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Human autologous sperm freezing involves ejaculated sperm, and testicular or epididymal
puncture sperm freezing, and autologous sperm freezing is widely used in assisted
reproductive technology. In previous studies, researchers have tried to cryopreserve sperm
from mammals (rats, dogs, etc.) using a —80°C freezer and have achieved success. It is
common to use liquid nitrogen vapor rapid freezing to cryopreserve human autologous sperm.
However, the operation of this cooling method is complicated, and the temperature drop is
unstable. In this study, we compared the quality of human ejaculation and testicular sperm after
liquid nitrogen vapor rapid freezing and —80°C freezing for the first time. By analyzing sperm
quality parameters of 93 ejaculated sperm and 10 testicular sperm after liquid nitrogen vapor
rapid freezing and —80°C freezing, we found reactive oxygen species (ROS) of sperm of the
—80°C freezer was significantly lower than liquid nitrogen vapor rapid freezing. Regression
analysis showed that progressive motility, ROS, and DNA fragmentation index (DFl) in post-
thaw spermatozoa were correlated with sperm progressive motility, ROS, and DFI before
freezing. For the freezing method, the —80°C freezer was positively correlated with the sperm
progressive motility. Among the factors of freezing time, long-term freezing was negatively
correlated with sperm progressive motility and ROS. Although freezing directly at —80°C freezer
had a slower temperature drop than liquid nitrogen vapor rapid freezing over the same period,
the curves of the temperature drop were similar, and slight differences in the freezing point were
observed. Furthermore, there were no statistically significant differences between the two
methods for freezing testicular sperm. The method of direct —80°C freezing could be
considered a simplified alternative to vapor freezing for short-term human sperm storage. It
could be used for cryopreservation of autologous sperm (especially testicular sperm) by in vitro
fertilization centers.

Clinical Trial Registration: (website), identifier (ChiCTR2100050190).

Abbreviations: DFI, DNA fragmentation index; FITC-PSA, fluorescein isothiocyanate-pisum sativum agglutinin; HDS, high
DNA stainability; ICSI, intracytoplasmic sperm injection; IVF, in vitrofertilization; MMP, mitochondrial membrane potential;
RT, room temperature; ROS, reactive oxygen species; SCSA, the sperm chromatin structure assay; CASA, computer-assisted
semen analysis; SPSS, statistical product and service solutions; SD, standard deviations; TESA, testicular sperm aspiration; ZP,
zona pellucida, AR, acrosome reaction.
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INTRODUCTION

Human sperm cryopreservation has been widely used for human
reproduction. Autologous sperm freezing is the general method
applied in vitro fertilization (IVF) laboratories in a variety of
circumstances ranging from fertility preservation for cancer
patients to the clinical management of male infertility
(Trottmann et al., 2007).

The first attempt to freeze semen dates can be traced back to 1776
when Abbot et al. (Royere, et al., 1996) reported that snow could store
sperm by cooling. Advances in cryobiology seen over the past decades
and cryoprotective medium, in particular, have significantly aided
sperm freezing-resuscitation technology (Sherman, 1973). A variety
of freezing methods have been discovered with the development of
cryopreservation technology: slow freezing, liquid nitrogen vapor
rapid freezing, and vitrification (Tao et al, 2020). Currently, the
mainstream method for semen freezing or freezing a small number of
spermatozoa samples is liquid nitrogen vapor rapid freezing (vapor
rapid freezing) (Huang et al., 2020). The standard cryopreservation
method normally involves freezing human sperm in liquid nitrogen
vapor to —80°C and then stored in liquid nitrogen. Previous reports
had shown that samples are placed at 1-10 cm above the liquid
nitrogen surface for 10-30 min, followed by storage in liquid nitrogen
(Gwatkin, 1991; Le et al., 2019). Vapor rapid freezing cannot control
the rate of temperature drop caused by the volatilization of liquid
nitrogen (Di Santo et al., 2012). Another limitation of liquid nitrogen
vapor rapid freezing is that it cannot cool many semen samples
simultaneously.

