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lncRNA–protein interactions play essential roles in a variety of cellular processes. However,
the experimental methods for systematically mapping of lncRNA–protein interactions
remain time-consuming and expensive. Therefore, it is urgent to develop reliable
computational methods for predicting lncRNA–protein interactions. In this study, we
propose a computational method called LncPNet to predict potential lncRNA–protein
interactions by embedding an lncRNA–protein heterogenous network. The experimental
results indicate that LncPNet achieves promising performance on benchmark datasets
extracted from the NPInter database with an accuracy of 0.930 and area under ROC curve
(AUC) of 0.971. In addition, we further compare our method with other eight state-of-the-
art methods, and the results illustrate that our method achieves superior prediction
performance. LncPNet provides an effective method via a new perspective of
representing lncRNA–protein heterogenous network, which will greatly benefit the
prediction of lncRNA–protein interactions.

Keywords: lncRNA–protein interaction, computational method, heterogenous network, network embedding,
LncPNet

1 INTRODUCTION

The non-coding RNA (ncRNA) plays important roles in biological processes, which can influence
human health on various levels (Louro et al., 2009). Existing studies have shown that less than 2% of
the human genome can be translated into proteins; while, over 80% of the genome has biochemical
functions (Djebali et al., 2012). In addition, over 70% of ncRNAs are lncRNAs (Yang et al., 2014). It is
demonstrated that lncRNAs play crucial roles in transcription, splicing gene expression (Ponting
et al., 2009; Guttman and Rinn, 2012; Qu and Adelson, 2012; Zhu et al., 2013), and have a close
relationship with complex diseases (Mercer et al., 2009; Yang et al., 2015). Therefore, lncRNA is of
great importance for understanding the mechanisms of biological processes.

Most of the functions of lncRNA are still unknown. One of themechanisms is lncRNAs usually function
by binding to chaperone proteins (Mercer et al., 2009). Hence, the basis for understanding the functions of
lncRNAs is to recognize the interactions between lncRNAs and proteins, which can help understand the
mechanism of physiological processes. Experimental methods for identifying protein–RNA interactions
include ChiRP, CHART, RIP, RIP-ChIP/Seq, and CLIP (Yang et al., 2015). Since these experimental
methods are often time-consuming and expensive, an effective computational method is an alternative way
for expanding our knowledge of lncRNA–protein interactions (Liu, 2021).

In recent years, some methods for predicting lncRNA–protein interactions have been developed.
Muppirala et al. applied random forest (RF) (Breiman, 2001) and support vector machines (SVMs)
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(Joachims, 1998) to classify an interaction only via the sequence
information of lncRNA and protein (Muppirala et al., 2011).
Lncpro was developed for predicting lncRNA–protein
associations (Lu et al., 2013) by three types of features based
on the Fisher linear discriminant approach, including classical
protein secondary structures and hydrogen-bond and van der
Waals propensities as well as six types of RNA secondary
structures. In 2016, IPMiner was proposed to predict
lncRNA–protein interactions from sequences, which employed
deep learning and further improved the performance using
stacked integration (Pan et al., 2016). Hu et al. introduced a
method named HLPI-Ensemble specifically for human
lncRNA–protein interactions (Hu et al., 2018). HLPI-Ensemble
adopts three methods to extract the features of lncRNA and
protein from sequences based on three mainstream machine
learning algorithms of SVM, RF, and extreme gradient
boosting (XGB) (Chen and Guestrin, 2016). Suresh et al.
proposed an approach based on SVM classifiers by integrating
sequence and structure features of the lncRNA and protein
(Suresh et al., 2015). Zhang et al. combined multiple
sequence-based features, lncRNA–lncRNA similarity and
protein–protein similarity, and predicted lncRNA–protein
interactions by RNA sequences and protein sequences as well
as known lncRNA–protein interactions (Zhang et al., 2018b). Li
et al. proposed a network-based computational method, which
used a random walk with restart based on heterogenous network
model (i.e., LPIHN), to infer the lncRNA–protein interactions (Li
et al., 2015). Although LPIHN employs the method of network
embedding, it does not consider the type of node. Moreover, these
ordinary random walks cannot well retain the local and global
information of the node from the network. LPLNP was developed
for calculating the linear neighborhood similarity in the feature
space and transferring it into the interaction space to predict
unobserved interactions by a label propagation process (Zhang
et al., 2018a). Yi et al. introduced a stacking ensemble-based
computational model to predict lncRNA–protein interactions,
called RPI-SE, which integrated XGB, SVM, and extremely
randomized trees (ExtraTree) (Geurts et al., 2006) algorithms
(Yi et al., 2020).

