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Pancreatic adenocarcinoma is one of the leading causes of cancer-related death
worldwide. Since little clinical symptoms were shown in the early period of pancreatic
adenocarcinoma, most patients were found to carry metastases when diagnosis. The lack
of effective diagnosis biomarkers and therapeutic targets makes pancreatic
adenocarcinoma difficult to screen and cure. The fundamental problem is we know
very little about the regulatory mechanisms during carcinogenesis. Here, we employed
weighted gene co-expression network analysis (WGCNA) to build gene interaction
network using expression profile of pancreatic adenocarcinoma from The Cancer
Genome Atlas (TCGA). STRING was used for the construction and visualization of
biological networks. A total of 22 modules were detected in the network, among
which yellow and pink modules showed the most significant associations with
pancreatic adenocarcinoma. Dozens of new genes including PKMYT1, WDHD1,
ASF1B, and RAD18 were identified. Further survival analysis yielded their valuable
effects on the diagnosis and treatment of pancreatic adenocarcinoma. Our study
pioneered network-based algorithm in the application of tumor etiology and discovered
several promising regulators for pancreatic adenocarcinoma detection and therapy.
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INTRODUCTION

Pancreatic cancer ranks the 7th leading cause of cancer mortality worldwide with increasing incidence
and poor outcomes (McGuigan et al., 2018). According to the SEER registry, 60,430 new cases and
48,220 deaths of pancreatic cancer have been estimated in the United States in 2021 (Siegel et al., 2021).
And pancreatic cancer is predicted to rise from being the 4th to the 2ndmost common cause of cancer-
related death in the United States by 2030 (Rahib et al., 2014). Pancreatic adenocarcinoma and its
variant are the most prevalent subtype of pancreatic cancer and attributed to approximately 90% of all
cases (Feldmann et al., 2007). Pancreatic intraepithelial neoplasia, intraductal papillary mucinous
neoplasms and mucinous cystic neoplasms are the best characterized precursors of this cancer
(Esposito et al., 2014). Due to the insidious nature of pancreatic adenocarcinoma, most patients
have already carried metastases such as node upon diagnosis, resulting in 5-years relative survival of
about 10% (Luchini et al., 2016; Siegel et al., 2021). Although great efforts including surgical resection,
adjuvant chemotherapy and serum biomarker CA19-9 have been made in early detection and
treatment of pancreatic adenocarcinoma, medical limitations still exist because of low sensitivity
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and high expenses. Recently, several driver genes including KRAS,
CDKN2A, TP53 and SMAD4 have been identified from an
evolutionary perspective (Vogelstein and Kinzler, 2015;
Makohon-Moore and Iacobuzio-Donahue, 2016). Another study
has explored novel immune-related gene signatures in pancreatic
adenocarcinoma (Chen B. et al., 2021). However, the above
evidence is far from adequate to provide therapeutic targets as
multiple initiating events embedded with genes were undiscovered
in pancreatic adenocarcinoma. Hence, it is imperative to identify
new risk genes and their regulatory network in order to elucidate
pancreas carcinogeneticmechanisms as well as guide researchers to
develop new therapeutic strategies.

As a systematic method used in oncology research that aims
at finding co-expressed genes through calculating gene
connectivity, weighted gene co-expression network analysis
(WGCNA) can analyze the relationship between modules and
specific traits followed by clustering genes and forming
modules (Langfelder and Horvath, 2008; Chang et al., 2013;
Yang et al., 2018). It is widely used in exploring functionality of
the whole transcriptome for its particularly powerful
computing capability (Zhou et al., 2018). In this study, we
employed WGCNA to build a gene interaction network using
the expression profile of pancreatic adenocarcinoma from The
Cancer Genome Atlas (TCGA). A total of 22 modules were
detected in the network, among which yellow and pink
modules showed the most significant associations with
pancreatic adenocarcinoma. Dozens of new genes including
PKMYT1, WDHD1, ASF1B, and RAD18 were identified.
Further survival analysis yielded their valuable effects on
the progression of pancreatic adenocarcinoma.