Freezing semen samples by directly placing them in a —80°C
freezer is the most practical means because a —80°C freezer is
readily available. A few researchers have reported that several
mammalian spermatozoa can be successfully frozen by direct
placement in a —80°C freezer. For example, Marcello Raspa
et al. (2017), Raspa et al. (2018a), Raspa et al. (2018b), reported
that mouse spermatozoa can be frozen, transported, shared, and
stored at —80°C for a long time without a significant loss of viability.
Pezo et al. (2017) demonstrated that semen freezing and storage
using a —80°C ultra-freezer is an effective technique for the long-
term preservation of canine spermatozoa. Parkes. (1945) indicated
that human sperm cryopreservation without cryoprotectants at
—79°C offered an advantage over storage at —196°C. In addition, Liu
etal. (2016) concluded that storage of neat semen samples at —80°C
caused milder damage to sperm DNA than storage at —196'C
mixed with cryoprotectants. In 2012, Sanchez et al. (2012)
concluded that there were no significant differences in sperm
progressive motility, the integrity of mitochondrial membrane
potential (MMP) or DNA fragmentation for vitrified swim-up
human sperm either at —196°C under liquid nitrogen or at -80°C.
However, Vaz et al. (2018) found storage of human sperm at —80°C
freezer up to 96 hours was detrimental to sperm viability.
Therefore, the impact of —80°C freezer on human sperm needs
to be further explored.

The cryopreservation of limited spermatozoa from men
afflicted with nonobstructive azoospermia using testicular

sperm aspiration (TESA) can avoid repeated surgery and
promote the preservation of fertility (Miller et al, 2017).
Current research on the freezing of testicular or epididymal
sperm is mainly focused on single sperm freezing. In 1997,
Cohen et al. (1997) first described a novel cryopreservation
technique for single sperm using an empty zona pellucida
(ZP). Various single sperm cryopreservation carriers have been
proposed in the last 20 years, including ZPs (Hsich et al., 2000;
Just et al., 2004), cryoloops (Desai et al., 2004), culture dishes
(Sereni et al., 2008), cell sleepers (Coetzee et al., 2016), cryotops
(Endo et al, 2012), and novel sperm vitrification devices
(Berkovitz et al, 2018). Each cryopreservation method has
limitations; in particular, the usage of these carriers requires
experienced technicians to select and capture single sperm,
which always results in very few available sperm after this
process. Therefore, frozen testicular sperm with single sperm
has not become widespread, and an ideal container that can be
universally used needs to be developed.

To explore whether freezing sperm at —80°C freezer is feasible
for human ejaculate and testicular spermatozoa, we evaluated the
effects of freezing sperm at —80°C freezer and vapor rapid freezing
techniques on sperm quality, and simplified the procedure and
equipment for freezing human ejaculate and testicular
spermatozoa.

MATERIALS AND METHODS

The procedures in this study were approved by the Ethical
Committee of The First Affiliated Hospital of the University of
Science and Technology of China (2021-KY-040), and informed
consent was obtained from all subjects.

Source of Sperm Samples

The study included 93 ejaculated sperm from normozoospermic
men who sought fertility evaluation at the Reproductive Center of
The First Affiliated Hospital of University of Science and
Technology of China between March 2021 and June 2021.
And ten testicular tissue from patients who were diagnosed
with obstructive azoospermia. Based on medical history and
seminal examination findings, patients with vasectomy,
varicocele, cryptorchidism, or genital infection were excluded
from the analysis. Patients receiving any medication or
antioxidant supplementation in 3 months before the study
were also excluded.

Experimental Design
A diagram of the experimental design is shown in Figure 1. The
experiments were split into four sections.

Section 1

Thirty ejaculated sperm from normozoospermic men were
analyzed for progressive motility and viability by vapor rapid
freezing or direct —80°C freezing. The sperm samples were thawed
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Section 1

Fresh human sperm samples (n=30)
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Assesment of sperm quality after
freezing 24 hours and 2 months.
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the sperm quality.
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Fresh human sperm samples (n=30)
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Assesment of sperm acrosome reaction after freezing one week.
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Testicular sperm samples (n=10)

f
Liquid nitrogen vapor rapid freezing

1
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Frozen by -80°C freezer for 24 hours, then transferred to liquid nitrogen
for one week, and count the percentage of motile sperm.

