range of coalescence time captured by
each cutoff. Even with a high cutoff of 0.75, the maximum
coalescence time captured can be over 100,000 generations.
However, for both studies with both methods (FEstim or
IBDLD), the majority of generation times captured are below
1,000 for cutoffs of 0.75 or 0.5, with median generation times
captured of ∼160 to ∼290. Times to coalescence captured are
overall similar for the SLSJ andMontreal studies. Within each bin
of estimated HBD probability, FEstim captures higher time of
coalescence compared to IBDLD. Generation times captured are
also more variable for FEstim.

4 DISCUSSION

In this study, we simulated chromosomal segments using a
coalescent model combined with genealogical data from two
study samples from the French-Canadian founder population.
We used these simulations to compare two genomic measures of
HBD (FEstim and IBDLD) with HBD and relatedness measures
based on the study and coalescent/gene genealogies. We found that
the genealogies from the two studies had different levels of
inbreeding, with the SLSJ study genealogy displaying overall
higher levels of inbreeding in concordance with the settlement
history of the SLSJ region of Quebec (Roy-Gagnon et al., 2011;
Gauvin et al., 2014). Interestingly, the Montreal study had a few
outliers with high inbreeding and a non-negligible overall level of
inbreeding, indicating that even when recruiting participants in an
urban region of Quebec, high levels of relatedness and inbreeding
can result in the sample. Considering the effect of inbreeding on the
study results would be relevant, and using methods that take into
account hidden relatedness is necessary. This could be done using
genomic or genealogical estimates of relatedness incorporated into
mixed regressionmodels (Zhou and Stephens, 2012; Loh et al., 2015;

FIGURE 5 | Genomic- and genealogical/coalescent-based homozygosity by descent (HBD). Scatter plots with fitted regression lines of the average (across
simulation replicates) HBD probabilities estimated from the observed study and coalescent/gene genealogies and from the simulated genomic segments (by FEstim and
IBDLD) for (A) the SLSJ study and (B) the Montreal study.
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Ziyatdinov et al., 2018). The total length of segments HBD (obtained
with IBDLD) correlated well with the genealogical inbreeding
coefficients in both studies, as previously documented (McQuillan
et al., 2008; Roy-Gagnon et al., 2011).

In the two studies, the FEstim and IBDLD genomic-based
measures of HBD were well correlated when averaging across the
simulated chromosomal region but less so on a SNP-by-SNP basis.
The correlation between the two methods was also slightly higher in

FIGURE 6 |Genomic homozygosity by descent (HBD) and generation to coalescence. Scatter plots of genomic HBD probabilities and generations to coalescence
from the observed study and coalescent/gene genealogies. Results from the SLSJ study are shown in (A) for FEstim and (B) for IBDLD. Results from the Montreal study
are shown in (C) for FEstim and (D) for IBDLD. Boxplots show the distributions of generations to coalescence captured by setting different cutoffs of HBD probability to
determine the HBD status of each SNP for each individual.

TABLE 1 | Summary statistics of the distributions of the time to coalescence (generations) captured by setting different cutoffs of HBD probability (from FEstim or IBDLD) to
determine the HBD status of each SNP for each proband.

HBD
proba

SLSJ study Montreal study

Median IQRb Min Max Median IQRb Min Max

FEstim
[0.75, 1] 251 441 0 111,932 282 445 0 145,232
[0.5, 0.75) 959 1,347 0 104,619 973 1,352 0 119,188
[0.25, 0.5) 1,542 2,371 0 123,337 1,541 2,324 0 133,965
[0, 0.25) 8,109 11,957 0 155,952 8,071 11,859 0 145,232

IBDLD
[0.75, 1] 159 300 0 102,615 180 285 0 92,469
[0.5, 0.75) 461 655 0 82,028 445 594 0 69,544
[0.25, 0.5) 547 1,002 0 76,758 542 914 0 82,197
[0, 0.25) 7,828 11,935 0 155,952 7,775 11,837 0 145,232

aHBD probability cutoffs.
bInterquartile range.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 8088298