However, there are main drawbacks with the aforementioned
methods. First, most of their extracted features for proteins as well
as lncRNAs are hand-crafted, which consume much time and
require strong domain knowledge. What is more, the previous
studies attempt to construct a model to predict the
lncRNA–protein interactions of all species. All these may lead
to low robustness and overly optimistic predictions.

With the development of machine learning, network
representation learning algorithm has become a pressing
research task (Cui et al., 2019). In this study, we propose a
new lncRNA–protein interactions prediction model called
LncPNet based on heterogenous network embedding, which
can solve the aforementioned problems in the existing
methods. LncPNet is intentionally designed for predicting
lncRNA–protein interactions in human, and thus it is trained
by human lncRNA–protein interaction data. We apply network
embedding to automatically generate features for proteins and
lncRNAs. Specifically, a lncRNA–protein heterogenous network

is constructed with lncRNA–lncRNA similarity,
protein–protein similarity, and lncRNA–protein associations.
Then, network embedding extracts, lncRNA features and
protein features, are then fed into a SVM classifier to predict
lncRNA–protein interactions. Moreover, we compare the
performance of LncPNet with the previous models on the
same benchmark database. The results demonstrate that
LncPNet obtains predictive performance with higher
accuracy and robustness.

2 MATERIALS AND METHODS

2.1 Framework of LncPNet
Figure 1 shows the schematic flowchart of our proposed LncPNet
approach for predicting lncRNA–protein interactions based on
heterogenous network embedding. The proposed method briefly
includes three steps: 1) construction of a heterogenous network
based on lncRNA–lncRNA similarity, protein–protein similarity,
and known lncRNA–protein interactions; 2) the feature
extraction for given lncRNA and protein using network
embedding; and 3) training with SVM to predict novel
lncRNA–protein associations. More detailed descriptions for
each step are given below.

2.2 Datasets
In this study, we apply the known lncRNA–protein interaction
data from NPInter v2.0 (Yuan et al., 2014) and lncRNA sequence
data from NONCODE v6.0 (Zhao et al., 2016) as well as protein
sequence data from UniProt (The UniProt Consortium, 2017).
NPInter integrates experimentally verified functional interactions
between ncRNAs (excluding tRNAs and rRNAs) and other
biomolecules (proteins, RNAs, and genomic DNAs).
NONCODE aims to present a complete collection and
annotation of non-coding RNAs, especially long non-coding
RNAs (lncRNAs). The UniProt knowledge base is a large
resource of protein sequences and associated detailed
annotation. First, we extract the human lncRNA–protein
interactions from NPInter, which are filtered by restricting the
organism, the type of lncRNAs, and the type of proteins to
“Homo,” “ncRNA,” and “protein,” respectively. After data
cleaning, we obtain 7,523 experimentally validated human
lncRNA–protein interactions, including 3,052 lncRNAs and
212 proteins. Then, we map these lncRNA IDs and protein
IDs of NPInter into NONCODE IDs and UniProt IDs,
respectively. From these lncRNAs and proteins that we have,
we remove lncRNA and protein whose sequence information is
unavailable. Finally, we obtain a dataset with 4,578
lncRNA–protein interactions between 2,009 lncRNAs and 78
proteins. In these datasets, only known lncRNA–protein
associations (positive samples) are available. To train the
classifier, we choose negative samples by a subcellular
localization method with empirical tests of other alternatives.
So, we randomly choose the same number of samples from all
possible negative pairs. Meanwhile, the dataset is randomly
divided into two parts, where one part is used for training set
and the other is for testing. Among them, the quantity scale of the
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training set and test set is approximately 9:1, and the procedure is
repeated three times.