FIGURE 1 | Diagrammatic representation of the experimental design.

and sperm parameters were measured 24h (short-term) or
2 months (long-term) later.

Section 2

Thirty-three ejaculated sperm from normozoospermic men were
analyzed for sperm quality by vapor rapid freezing or direct
-80°C freezing, kept for 24 h in a —80°C freezer and then moved
into liquid nitrogen. The sperm samples were thawed and sperm
parameters were measured 24 h (short-term) or 2 months (long-
term) later.

Opverall, there were five groups in section 1 and section 2 (1)
frozen by vapor rapid freezing for short-term (short vapor group);
() frozen by vapor rapid freezing for long-term (long vapor
group); (lll) frozen in -80°C freezers for short-term (short

freezer group); (IV) frozen in —80°C freezers for long-term (long
freezer group); (V) frozen in —80°C freezers for 24h and then
immersed in liquid nitrogen for 2 months (liquid nitrogen group).

Section 3

Thirty ejaculated sperm from normozoospermic men were
analyzed for acrosome reaction after a week by vapor rapid
freezing and direct —80°C freezing.

Section 4

Vapor rapid freezing and direct —80°C freezing were used to
freeze 10 testicular sperm for a week. This section was designed to
compare the percentage of motile sperm between vapor rapid
freezing and freezing at —80°C.
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Method of -80°C Freezing

The liquefied ejaculated semen was diluted with sperm freezing
media (ORIGIO, Malgv, Denmark) (ratio 1:1), and 1 ml of the
suspension was pipetted into a Nunc cryotube vial (1.8 ml; catalog
number: 375418, Thermo Fisher Scientific, Jiangsu, China), which
was kept at room temperature (RT) for 10 min and subsequently
placed in a horizontal position in the freezer. Some samples were
transferred to liquid nitrogen 24 h later. The purpose of placing the
container in a horizontal position was to minimize the heat difference
between the two ends during freezing (Di Santo et al., 2012).

Method of Liquid Nitrogen Vapor Rapid

Freezing

After 1 ml of suspension was pipetted into a 1.8 ml aseptic cryotube,
the samples were kept at RT for 10 min and subsequently placed
horizontally 8-10 cm above the liquid nitrogen surface. Fifteen
minutes later, it was submerged in liquid nitrogen and stored at
-196°C in a tank full of liquid nitrogen for 24 h or 2 months.

Method of Ejaculated Sperm Thawing

Thawing was performed as described previously for a specific
sperm freezing medium with some modifications (ORIGIO,
Malgv, Denmark). The cryotube was removed from the liquid
nitrogen or —80°C freezer and submerged in warm water (37°C)
for 10 min. Post-thaw sperm progressive motility, viability,
reactive oxygen species (ROS), MMP, DNA fragmentation
index (DFI), and high DNA stainability (HDS) were analyzed.

Cryopreserved Spermatozoa Collected by
TESA

After removing the seminiferous tubules from the testicles, the
sample was placed in a dish with 5% 3-(N-Morpholino)
propanesulphonic acid with gentamicin (G-MOPS™, Vitrolife,
Sweden) medium and minced with a needle connected to a 1 ml
syringe under a dissecting microscope. Then, the sample was
examined under an inverted microscope (Olympus, Tokyo,
Japan) at 400x magnification. Once spermatozoa (motile or not
motile) were observed in the dish, the suspension was mixed by
pipetting and transferred to a tube with SpermRinse (Vitrolife,
Sweden), and then the tube was placed upright for 5 min. After
removing the large sludge at the bottom using a straw, the
supernatant was centrifuged at 250g for 5min, and
approximately 0.5 ml of sediment was reserved. An equal volume
of sperm freezing medium (ORIGIO, Malgv, Denmark) was added
dropwise onto the sediment, and the solution was carefully mixed
after each addition, followed by incubation at RT for 10 min. Each
sample was divided into two tubes, which were frozen using vapor
rapid freezing or —80°C freezers. After 24 h, the samples frozen in the
-80°C freezer were transferred to liquid nitrogen.