METHODS

Pancreatic Adenocarcinoma
RNA-Sequencing Datasets
The RNA-sequencing data of 175 pancreatic adenocarcinoma
patients was downloaded from the TCGA database (https://
portal.gdc.cancer.gov/). As previously described, the gene
expression levels were quantified as FPKM (fragments per
kilobase per million mapped reads) using TopHat and HTSeq-
count (Kim et al., 2013; Anders et al., 2015). The TCGA sample
information was listed in Supplementary Material S1. Within
the 175 tumor samples, 2 samples did not have stage information,
7 samples were in stage I, 24 samples were in stage II, 139 samples
were in stage III, and 3 samples were in stage IV. The sample
distribution also stressed the importance of identification of new
genes for diagnosis and therapy.

Co-Expression Network Construction
R package WGCNA was used for hub genes screening and co-
expression of gene pair detection. Elements in the gene co-
expression matrix were the weighted values of correlation
coefficient between gene pairs. The soft-thresholding function
was applied to calculate the power parameter. Dynamic tree cut
method was utilized to identify co-expressed gene modules and a
dendrogram of genes was produced via a hierarchical clustering

approach based on dissimilarity of the unsigned topological
overlap matrix (TOM). Finally, genes with similar expression
profiles were grouped into network modules.

Enrichment Analysis of Module Genes
R package clusterProfiler was used to perform functional
enrichment analysis on clustered genes in pink and yellow
modules. A hypergeometric distribution test was applied to
detect enrichment terms, and p values were adjusted by false
discovery rate (FDR) method with a cutoff FDR <0.05 (Yu et al.,
2012).

Visualization of Gene Networks
Construction and analysis of networks were carried out using
STRING (11.0) (Szklarczyk et al., 2019).

The Survival Analysis of Hub Genes
There were 175 pancreatic adenocarcinoma patients with the
overall, disease free survival time (months) and the survival
status. We performed survival analysis using the Cox
proportional hazard regression model on these samples
(Andersen and Gill, 1982). For each gene, the patients were
divided into two groups: the patients with expression levels
smaller than the median and the patients with expression
levels greater than or equal to the median. The Kaplan-Meier
plot was used to describe the survival curves of these two groups
of patients. The significance of the survival difference between
these two patient groups was evaluated by the log-rank test p
value. If the p value was less than 0.05, its survival was considered
as significantly different. The R package survival (https://CRAN.
R-project.org/package�survival) was used to perform the survival
analysis.

RESULTS AND DISCUSSION

Construction of Co-Expression Network
We used the Pearson’s correlation coefficient to cluster the
samples in TCGA. After removing outliers, we drew a sample
clustering tree (Figure 1A). The weighted gene co-expression
network was constructed from 60,483 genes through WGCNA
approach. Here, soft-thresholding power was set to be twelve
to satisfy scale-free topology of the network (Figure 1B), in
which R2 was used to check how well the network fit the scale
freeness. And we detected 22 modules in this network, whose
relationship was shown in a cluster dendrogram (Figure 1C).
The number of members in different modules varied widely.
Besides the grey module comprised of many un-classified
members, turquoise module contained the maximum 1,508
genes, while the minimum 36 genes were included in darkred
module.

Each module represented a group of genes with similar
expression profiles across samples. Next, we quantified
module-trait associations (Supplementary Material S2),
among which the pink and yellow modules showed the most
significant associations with pancreatic adenocarcinoma. The
corresponding correlation coefficients of pink and yellow
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modules were 0.3 (P � 4 × 10−5) and −0.28 (P � 2 × 10−4),
respectively. Clearly, Gene Significance (GS) and Module
Membership (MM) analysis illustrated that genes highly
significantly associated with pancreatic adenocarcinoma were
also the most important elements of modules associated with
pancreatic adenocarcinoma (Figure 1D).

Enrichment Analysis of Module Genes
Next we performed Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis of these two
modules. As presented in Figures 2A,B, genes in the pink module
were significantly enriched in cell cycle, DNA replication, nuclear
division, and regulation of cell cycle phase transition with adjusted

FIGURE 1 | Identification of modules associated with the clinical traits of pancreatic adenocarcinoma. (A) Clustering dendrogram of 175 samples. (B) The
relationship between soft threshold (power) and network properties. Left panel: The relationship between soft-threshold (power) and scale-free topology. Right panel:
The relationship between soft threshold (power) and mean connectivity. We set the soft threshold (power) to be twelve to satisfy scale-free topology of the network. (C)
Total genes were clustered in 22 modules. Each module was marked with one color. (D) A scatterplot of Gene Significance (GS) for disease vs. Module
Membership (MM) in the pink (left panel) and yellow (right panel) modules.

