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Since the first polygenic risk score (PRS) in 2007, research in this area has

progressed significantly. The increasing number of SNPs that have been

identified by large scale GWAS analyses has fuelled the development of a

myriad of PRSs for a wide variety of diseases and, more recently, to PRSs

that potentially identify differential response to specific drugs. PRSs constitute a

composite genomic biomarker and potential applications for PRSs in clinical

practice encompass risk prediction and disease screening, early diagnosis,

prognostication, and drug stratification to improve efficacy or reduce

adverse drug reactions. Nevertheless, to our knowledge, no PRSs have yet

been adopted into routine clinical practice. Beyond the technical

considerations of PRS development, the major challenges that face PRSs

include demonstrating clinical utility and circumnavigating the

implementation of novel genomic technologies at scale into stretched

healthcare systems. In this review, we discuss progress in developing disease

susceptibility PRSs across multiple medical specialties, development of

pharmacogenomic PRSs, and future directions for the field.
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1 Introduction

Predicting risk of disease and response to treatment are essential components of

clinical medicine, and often direct the subsequent management strategy. Currently in

clinical medicine, the majority of prediction is based on basic clinical factors such as

age, sex and family history, alongside biochemical biomarkers and radiological

imaging.

Since the completion of the Human Genome Project, there has been significant

growth in genetic research with the mass undertaking of genome-wide association

studies (GWAS) and, more recently, rare variant and gene-based testing leveraging

whole exome or genome sequencing (WES/WGS) endeavours. Initial expectations

that genomics would rapidly transform and personalise medicine have been largely

unmet, attributable to a range of factors including greater disease genetic complexity

than initially expected and challenges identifying the causal gene(s) within

associated loci. Nevertheless, genetic testing is slowly being introduced in a
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number of areas including identification of mutations for rare

diseases and identification of driver mutations in tumours to

enable targeted therapies. In addition, single gene screening

to guide drug prescribing include HLA-B*57:01 testing with

abacavir (Mallal et al., 2008) and HLA-B*15:02 screening in

the Han Chinese population prior to starting carbamazepine

(Ferrell and McLeod, 2008). Notwithstanding, efforts over

the last few years to stratify treatment and screening have

started to demonstrate promise with polygenic risk scores

(PRSs).

Initially, the development of PRSs focussed on predicting

disease risk leveraging genome-wide significant single

nucleotide polymorphisms (SNPs) with p-values

typically <5 × 10−8, which constrained predictive risk scores

due to the limited number of SNPs included (Evans et al.,

2009). As the sample size of GWAS studies grew, evidence

suggested many common adult-onset diseases are mediated by

numerous common (minor allele frequency (MAF) > 5%) and

low frequency (MAF 0.5< x <5%) genetic variants. These

variants, individually, have little contribution, but together

form a complex network that can make a patient more or less

susceptible to disease (Torkamani et al., 2018; Lambert et al.,

2019). However, with the advent of large sequencing efforts, it

is also important to consider the role of rare variants in

predisposing to common disease (Schork et al., 2009;

Bomba et al., 2017). For example, a study of 36 individuals

with autism in the Faroe islands showed that rare and

common contributed to the disease (Leblond et al., 2019).

A more recent report in 24,248 schizophrenia cases showed

that ultra-rare coding variants in 10 genes highly expressed in

the central nervous system conferred a significant risk of

schizophrenia with odds ratios ranging from 3 to 50 (Singh

et al., 2022).

To our knowledge, there are currently no germline PRSs in

clinical use; however, multiple PRSs are being assessed in

clinical trials across a range of disciplines. Here, we review the

utility of PRSs in the context of risk prediction, guiding

pharmacotherapy, touch on PRSs in diagnosis, and finally,

we explore the potential future of PRSs within modern

healthcare. We initially focus on PRSs in major disease

areas, where the majority of work has been undertaken,

and then on work on PRSs in prediction of drug efficacy

and safety. To some extent, this is an artificial distinction since

work in disease PRSs may also stratify populations to enable

the use of treatments at an earlier stage in some of the

genomically-defined subgroups.