Burkett et al. Homozygosity-by-Descent Estimation

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the SLSJ study with higher inbreeding. Hence, the twomethods could
lead to different conclusions on the HBD status of specific SNPs,
especially in study samples with lower inbreeding. Both genomic
HBDmeasures correlatedwell with the genealogical/coalescent-based
measure in both study samples, although IBDLD estimates of HBD
probabilities were closer in values to the genealogical/coalescent-
based estimates. This could impact HBD status inference from
FEstim compared to IBDLD. The difference between the two
methods could be due to the fact that IBDLD uses all SNPs in
estimating the HBD probabilities since it models LD and thus does
not need to restrict the analysis to a subset of SNPs in low LD, as
required by FEstim. Gazal et al. (2014b) found that FEstim applied to
a sparse set of SNPs in very low LD (SNPs that have a pairwise
genotypic correlation r2 > 0.01 within a 50-marker window were
removed) or averaged over several subsets in low LD (of one SNP
selected every 0.5 cM) performed as well as or better than HMM
modeling of LD when estimating the inbreeding coefficient using
ROHs. In contrast, Han and Abney (2011) used a sparse map of one
marker every 1 cM and found that their HMM modeling LD was
superior in estimating the proportion of identical alleles shared by
descent. These studies did not directly evaluate the correspondence
between genomic-based estimates of HBD probability and HBD
probability obtained from the study and coalescent/gene genealogies.
When using FEstim, we selected LD-pruned subsets of SNPs based
on Howrigan et al. (2011) with less stringent LD pruning than Gazal
et al. but more stringent than Han and Abney. LD pruning could
affect the difference that we observed between the FEstim and IBDLD
estimates of HBD probabilities. Since the IBDLD genomic-based
estimation of HBD always incorporates LD, it is notmeant to be used
on LD-pruned subsets of SNPs. Thus, we could not compare IBDLD
and FEstim on the same set of SNPs in low LD.

In defining the genealogy/coalescent HBD measure used in the
comparison with the genomic HBD probability estimates, we
considered whether the MRCA occurred within 30 generations
(i.e., it could be within the study genealogy or within 30
generations) for each SNP and averaged over the region. Results
comparing this genealogy/coalescent HBD to the genomic HBD
probabilities (averaged over simulation replicates) shown in Figure 5
were very similar to those obtained when considering whether the
MRCA occurred within the study genealogy only instead of within
30 generations (data not shown). Considering 30 generations
captures only little additional variation for low HBD probabilities,
yielding low average HBD probabilities close to 0 instead of equal to
0 (data not shown). This reflects that most of the variability in
inbreeding is due to recent inbreeding (Keller et al., 2011) captured
by the deep genealogical data available in both studies.

When using genomic estimates of HBDprobabilities, a cutoff can
be used to determine if a SNP is HBD or not. A probability cutoff of
at least 0.5 is the default in the IBDLD software. Using a cutoff is
useful in order to infer HBD segments or to assess associations
between HBD at specific genomic regions and health-related
phenotypes (Ceballos et al., 2018). It is thus helpful to consider
the time toMRCA captured by different cutoffs. Our results indicate
that a cutoff of at least 0.5 in IBDLD probability mostly captures
generations to coalescence time under 500, while a cutoff of 0.75
mostly captures generations to coalescence time under 200.
Generations to coalescence captured were higher for FEstim,