FIGURE 2 | Functional enrichment analysis of genes in the pink module. (A)GO analysis showed the top 10 enriched biological processes in the pink modules. (B)
KEGG analysis showed the top 10 enriched pathways in the pink modules.
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p value smaller than 0.05, while genes in the yellow module were
not enriched in any terms or pathways (data not shown),
conferring the importance of these biological functions on
pancreatic adenocarcinoma development. And genes in the pink
module were selected for the following functional analysis.

Identification of Hub Genes
To further elucidate gene regulatory relationship in the module,
we constructed co-expressed gene networks in the pink module
(Supplementary Material S3) and identified master regulators
with most connections with others. Finally, PKMYT1, WDHD1,
ASF1B, and RAD18 stood out in the network. Next, we
investigated their expression patterns in pancreatic
adenocarcinoma. As expected, PKMYT1 (Figure 3A),
WDHD1 (Figure 3B), ASF1B (Figure 3C), and RAD18
(Figure 3D) were significantly up-regulated in tumor tissues
compared to adjacent normal tissues from TCGA,
emphasizing their promising roles in carcinogenesis.

Functional Analysis of Survival-Associated
Key Genes
Protein kinase, membrane associated tyrosine/threonine
(PKMYT1), also known as MYT1, is a member of the
WEE1 family of protein kinases, exerting key effects on
Golgi and endoplasmic reticulum assembly (Chen et al.,
2020). PKMYT1 was firstly recognized as a kinase capable
of phosphorylating Cdc2 at Thr14 and Tyr15 (Mueller et al.,
1995). Increasing studies have revealed its negative roles in cell
cycle progression through suppressing cell cycle-associated
factors, such as Cyclin A and CDK1 (Varadarajan et al.,
2016), leading to its promising relationship with cancer.
Previous studies have shown that PKMYT1 promoted cell
proliferation and apoptosis resistance in multiple cancers,
such as esophageal squamous cell carcinoma (Zhang et al.,
2019), non-small cell lung cancer (Sun et al., 2019), prostate
cancer (Wang et al., 2020), hepatocellular carcinoma (Liu

FIGURE 3 | Relative mRNA expression of four hub genes in pancreatic adenocarcinoma and adjacent normal tissues from TCGA. (A) PKMYT1. (B)WDHD1. (C)
ASF1B. (D) RAD18. The expressions of these genes were significantly up-regulated in tumor samples.
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et al., 2017), and gastric cancer (Zhang et al., 2020). Also
overexpression of PKMYT1 predicted unfavorable prognosis
in breast cancer (Liu Y. et al., 2020) and clear cell renal cell
carcinoma (Chen et al., 2020), implicating it as an appealing
therapeutic target. Nevertheless, an understanding of the
correlation between PKMYT1 and pancreatic
adenocarcinoma remains elusive, and our Kaplan-Meier
analysis indicated, for the first time, better overall survival
in the low transcription group approaching significance
(Figure 4A), consistent with its tumor promotion roles in
other cancers. However, disease free survival time did not show
difference between low and high expression groups of
PKMYT1 (Figure 5A). Through our network-based
analysis, we also emphasized its crucial roles in the
regulation of cell cycle (Figure 2A), which provided
experimental clues for further investigations.

WD repeat and high-mobility group box DNA-binding
protein 1 (WDHD1), an orthologue of Ctf4 in budding
yeast and Mcl1 in fission yeast, is a DNA-binding protein
involved in DNA replication and cell cycle (Abe et al., 2018).
Recent studies have observed the overexpression of WDHD1
in the great majority of lung cancers and esophageal squamous
cell carcinomas (Sato et al., 2010). WDHD1 has also been

reported to facilitate the abrogation of G1 checkpoint upon
DNA damage, leading to genomic instability and eventually
tumorigenesis (Zhou et al., 2020). Moreover, WDHD1 could
accelerate cell proliferation, cell viability, and metastasis in
several cancers including cholangiocarcinoma and breast
cancer (Sato et al., 2010; Liu et al., 2019; Ertay et al., 2020;
Zhou and Chen, 2021). In accordance with the above research,
both our overall and disease free survival analysis exhibited
that high levels of WDHD1 correlated with poor patient
outcome (Figures 4B, 5B), confirming the oncogenic
function of WDHD1 in pancreatic adenocarcinoma and
expanding it roles in cancer biology which need further
validations.