Thawing of Spermatozoa Collected by TESA
The sperm obtained from the testicular puncture and frozen for
1 week were thawed in a 37°C-water bath for 10 min. Then, we used
SpermRinse to remove the cryoprotectant in the semen sample and
centrifuged it to remove the supernatant. After adding pentoxifylline

Cryopreservation of Human Spermatozoa

to the sample for sperm activation, the sample was filled into the
sperm counting pool, and the number of sperm and the percentage
of motile sperm were counted under a microscope.

Temperature Curve Assessment

The temperature changes during freezing were determined using
a portable, multiuse industrial data logger (OM-CP-OCTPRO,
Omega Engineering, United States). The temperature sensor uses
a thermocouple K matched with the industrial data logger.

Routine Semen Analyses

Routine semen analyses were performed using computer-assisted
semen analysis (CASA) to determine progressive motility. We
analyzed a minimum of six fields of view per chamber and, at least
200 sperm were evaluated in each chamber according to World
Health Organization (WHO) guidelines (WHO, 2010).

Sperm viability was evaluated by eosin-nigrosine staining
(Ankebio, China). At least 200 spermatozoa were analyzed with an
optical microscope (magnification 1000x). Sperm with red heads were
considered nonviable (membrane-damaged), whereas sperm showing
no color were considered alive (membrane-intact) (Rarani et al., 2019).

The Sperm Chromatin Structure Assay
Sperm Chromatin Structure Assay (SCSA) was measured by flow
cytometry according to the protocol based on Evenson et al. (1980).
A commercial kit (Cellpro, China) was used for the evaluation of
SCSA. Damaged chromatin in the sperm nucleus after acid treatment
forms a single chain and emits red or orange fluorescence upon
binding the dye acridine orange; normal sperm chromatin in the
nucleus maintains the integrity of the double-stranded structure after
acid treatment and emits green fluorescence when combined with
acridine orange. At least 5,000 cells were counted per sample. The
SCSA parameters include DFI defined as the percentage of denatured
sperm DNA and HDS defined as the percentage of spermatozoa with
abnormally high DNA stainability.

Reactive Oxygen Species Assessment
Reactive oxygen species (ROS) were determined using a Sperm
Reactive Oxygen Species Detection Kit (Ankebio, China), flow
cytometry was used for detection, and each sample contained at
least 5,000 cells (Mahfouz et al., 2009).

Mitochondrial Membrane Potential
Assessment

To measure the mitochondrial membrane potential (MMP) of the
sperm, a sperm mitochondrial staining kit (JC-1 fluorescent staining
method, Ankebio, China) was used. The MMP in sperm cells can be
labeled with fluorescent dyes. The fluorescent probes gather in the
mitochondria and emit red fluorescence when there is high MMP. At
least 5,000 cells were counted per sample.

Sperm Acrosome Reaction Assessment

Statistical Analysis
According to the WHO guidelines, the acrosome reaction (AR)
was assessed by Fluorescein isothiocyanate-Pisum sativum
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TABLE 1 | Characteristics and sperm parameters in patients from sections 1, 2 and 3.

Characteristics Section 1 (n = 30)

Age (year) 30.80 + 3.99
Sperm volume (mi) 4.08 +1.17
Sperm concentration (million/mL) 70.94 + 47.23
Progressive motility (%) 36.08 + 9.40
Viability (%) 73.95 + 13.59
ROS (%) —

MMP (%) —

DFI (%) -

HDS (%) —

Section 2 (n = 33) Section 3 (n = 30) Total (n = 93)
32.82 + 4.87 33.07 + 6.03 32.23 + 4.96
3.48 +1.29 4.00 + 1.47 3.85 + 1.31
61.08 + 37.85 87.62 + 36.40 73.21 + 40.49
36.28 + 12.13 44,93 + 7.16 39.10 + 9.56
71.01 + 1412 68.02 + 9.51 70.99 + 12.41
10.25 + 9.38 — —
88.81 + 14.18 - -

9.90 + 4.22 — —

6.75 + 2.75 - -

ROS, reactive oxygen species; MMP, mitochondrial membrane potential; DFI, DNA, fragmentation index; HDS, high DNA, stainable. Data were presented as mean + SD.
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TABLE 2 | Comparison of sperm motility and viability between liquid nitrogen
vapor rapid freezing and —80°C freezer.