likely reflecting the higher HBD probability estimates for FEstim
overall. As discussed above, LD-pruning parameters may influence
these results. Gazal et al. (2014b) recommend considering several
sparse subsets of SNPs, but this approach has been evaluated in the
context of genomic inbreeding coefficient estimation and not
directly for the genomic HBD probability estimates. More studies
comparing different LD-pruning approaches would be helpful. At all
cutoffs, generations to coalescence captured is quite variable on a
SNP-by-SNP basis. Considering segments of specific lengths may
reduce this variability. Based on a subset of 25 replicates of the SLSJ
simulations (yielding over one million SNPs), the correlation
between length of HBD segments within which SNPs are located
and generation time to coalescence were −0.23, −0.26, and −0.29 for
IBDLD HBD probability cutoffs for determining HBD of 0.5, 0.75,
and 0.9, respectively. This indicates that SNPs capturing recent
coalescent events are located in longer segments. Considering a
cutoff of IBDLD probability of at least 0.5 to determine if a SNP is
HBD, 75% of SNPs located in segments greater than 750 kb captured
generation times to coalescence of 30 years or less, while 98% of
SNPs located in segments smaller than 25 kb captured generation
times to coalescence over 500 years.

Our study has some limitations. First, the genealogical data from
the two French-Canadian studies are not complete. The incomplete
genealogical links could affect our simulation results in terms of the
generation time to coalescence. However, since our simulations are
based on these incomplete genealogies, themissing genealogical links
are taken into account in the simulation results. Second, it would be
interesting to vary the parameters used for the coalescent
simulations. Third, using genome-wide SNPs instead of a 1-Mb
segment would allow comparison with a wider range of HBD
detection methods (e.g., those based on ROHs) and would more
closely reflect studies of HBD, which are typically genome-wide. In
this study, we prioritized computational feasibility to be able to trace
back the generation of coalescence in a large number of simulation
replicates. Finally, studying more parameters and conditions (e.g.,
missing genotypic data) for LD pruning or the HMM LD modeling
would provide more guidance on the application of these
analysis tools.

In addition, the two study genealogies used in our simulations
come from participants selected based on disease status. Thus, our
results may not generalize to samples obtained without ascertaining
on a disease status. However, the two studies considered in these
simulations investigate complex diseases influenced bymany genetic
and environmental factors. Hence, although participants were
ascertained based on their disease status, we do not expect to see
a large difference in overall (genome-wide) inbreeding levels in the
study samples compared to the general French-Canadian founder
population. Indeed, the kinship and inbreeding levels observed in the
two studies correspond to those observed in Roy-Gagnon et al.
(2011) in the SLSJ and Montreal sub-populations. This study
examined kinship and inbreeding in sub-populations of the
French-Canadian founder populations that were not selected
based on disease status. Moreover, in the Montreal study, kinship
levels within and across disease or control groups were similar.
Within groups, the median genealogical kinship coefficients ranged
from 0.00027 (interquartile range, IQR � 0.00026) in the glaucoma
group to 0.00031 (IQR � 0.00028) in the control group, while across
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group, the median genealogical kinship coefficients ranged from
0.00026 (IQR � 0.00027) for AMD–glaucoma pairs of individuals to
0.00029 (IQR � 0.00028) for AMD–control pairs. However, in both
studies, we would expect IBD/HBD sharingmeasured locally around
a disease-causing genetic variant to be different in affected
individuals. In our simulations, we did not consider disease-
causing variants. We thus expect our results to be similar in
cohorts not ascertained based on a disease status with similar
levels of inbreeding. We also expect our results to be similar in
other founder populations with kinship/inbreeding structures that
are not too far from the two study genealogies included in our
simulations. The two studies that we considered include different
genealogical structures with different levels of kinship and
inbreeding. Our results are overall similar across the two studies.

In summary, our simulation results provide insight for the
interpretation of genomic estimates of HBD in a large founder
population. We studied two genealogical datasets from different
study designs yielding different levels of inbreeding. These
differences in inbreeding led to different genomic estimates of
HBD, which correlated well with genealogical/coalescent HBD.
Generation time to coalescence captured by genomic HBD
estimates was similar in the two studies. Time to coalescence
captured was very variable when considering each SNP separately,
but SNPs in longer segments were more likely to capture recent time
to coalescence, as expected. Our study suggests that estimating the
coalescent gene genealogy from the genomic data (Burkett et al., 2013;
Burkett et al., 2016; Karunarathna and Graham, 2019) and
combining these estimates with observed genealogical data when
available could provide valuable information for HBD inference.
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