As one of histone H3-H4 chaperone anti-silencing function
1 (ASF1) isoforms, ASF1B plays important roles in chromatin-
based progression of cellular DNA replication and
transcription regulation, especially in cell proliferation (Paul
et al., 2016). Accumulating evidence has shown that up-
regulation of ASF1B stimulated cancer cell proliferation,
DNA replication and migration, accompanied by restrained
cell cycle arrest and apoptosis (Misiewicz-Krzeminska et al.,
2013; Han et al., 2018; Zhou et al., 2019; Liu X. et al., 2020;
Zhang et al., 2021), which was also consistent with our

FIGURE 4 |Overall survival analysis of the four hub genes in pancreatic adenocarcinoma based on the Kaplan-Meier plotter. (A) PKMYT1. (B)WDHD1. (C) ASF1B.
(D) RAD18. The high expressions of these four genes were associated with high risk.
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enrichment analysis of module genes (Figure 2A). In addition,
several studies have underlined the important prognostic
impact of ASF1B on a variety of cancers (Corpet et al.,
2011; Chen Z. et al., 2021; Feng et al., 2021). Another
exciting finding was that ASF1B could regulate immune
infiltration through affecting immune-related genes and
pathways such as antigen processing and presentation and
natural killer cell-mediated cytotoxicity (Hu et al., 2021; Zhan
et al., 2021), conferring its strong hints on potential
immunotherapeutic target for several malignancies. The
both overall and disease free survival analysis also
demonstrated that the high expression of ASF1B was
associated with high risk (Figures 4C, 5C), suggesting it
serving as a tumor promoter in pancreatic adenocarcinoma.

RAD18 is an E3 ubiquitin ligase best known for its key roles
in the monoubiquitylation of proliferating cell nuclear antigen
(PCNA) in response to stalled replication forks, thus initiating
DNA damage repair signaling (Williams et al., 2011; Kanu
et al., 2016; Yang et al., 2017). Increasing reports have shown
that RAD18 enhanced motility and invasiveness of cancerous
cells, evidenced by the positive correlations between RAD18
and vital mediators of cell invasion and proliferation such as
MMP-1 and MMP-9 (Zou et al., 2018; Xie et al., 2019).

Meanwhile, a recent study has found elevated RAD18 was
associated with gastric cancer progression and poor prognosis
(Baatar et al., 2020), considering it as a novel prognostic
biomarker. Accordingly, both overall and disease free
survival time was significantly higher in patients with low
RAD18 expression, compared with the high RAD18 expression
group (Figures 4D, 5D), highlighting its potential values in the
treatment and prognosis of pancreatic adenocarcinoma.

CONCLUSION

Gene correlation approaches provide preliminary steps toward
genetic interaction networks and offer clues about the function of
unknown genes. Here, we employed WGCNA to identify novel
hub genes including PKMYT1,WDHD1, ASF1B, and RAD18, and
proposed for the first time their oncogenic roles during pancreatic
adenocarcinoma progression. Further survival analysis verified
their effective roles in predicting prognosis. In-depth
mechanisms explaining their ability to allow neoplastic cells to
breach tumorigenic barriers are needed. Meanwhile, we should not
ignore the limitations of WGCNA as it is based on transcriptomic
data and insufficient to reflect cell status globally, in which

FIGURE 5 | Disease free survival analysis of the four hub genes in pancreatic adenocarcinoma based on the Kaplan-Meier plotter. (A) PKMYT1. (B)WDHD1. (C)
ASF1B. (D) RAD18. The high expressions of WDHD1, ASF1B and RAD18 were associated with high risk.
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multilayer data including mutations, copy number variations and
proteomic data is also needed to be taken into account for bettering
understanding mechanisms triggering cancer. Also, stronger
computing power and more reasonable statistical methods
should be stressed to improve gene correlation analysis.
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