Groups Progressive motility (%) Viability (%)
Short vapor group (n = 63) 14.67 + 4.99 44.33 + 9.92
Short freezer group (n = 63) 16.53 + 5.40 46.02 + 10.84
p-value 0.052 0.056

Long vapor group (n = 63) 12.97 + 494 41.02 + 9.75
Long freezer group (n = 63) 12.87 + 4.84 40.77 + 9.52
p-value 0.793 0.741

Long vapor group (n = 33) 11.77 £ 519 38.69 + 10.18
Liquid nitrogen group (n = 33) 11.10 + 4.86 37.43 + 8.67
p-value 0.091 0.120

Short vapor group: frozen by vapor rapid freezing for 24 h; Short freezer group: frozen by
—80°C freezer for 24 h; Long vapor group: frozen by vapor rapid freezing for 2 months;
Long freezer group: frozen by —80°C freezer for 2 months; Liquid nitrogen group: frozen
by —80°C freezers for 24 h and then immersing it in liquid nitrogen for 2 months; p-value
was derived from paired t-test. Data were presented as mean + SD.

agglutinin (FITC-PSA, Sigma-Aldrich, St. Louis, America)
staining. After rinsing sperm with phosphate buffer saline,
sperm were fixed with 4% (w/v) paraformaldehyde or 10 min,
mounted on slides, then air-dried and incubated 2 h in the dark at
4°C with 25 mg/L FITC-PSA. Sperm were washed with PBS and
examined by fluorescence Nikon Eclipse 80i microscopy (n b 200
sperm/ sample) (Nikon Inc., Tokyo, Japan).

The results were analyzed by using the program Statistical Product
and Service Solutions (SPSS) Statistics 23.0 (SPSS Inc., Chicago, IL,
United States). Data are expressed as the means + standard deviation
(SD). The comparison between the two groups was performed by
paired-samples #-test. The percentage of motile sperm was expressed
as proportion, and p-value was derived from the chi-square test.
Regression analysis was used to compare the correlation between
sperm parameters. A statistical value of p < 0.05 was considered
statistically significant.

RESULTS

Characteristics of the Study Population
A total of ninety-three specimens from patients attending the
reproductive center were enrolled. The characteristics of the study

Cryopreservation of Human Spermatozoa

population are shown in Table 1. Among the 93 participants, the
mean age was 32.23 + 4.96 years and the mean semen volume was
3.85 + 1.31 ml. The mean of sperm parameters, such as sperm
concentration, viability, and progressive motility, were all above
the reference established by the WHO (2010).

Freezing Temperature Curve of Vapor Rapid

Freezing and -80°C Freezing

The sample was placed in liquid nitrogen vapor for 5 min, and the
cooling rate was —18°C/min down from RT to —65°C. The drop from
RT to —80°C took approximately 410 s (Figure 2, Supplementary
Table 1). In the —80°C freezer, the sample was placed in liquid
nitrogen vapor for 5 min, the cooling rate was approximately -12°C/
min down from RT to —40°C, and the drop from RT to —80°C took
approximately 1990 s (Figure 2, Supplementary Table 1). Although
freezing at —80°C has a slower temperature drop than vapor rapid
freezing during the same period, the curves of the temperature drop
are similar between the two methods. Notably, slight differences in
the temperature were observed at the freezing point (Figure 2B,
Supplementary Table 1).

Effect of Different Cryopreservation
Methods and Different Storage Times on
Sperm Quality

As shown in Table 2, no significant difference was observed in
progressive motility and viability across the different freezing
methods (p > 0.05).