In order to prepare this narrative review, we have used

generic search terms such as polygenic scores, specific disease

terms, disease risk, disease stratification, pharmacogenomics,

drug efficacy and drug safety, ethnicity and ancestry in large

databases such as PubMed to identify the relevant papers. In

addition, we have also searched the cited references contained

within the retrieved articles.

2 Utility in disease pathogenesis and
screening

2.1 Cardiovascular disease

The Framingham study led to the Framingham risk score

including age, sex, LDL cholesterol, HDL cholesterol,

hypertension, diabetes and smoking, which has influenced

cardiovascular disease (CVD) risk assessment (Wilson et al.,

1998). Although the Framingham risk score has proven utility, it

relies on a snapshot of a patient’s risk factors, which vary with

time. In contrast, the germline genome is static and offers

improved capture of lifelong CVD risk exposure (Voight

et al., 2012; Zannad et al., 2012; Knowles and Ashley, 2018).

Globally, CVD accounts for around 31% of all mortality. The

World Health Organisation (WHO) estimates that 75% of

premature cardiovascular (CV) death is preventable. The

INTERHEART study demonstrated that lifestyle changes can

be protective against future events, underpinning the importance

of primary prevention (Yusuf et al., 2004; Stewart et al., 2017).

Coronary artery disease (CAD) GWAS studies have identified

over 160 genome-wide significant loci involving more than

200 SNPs not in linkage disequilibrium (Mega et al., 2015;

Vaara et al., 2016; Morieri et al., 2018; Rincon et al., 2019).

Incorporation of increasing numbers of SNPs in CAD PRS

models has improved predictability in addition to traditional

risk factors, albeit with only modest increases in area under the

receiver operator curve (AUC) (Natarajan et al., 2017; Morieri

et al., 2018). For example, a PRS including

6,630,150 polymorphisms recently demonstrated an

AUC >0.8 for prediction of CAD and enabled risk

stratification of those at much higher risk of CAD with odds

ratios (ORs) of 3, 4 and 5 for those in the top 8, 2.3 and 0.5% of

the PRS, respectively. (Khera et al., 2018). Thus, these high-risk

patient groups could be targeted to receive preventative

strategies. Utilising this same PRS, a recent study assessed

prediction of incident CHD events compared with risk

prediction using a guideline recommended clinical risk

equation (10-year risk based on the 2013 ACC/AHA pooled

cohort equations). Similar ORs for CAD development were

found in their study cohorts; however the PRS offered

minimal improvement over clinical modelling in

reclassification as high/low risk in less than 10%.

Furthermore, of those who went on to develop CAD, 79–80%

of those who had been reclassified were incorrect (Mosley et al.,

2020).

PRSs can provide prognostic information independent of

classical risk factors, including family history, and guide primary

prevention (Assimes and Roberts, 2016; Morieri et al., 2018;

Roberts, 2018). This is exemplified by a recent prospective study

by Khera et al. (2016) that demonstrated the relative risk of

coronary events was 91% higher in those deemed at high genetic

risk than those at low risk. Those at high genetic risk with
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modified lifestyle had a near 50% decrease in risk compared to

those without. Various measures of fitness and physical activity

demonstrated inverse associations with future CVD events and

all-cause death. This had a graded effect with genetic risk models

for CVD and atrial fibrillation (AF) (Tikkanen et al., 2018).

The clinical utility of targeted testing following a primary

acute coronary syndrome (ACS) event to guide secondary

preventative measures has potential clinical application.