2.3 Construction of a lncRNA–Protein
Heterogenous Network
An lncRNA–protein heterogenous network is constructed with
lncRNA–lncRNA similarity, protein–protein similarity, and
known lncRNA–protein associations. lncRNA–lncRNA

similarity and protein–protein similarity are both quantified in
two different ways.

2.3.1 Jaccard Similarity
The Jaccard similarity (Bag et al., 2019) is an index used to
measure the similarity of two sets. In this study, the Jaccard
similarity is employed to calculate lncRNA–lncRNA similarities
and protein–protein similarities. We define Li � {p1, p2, ..., px}
and Pj � {l1, l2, ..., ly} as two sets of lncRNA i and protein j ,

FIGURE 1 | Flowchart of LncPNet.
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which contain associated proteins of lncRNA i and associated
lncRNAs of protein j, respectively. Given two lncRNAs, the
similarity between two lncRNAs is defined as follows:

J(Li, Lj) �
∣∣∣∣Li ∩ Lj

∣∣∣∣∣∣∣∣Li ∪ Lj

∣∣∣∣, (1)

where Li and Lj represent lncRNA i and lncRNA j associated
proteins sets, respectively.

2.3.2 BLAST Similarity
BLAST is a fundamental and basic local alignment search tool for
sequence similarity based on a local optimal alignment strategy
(Ye et al., 2006). Essentially, BLAST is a heuristic algorithm. It
first breaks the query sequence into sub-segments, called seed
words. Furthermore, the seed is compared with the pre-indexed
sequence, and the position with the higher continuous score of the
seed is selected for further extension by the dynamic programming
algorithm. The extension process will also be scored.When the score
is below a certain limit, the extension process will be terminated and
abandoned. Finally, a series of high-scored sequences are produced.
In this study, we establish two local databases for lncRNA and
protein. Then, the similarities between every two lncRNAs and every
two proteins are calculated via BLAST.

2.3.3 The Heterogenous Network
The lncRNA–lncRNA Jaccard similarity network can be
represented using a bipartite graph G11, as follows:

G11 � (L,E11, J), (2)

where L � {l1, l2, ...ln} represents the set of n lncRNAs, E11 �
{e1, e2, ...em} represents sets of edges between vertices, and li and
lj are connected if the Jaccard similarity is more than 0.5.

The lncRNA–lncRNA BLAST similarity network can be
represented using a bipartite graph G12, as follows:

G12 � (L,E12, B), (3)

where L � {l1, l2, ...ln} represents the set of n lncRNAs, E12 �
{e1, e2, ...em} represents sets of edges between vertices, and li and
lj are connected if the BLAST similarity e-value is less than 0.001.

Similarly, two bipartite graphs G21 and G22 represent
protein–protein similarities as follows:

G21 � (P, E21, J); (4)

G22 � (P,E22, B), (5)

where P � {p1, p2, ...pn} represents the set of n proteins, E21 �
{e1, e2, ...em} and E22 � {e1, e2, ...em} represent sets of edges
between vertices, and Pi and Pj are connected if their Jaccard
similarity is more than 0 and the BLAST similarity e-value is less
than 0.01.

Then, we construct two heterogenous networks. Among them,
one is by known lncRNA–protein interactions, lncRNA–lncRNA
similarities, and protein–protein similarities calculated with the
Jaccard similarity. The other is by known lncRNA–protein
interactions, lncRNA–lncRNA similarities, and protein-protein
similarities calculated with BLAST similarity.