The ROS of sperm of the freezer group was significantly lower
than that of the vapor group (Table 3). However, the HDS of
sperm in the long freezer group was significantly higher than that
of sperm in the long vapor group (p < 0.05). There was no
significant difference in the other parameters between the
different methods (p > 0.05).

We compared the state of the sperm after freezing and found
that progressive motility and viability were significantly decreased
(Figures 3A,B). Specifically, compared with short-term freezing,
long-term freezing significantly decreased sperm motility. There
was no significant difference in ROS before and after freezing
(Figure 3C), while long-term freezing decreased MMP

TABLE 3 | Comparison of sperm function between liquid nitrogen vapor rapid freezing and —80°C freezer.

Groups ROS (%)
Short vapor group (n = 33) 9.53 + 8.47
Short freezer group (n = 33) 7.45 + 714
p-value® 0.036
Long vapor group (n = 33) 12.94 + 9.46
Long freezer group (n = 33) 11.64 + 8.13
Liquid nitrogen group (n = 33) 12.48 + 9.35
p-value® 0.022
p-value® 0.655

MMP (%) DFI (%) HDS (%)
84.95 £+ 17.73 9.41 + 4.62 7.87 +2.95
87.04 + 14.68 9.45 + 4.47 8.20 + 2.87

0.611 0.805 0.133
75.91 + 19.39 9.58 + 4.74 8.46 + 2.90
75.30 + 21.19 9.72 + 5.30 9.10 + 2.88
77.75 +20.18 9.47 + 4.44 8.65 + 2.63

0.713 0.634 0.017

0.339 0.791 0.343

Short vapor group: frozen by vapor rapid freezing for 24 h; Short freezer group: frozen by —80°C freezer for 24 h; Long vapor group: frozen by vapor rapid freezing for 2 months; Long
freezer group: frozen by —80°C freezer for 2 months; Liquid nitrogen group: frozen by —80°C freezers for 24 h and then immersing it in liquid nitrogen for 2 months.

Ap-value of short freezer group versus short vapor group (paired t-test).
Po-value of long freezer group versus long vapor group (paired t-test).

“p-value of liquid nitrogen group versus long vapor group (paired t-test). Data were presented as mean + SD.
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(Figure 3D). Moreover, long-term storage of sperm had a similar
DFI with short-term storage (Figure 3E). In addition, freezing
also resulted in a higher HDS in the sperm (Figure 3F).

Effect of Different Cryopreservation
Methods on Sperm Acrosome Reaction

A total of 30 men were included and significant differences
(9.23 + 4.61 vs. 14.62 + 6.86 vs. 14.38 + 6.05, p < 0.05) were
observed for acrosome reaction (AR) within before and freeze-
thawed spermatozoa (Figure 4). To be noted, there was no

significant difference in the AR between vapor rapid freezing
and —80°C freezer (14.62 + 6.86 vs. 14.38 + 6.05, p > 0.05).

Linear Regression Between Sperm Quality
After Freeze-Thawing and Sperm
Parameters

In regression analysis, we found that progressive motility in
post-thaw spermatozoa was positively correlated with both
progressive motility before freezing and the direct -80°C
freezing methods but negatively correlated with ROS, DFI
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FIGURE 4 | The impact on sperm acrosome of vapor rapid freezing and
—80°C freezer. Sperm treated by freezing had significant higher acrosome
reaction than before freezing (p-value < 0.05). There was no significant
difference in the acrosome reaction between vapor rapid freezing and
—-80°C freezer (p-value > 0.05).
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before freezing, and storage time (p < 0.05, Table 4). ROS in
post-thaw spermatozoa was positively correlated with ROS
before freezing and storage time (p < 0.05). DFI in post-
thaw spermatozoa was positively correlated with DFI before
freezing but negatively correlated with ROS before freezing
(p < 0.05).

Motile Sperm Percentage of Testicular
Sperm Samples After Cryopreservation
With Vapor Rapid Freezing and -80°C
Freezer

To analyze the outcomes of freeze-thawed spermatozoa collected
by TESA, we compared the parameters of sperm conserved by
vapor rapid freezing and stored at —80°C (Table 5). We counted a total
of 62 motile sperm, accounting for 16.89% of the total sperm, when
vapor rapid freezing was used. A total of 65 motile sperm, accounting
for 17.02% of the total sperm, were counted when freezing at —80°C.
There was no statistically significant difference between the two
methods for freezing testicular sperm (p = 0.965).

DISCUSSION

This study compared the effects of a —80°C freezer and vapor
rapid freezing on sperm quality, and we found that there was no
significant difference in progressive motility and viability across
the different freezing methods. Correlation analysis showed that
progressive motility, ROS, and DFI in the post-thaw spermatozoa
were correlated with sperm characteristics before freezing,
methods and storage time.

Some studies have reported that freezing-thawing decreases
sperm quality and function (Satirapod et al., 2012; Lusignan et al.,
2018; Le et al.,, 2019). For example, proteomic analysis of sperm
showed significant changes in proteins related to motility,
viability, and acrosomal integrity of sperm compared with the
fresh state (Wang et al,, 2014). It has also been suggested that

TABLE 4 | Results from the regression analyses after freezing sperm quality.

ROS after freezing DFI after freezing

Parameters Progressive motility after
freezing
B p-value
(95%Cl)

Progressive motility before freezing 0.30 (0.25-0.35) <0.001
ROS before freezing -0.13 (-0.23-0.01) 0.010
DFI before freezing —0.44 (-0.65-0.23) <0.001
Time

Short-term Ref Ref

Long-term -2.49 (-3.84-1.14) <0.001
Method

Vapor rapid freezing Ref Ref

—80°C freezer 1.64 (0.29-2.99) 0.018

, regression analyses coefficients; 95% ClI, 95% confidence interval.
9!

B p-value B p-value
(95%Cl) (95%Cl)
0.06 (-0.06-0.18) 0.331 -0.14 (-0.20-0.08) <0.001
0.19 (0.03-0.34) 0.021 -0.05 (-0.13-0.04) 0.314
-0.06 (-0.47-0.30) 0.577 0.93 (0.82-1.04) <0.001
Ref Ref Ref Ref
3.80 (1.02-6.59) 0.008 0.19 (-0.74-1.12) 0.688
Ref Ref Ref Ref
—-1.69 (—4.48-1.09) 0.231 0.12 (-0.81-1.05) 0.804
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TABLE 5 | Motile sperm percentage of testicular sperm samples after
cryopreservation with vapor rapid freezing and -80°C freezer.

Sample number Percentage of motile sperm (%) p-value
Vapor rapid freezing -80°C freezer

1 7/53 (13.21) 6/48 (12.50) -

2 7/38 (18.42) 4/24 (16.67) -

3 4/29 (13.79) 6/31 (19.35) -

4 3/33 (9.09) 4/38 (10.52) -

5 13/57 (22.81) 10/48 (20.83) -

6 4/24 (16.67) 6/37 (16.21) -

7 3/19 (15.79) 3/18 (16.67) -

8 15/63 (23.81) 17/72 (23.61) -

9 2/20 (10.00) 3/27 (11.11) -
10 4/31 (12.90) 6/39 (15.38) -
Total 62/367 (16.89) 65/382 (17.02) 0.965

p-value was derived from chi-square test.

rapid changes in intracellular ice crystal formation and
osmolarity during the cryopreservation process may lead to
changes in the carbohydrate composition and the membrane
proteins, which can disrupt membrane structures and reduce
sperm viability (Pedersen and Lebech, 1971). The production of
ROS and lower antioxidant enzyme activity in sperm induce
apoptotic pathways, which can lead to a reduction in sperm
viability (Di Santo et al., 2012). In our study, we found the same
results as previous research that showed that after freezing-
thawing, sperm viability and progressive motility were both
decreased significantly. ROS increased and MMP continued to
decrease as the freezing time extended. However, compared with
vapor rapid freezing, there was no significant difference in
progressive motility, viability, MMP or DFI of sperm frozen in
a —80°C freezer. Previously, Rahana et al. (2011) also reported
similar results that there was no significant difference in human
sperm motility and DFI between -85°C and conventional liquid
nitrogen cryopreservation. Previous studies observed a decrease
in AR after the freezing-thawing process (Gomez-Torres et al,
2017; Rahiminia et al., 2017). Here we also observed that the
acrosome status was vulnerable to the freezing-thawing process,
but the percentages of AR decrease for different cryopreservation
methods was similar, which further confirmed the efficiency of
—80°C freezer.