2.4 Heterogenous Network Embedding
Network embedding can use less information to represent nodes
as dense- and low-dimensional vectors and has been rapidly
developed and applied recently (Cao et al., 2016; Hamilton et al.,
2018; Veličković et al., 2018; Zhang et al., 2020). According to the
heterogenous network constructed previously, we employ
network embedding to learn the low-dimensional latent
representations based on the structural and semantic
properties of the lncRNA–protein heterogenous network,
which are able to characterize the lncRNA–protein
associations. In LncPNet, we adopt the metapath2vec method
(Dong et al., 2017) for network embedding because it takes better
account of the type of nodes, which is suitable for representing the
heterogenous network. Generally, metapath2vec can be divided
into two steps. First, we employ meta-path-based random walks
to generate paths that can capture both the semantic and
structural correlations between different types of nodes and
then facilitate the transformation of heterogenous network
structures into metapath2vec′s skip-grams.

In detail, a meta-path scheme φ from V1 to Vl is defined as the
form of V1 ��������→R1 V2 ��������→R2 ...Vt ��������→Rt Vt+1... ����������→Rl−1 Vl,
where R � R1+R2+...+Rl−1 is defined as the composite relations
between node types V1 and Vl. In this study, we define “LPLPL”
and “LLPPLL” metapaths, in which “LPLPL” represents two
lncRNAs interact via a protein and similarly for “LLPPLL”.
For the heterogenous network G(V, E) and metapath
V1 ��������→R1 V2 ��������→R2 ...Vt ��������→Rt Vt+1... ����������→Rl−1 Vl, the
transition probability at step i is defined as follows (Yang
et al., 2019):

p(vi+1∣∣∣∣vik,φ) �
⎧⎪⎪⎨
⎪⎪⎩

1∣∣∣∣Nj(vik)
∣∣∣∣, (v

i+1, vik) ∈ E,ϕ(vi+1) � j

0, otherwise,

, (6)

where vj and vk, respectively, denote the jth and kth node type in
the path φ, Nj(vk) denotes the neighborhood of node vjk with
respect to the jth node type, and ϕ(v) is a constraint function to
make sure the node type of node v to be type j. In order to avoid
the disclosure of the test set information, we remove the
associations between lncRNA and protein in the test set
when the metapath is generated. Then, skip-gram learns
effective node representations for a heterogenous network
G(V, E) by maximizing the probability of having the
heterogenous context.

LncPNet employs metapath2vec on the aforementioned two
heterogenous networks to produce a 1 × 64 feature vector for
every vertex. Moreover, we splice the two feature vectors of every
lncRNA to obtain a 1 × 128 feature vector, which is the same to
every protein encoded.

2.5 Prediction of lncRNA–Protein
Interactions
With vector representations of lncRNA–protein associations as
inputs, which of dimensionality is 1 × 256, SVM is trained to
predict whether an lncRNA interacts with a protein. In particular,
our training set and test set are pre-divided, and we conduct the
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procedure three times. What is more, we choose radial basic
function (RBF) as the SVM kernel function.

2.6 Performance Evaluation
Precision (PRE), recall (REC), specificity (SPE), accuracy (ACC),
Matthew’s correlation coefficient (MCC), and F1-score are the
most common classification model evaluation indicators. They
can be defined as (Sokolova et al., 2006):

PRE � TP

TP + FP
; (7)

REC � TP

TP + FN
; (8)

SPE � TN

FP + TN
; (9)

ACC � TP + TN

TP + TN + FP + FN
; (10)

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ ; (11)

F1 � 2 × precision × recall

precision + recall
, (12)

where TP, FP, TN, and FN is the number of true positives, false
positives, true negatives, and false negatives, respectively.

3 RESULTS AND DISCUSSION

3.1 Performance of LncPNet
To evaluate the prediction performance of LncPNet, we test RF
(Breiman, 2001), naive Bayesian (NB) (Elkan, 1997), and SVM
(Joachims, 1998) classifiers. As shown in Figure 2, SVM achieves
the AUC of 0.971 on the NPInter v2.0 dataset. It increases by 4.7%
over NB with the AUC of 0.924 and decreases by 0.1% over RF
with the AUC of 0.972. But from Figure 3, SVM has comparable
performance with RF. Thus, we choose SVM as our classifier
implemented in LncPNet. What is more, we test different
negative samples producing approaches on this model. Finally,

LncPNet employs the SVM classifier to train the model and
adopts the subcellular localization method to produce negative
samples. For comparison study, we evaluate the performance of
CF (Sarwar et al., 2001), RWR (Köhler et al., 2008), LPBNI (Ge
et al., 2016), SFPEL-LPI (Zhang et al., 2018b), LPIHN (Li et al.,
2015), LPLNP (Zhang et al., 2018a), RPI-SE (Yi et al., 2020), and
IPMiner (Pan et al., 2016) on NPInter v2.0. Meanwhile, the
performance of different sub-models has also been identified.
In order to evaluate the performance of these methods
comprehensively, we employ the ACC, PRE, REC, SPE, MCC,
AUC, and F1 as the evaluation metrics. AUC (Huang and Ling,
2005) is the area under the ROC (Fawcett, 2006) curve, which is
an evaluation dedicated to the classification model. In LncPNet,
the average PRE, REC, SPE, ACC, MCC, F1, and AUC is 0.908,
0.957, 0.903, 0.930, 0.860, 0.932, and 0.971, respectively.

3.2 Comparisons With Sub-Models
In order to fully evaluate the performance, we compare LncPNet
with three sub-models on NPInter v2.0. LncPNet model
construction is mainly divided into three steps. Specifically, we
construct a heterogenous network with lncRNA–lncRNA
similarities, protein–protein similarities, and known
lncRNA–protein interactions, where lncRNA–lncRNA
similarities and protein–protein similarities are calculated by
the Jaccard similarity and BLAST similarity, respectively.
Then, a feature vector is generated from the heterogenous
network with network embedding (metapath2vec) to
characterize a pair of lncRNA and protein. Finally, with the
feature vectors with class labels as inputs, SVM is trained to
predict potential lncRNA–protein associations. The construction
of heterogenous network contains four types of different
strategies. In approach 1, only known lncRNA–protein
interactions (KNet) are used to construct the network; in
approach 2, known lncRNA–protein interactions and Jaccard
similarity (KJNet) are used to construct the network; in approach
3, known lncRNA–protein interactions and BLAST similarity
(KBNet) are used to construct the network; and in approach 4,
known lncRNA–protein interactions, Jaccard similarity, and
BLAST similarity (LncPNet) are used to construct the

FIGURE 2 | ROC curves of SVM, RF, and NB.

FIGURE 3 |Histogram of the six evaluation criteria achieved by SVM, RF,
and NB models.
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network. Figure 4 shows the ROC curve. Table 1 illustrates the
prediction results of different integration strategies on NPInter
v2.0. From Table 1, we can find the experiments of LncPNet
integrate the advantages of different branch models, achieving
better performance than those of sub-models.

3.3 The Strategy of Negative Sampling
Missing negative samples has always been a problem in predicting
molecular interactions, which leads to a wide variety of negative
sample generation methods. However, few studies have proved
how to generate negative samples is the most reliable. In this
section, we summarize three commonly used negative sample
construction methods. The first one, and also the most popular
one, is the random pairing method. Negative samples are
randomly sampled from the possible lncRNA–protein pairs
except the positive samples. The second one is the method of
subcellular localization, which is based on the assumption that the
lncRNA and protein that are not in the same subcellular location
would not interact with each other. Therefore, proteins and
lncRNAs that are not in one organelle are regarded as
negative sample pairs. The third one is the network distance
method, which calculates the shortest-path distance between each
lncRNA and protein in the prior interaction network, and treats
the protein and lncRNA that are greater than a certain distance
threshold, for e.g., six, as a negative sample pair.