In regression analysis, compared with vapor rapid freezing,
—80°C freezing was positively correlated with sperm progressive
motility. Our study also indicated that freezing in a —80°C freezer
resulted in lower ROS than vapor rapid freezing, which confirmed
that a slow temperature drop would result in lower ROS damage.
During freezing, the cooling rate of vapor rapid freezing was
quicker than that of the —80°C freezer, and thus vapor rapid
freezing took less time to reach the freezing point and had a lower
freezing point temperature than the -80°C freezer
(Supplementary Table 1). In the freezing process, water tends
to chill beyond its freezing point without forming ice, which is
known as supercooling. Studies have confirmed that super-
cooling can cause damages of sperm in mice and human
(Check et al., 1995; Mazur and Koshimoto, 2002). Compared
with vapor rapid freezing, the samples frozen in a —80°C freezer
have a higher freezing point that is closer to -6°C

Cryopreservation of Human Spermatozoa

(Supplementary Table 1). The WHO (2010) first
recommended that a human sperm freezing program decline
from RT (22-25°C) to —6°C, and we speculated that —6°C was the
freezing point of semen with cryoprotectant. Therefore, samples
in a —80°C freezer were less supercooled than vapor rapid
freezing, which may result in less damage. Notably, the HDS
of sperm frozen in a —80°C freezer for a long time was higher than
that in liquid nitrogen. Compared with vapor rapid freezing, the
—80°C freezer has a more stable and slower cooling rate and can
meet the demand for sperm freezing so that the freezing step is
simplified. Thus, although liquid nitrogen storage is irreplaceable
and is still the first choice for long-term sperm cryopreservation
at a low temperature of —-196°C, a —80°C freezer can be an
alternative method for short-term sperm storage.

In this study, we used 1.8 ml cryotubes and a —80°C freezer to
simplify the steps of freezing testicular sperm. We have proven
that —80°C freezers and vapor rapid freezing have similar effects
on testicular sperm. Previously, the method of freezing single
sperm captured under a microscope using intracytoplasmic
sperm injection (ICSI) pipettes equipped with a
micromanipulator is widely used for testicular sperm (Coetzee
etal., 2016). However, more sperm can be obtained after freezing
all the testicular sperm in a freezing tube and a —80°C freezer
compared with the freezing of single sperm. Using cryotubes will
provide enough sperm after freezing-thawing, and it is better to
select motile sperm for ICSI. Furthermore, the efficiency of single
sperm freezing is low and cannot meet the requirements of
storing numerous samples. The freezing of testicular sperm in
a —80°C freezer in a freezer tube ensures that all sperm in the
testicular tissue are captured, it only takes a short time and
simplifies the process, and several samples can be processed
simultaneously.

The present study was based on a limited sample size and
normal semen meeting the WHO standard, and further studies of
—80°C freezers in clinical applications with sperm samples from
oligo-astheno-teratozoospermia are warranted. This was a
preliminary study to improve the freezing of testicular sperm,
and it was necessary to freeze tremendous testicular sperm samples
to avoid instability. In vitro fertilization tests, follow-up embryo
development, and implantation are also the focus of future
research.

In conclusion, this study demonstrated that short-term
storage of sperm at -80°C freezer could be a viable
alternative to liquid nitrogen vapor rapid freezing at —196°C
due to their comparable post-thaw results and lower ROS.
During long-term freezing, the —80°C freezer is expected to
be a cooling process that can provide an option except for liquid
nitrogen vapor rapid freezing. An improved sperm freezing
process was also preliminarily explored in this study. Additional
study is necessary to confirm the clinical value of the freezing
testicular sperm method.
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