According to these rules, we further categorize the distance
method of selecting negative samples into three types of
experiments: 1) “Distance_3”: the negative samples with a

distance equal to 3; 2) “Distance_5”: the negative samples with
a distance greater than 1 and less than or equal to 5; and 3)
“Distance_7”: the negative sample with a distance greater than 1
and less than or equal to 7. To avoid the imbalance problem when
training the classifier, we choose negative samples with the same
number of positive samples in the experiments. As presented in
Figure 5, the subcellular localization method and “Distance_7”
achieve a relatively higher value than the random pairing,
“Distance_3” and “Distance_5” methods. Meanwhile, in the
three distance-based methods, “Distance_3,” “Distance_5,”
and “Distance_7”, we find that as the distance of selecting
negative sample increases, the AUC value becomes higher.
This also validates the rationality of our proposed strategy and
the former assumption in selecting negative samples. Table 2
shows that the subcellular localization method achieves the
best prediction performance according to the six evaluation
metrics. This clearly shows that different negative samples
have a concrete impact on the model, and more reliable
negative samples will make LncPNet to achieve better
prediction results. Thus, we employ the subcellular
localization method as our negative sample generation
method in LncPNet.

3.4 Comparison With Other
State-Of-The-Art Models
In order to further demonstrate the reliability and robustness of
prediction by the LncPNet method, we compare LncPNet with

FIGURE 4 | ROC curves of LncPNet and sub-models.

TABLE 1 | Prediction results of LncPNet and sub-models.

Network PRE REC SPE ACC MCC F1 AUC

KNet 0.898 0.873 0.901 0.887 0.774 0.885 0.953
KJNet 0.887 0.914 0.884 0.899 0.799 0.900 0.959
KBNet 0.875 0.982 0.859 0.921 0.848 0.925 0.962
LncPNet 0.908 0.957 0.903 0.930 0.860 0.932 0.971

Every bold value means it corresponds to the highest value in the evaluation indicator.

FIGURE 5 | AUC values of Random, Subcellular, “Distance_3,”
“Distance_5,” and “Distance_7” (Random, random-pairing method;
Subcellular, subcellular localization method).

TABLE 2 | Performance comparison of five negative sample models.

Method PRE REC SPE ACC MCC F1 AUC

Random 0.870 0.946 0.856 0.901 0.808 0.905 0.960
Subcellular 0.908 0.957 0.903 0.930 0.860 0.932 0.971
Distance_3 0.846 0.820 0.851 0.835 0.672 0.833 0.910
Distance_5 0.863 0.915 0.854 0.884 0.771 0.888 0.950
Distance_7 0.905 0.933 0.903 0.918 0.837 0.919 0.973

Every bold value means it corresponds to the highest value in the evaluation indicator.
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the eight state-of-the-art methods, namely IPMiner, RPI-SE,
LPLNP, RWR, CF, SFPEL-LPI, LPBNI, and LPIHN, on the
same benchmark of NPInter v2.0. These methods are typical
methods that have been proposed in recent years, and they can be
divided into three categories:

(1) The first type of method is mainly based on sequence
information, structural information, evolutionary
knowledge, or physical and chemical properties to mine
the distinguishing characteristics of the lncRNA and
protein. For example, RPI-SE applied the position weight
matrix combined with Legendre moments to obtain protein
evolutionary information and k-mer sparse matrix to
extract feature of lncRNA sequences. SFPEL-LPI used
sequence information to build a feature projection
ensemble-learning frame to predict lncRNA–protein
interactions.

(2) The second type of method is mainly to use stacked
autoencoders to extract high-level hidden features of
proteins and lncRNAs. For example, IPMiner extracted
raw sequence composition features from lncRNA and
protein sequences, high-level features by applying stacked
autoencoder, and fine-tuning features using label
information, and then a training ensemble strategy such as
RF classifier to robustly predict the interactions between
lncRNAs and proteins.

(3) The third type of method mainly uses topological
information to extract lncRNA and protein features. For
example, LPLNP employed a linear neighborhood
propagation method, to predict lncRNA–protein
interactions. LPBNI used a bipartite network–based
method for predicting lncRNA–protein interactions. RWR
and CF are also the same type of methods. LPIHN
constructed a lncRNA–protein heterogenous network and
used a random walk with restart to infer novel
lncRNA–protein interactions.

We replicate all these methods on the same dataset for fair
comparisons. As shown in Table 3, LncPNet achieves a PRE
of 0.908, SPE of 0.903, ACC of 0.930, MCC of 0.860, and F1
of 0.932, which outperform all the other methods. REC is a
little worse than the best method, IPMiner. All these
performance comparisons indicate that LncPNet has
higher reliability in predicting lncRNA–protein

interactions. Figure 6 illustrates the ROC curves with
AUCs of these methods. The results further demonstrate
the effectiveness and advantage of our method, LncPNet.
Although we use the heterogenous network with LPIHN, our
metapath2vec method takes into account the node type and
transition probability simultaneously, which makes it
achieves better performance.

3.5 Case Study
In order to further evaluate the reliability of our prediction
model, we propose a case study to verify its performance. As
mentioned earlier, the dataset we used in LncPNet is NPInter
v2.0, and currently NPInter has been updated to NPInter v4.0,
which includes some novel lncRNA–protein interaction pairs.
We test to predict the new lncRNA–protein interactions
confirmed in NPInter v4.0 based on known interactions in
NPInter v2.0. Specifically, we predict the 23 pairs of
interactions newly discovered in NPInter v4.0 and the
generated 23 pairs of negative samples and rank them
according to the scores. As shown in Table 4, we list the top
ten interactions predicted by LncPNet, in which seven novel
interactions are confirmed in the new version of NPInter.
Figure 7 illustrates the constructed network diagram. The
case study provides more evidence for the effectiveness,

TABLE 3 | Performance comparison of LncPNet and eight available methods.

Method PRE REC SPE ACC MCC F1 AUC

CF 0.583 0.894 0.361 0.627 0.301 0.706 0.761
RWR 0.739 0.798 0.717 0.757 0.517 0.767 0.830
LPBNI 0.740 0.840 0.698 0.769 0.548 0.785 0.859
SFPEL-LPI 0.769 0.920 0.724 0.822 0.657 0.838 0.916
LPIHN 0.807 0.966 0.769 0.867 0.750 0.879 0.938
LPLNP 0.832 0.943 0.810 0.876 0.761 0.884 0.944
RPI-SE 0.877 0.974 0.863 0.919 0.843 0.923 0.959
IPMiner 0.886 0.970 0.875 0.922 0.849 0.926 0.961
LncPNet 0.908 0.957 0.903 0.930 0.860 0.932 0.971

Every bold value means it corresponds to the highest value in the evaluation indicator.

FIGURE 6 | ROC curves of LncPNet and eight comparing methods.

TABLE 4 | Top 10 novel interactions predicted by LncPNet.

Rank lncRNA Protein Whether confirmed

1 NONHSAT032174.2 O00425 Yes
2 NONHSAT017141.2 O00425 Yes
3 NONHSAT125498.2 P61978 Yes
4 NONHSAT048327.2 Q01844 Yes
5 NONHSAT017141.2 O00571 No
6 NONHSAT125498.2 Q9NW64 Yes
7 NONHSAT017141.2 P78332 No
8 NONHSAT048327.2 Q9NW64 No
9 NONHSAT125498.2 Q8IYB8 Yes
10 NONHSAT067050.2 P70372 Yes
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flexibility, and extendibility in predicting lncRNA–protein
interactions.

CONCLUSION

In this study, we proposed LncPNet based on a heterogeneous
network embedding method for predicting lncRNA–protein
interactions. The experimental results demonstrated that
LncPNet achieves high prediction performance on our
benchmark dataset and yields better results compared to other
methods. As for the lncRNA–protein interaction predictive
task is a nonnegative sample problem, we provided a new

perspective into network embedding by comparing three
kinds of methods for negative sampling. In addition, the case
study results further demonstrated the effectiveness of
LncPNet. The network embedding method is a general node
representing method. The framework of LncPNet can be
expanded to other interaction predictive task, such as
miRNA–protein interaction prediction and lncRNA–disease
interaction prediction.
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