Evidence for PRSs in the setting of recurrent coronary artery

events is limited to four studies to date, which show mixed

results. There is suggestion that CAD recurrence or cardiac death

are distinct phenotypes from the initial CV event, with likely

additional distinct genetic variants. One study investigated

22 variants derived from a first event prediction cohort and

identified only two of those variants to be significant predictors of

recurrent cardiovascular events (Wauters et al., 2013). Vaara

et al. (2016) developed three novel PRSs using the

CARDIOGRAMplusC4D cohort containing 32, 47 and

153 SNPs. The 47 SNP model demonstrated a significant

association with recurrent ACS events, although there was no

increase in AUC compared with or in addition to clinical

predictors. Rincon et al. (2019) demonstrated positive results

with a smaller patient cohort of around 500 patients and a PRS

featuring 11 SNPs. Those in the highest risk tertile had a

significant hazard ratio of 3 for recurrent events. Recurrent

events in other risk categories were non-significant. A modest

increase in AUC when combined with clinical models was

observed (0.78 and 0.83 respectively). Finally, Mega et al.

(2015) evaluated a 27 SNP PRS in three primary prevention

populations and two secondary prevention trial populations.

Using meta-analysis of secondary prevention results, they

demonstrated significant differences in hazard ratio between

risk tertiles.

Overall, despite heritability estimates for atherosclerosis

ranging from 30 to 60% (Lusis, 2012), CAD PRSs, like the

PRSs of many chronic conditions, currently only account for

~4% of observed variance (Khera et al., 2018). Therefore, it is

anticipated that the clinical value for utilising PRSs will be

mainly experienced by those at the extremes of the genetic

risk distribution and/or those on the threshold cusps for

clinical decisions based on conventional clinical

assessment (e.g. individuals near the risk threshold for

being recommended primary prevention statin therapy).

Nevertheless, the high prevalence of CAD and greater

influence of genetic risk upon cardiovascular events at

younger ages suggest that the absolute number who could

benefit from utilising CAD PRS scoring could be sizeable.

Thus, a pilot study in the NHS has been initiated that will

integrate a CAD PRS with standard QRisk-based scoring to

provide refined risk predictions in 1,000 45–64 year olds that

can be used to guide primary prevention clinical decision-

making (such as starting statin therapy) (Health Education

England, 2021; Devlin, 2022).

AF is the most common cardiac arrhythmia and is associated

with thromboembolic stroke, heart failure and death. The

oftentimes paroxysmal nature of AF can make diagnosis

challenging and treatment with anticoagulation is not without

significant risk. Everett et al. (2013) sought to develop an

improved clinical risk score and assess additional benefit of a

novel PRS in a large cohort (>20,000) of female participants.

While addition of the PRS improved the risk score AUC, it failed

to significantly aid the classification of patients into 10-year risk

categories estimating the development of AF. Contrary to these

findings, a 12 SNP PRS not only identified differences in AF risk

between quintiles, but compared to the CHADS2 clinical score,

the PRS prompted some risk reclassification and increased risk

prediction of ischaemic stroke (Tada et al., 2014). Muse et al.

(2018) demonstrated a greater than 3-fold risk increase for AF

between the highest and lowest quintile with their PRS model.

Further, larger PRSs, utilising 6,730,541 polymorphisms

identified 6.1% of the population studied to have a three-fold

increase in AF risk and was able to identify those with an

increasing OR of 3, 4 and 5 for patients within the top 6.1,

1.5 and 0.7% of genetic risk scores, respectively (Khera et al.,

2018). The clinical utility of these PRSs may lie in targeting

extended ECG monitoring in patients at increased risk (Khera

et al., 2018; Muse et al., 2018), as well as aiding investigation in

cryptogenic stroke (Muse et al., 2018).

2.2 Long QT

QT prolongation is associated with an increased risk of

Torsades de Pointes (TdP) and sudden cardiac death, and is

an important adverse reaction for many medications. QT

prolongation remains a leading cause for drugs being

withdrawn from the healthcare market. The QT interval is

heritable, with estimates of between 30 and 40 percent of

variance due to cumulative genetic factors (Rosenberg et al.,

2017). The largest data from European ancestry individuals has

been provided by the QT Interval–International GWAS

Consortium (>70,000 individuals) (Arking et al., 2014) and, in

individuals of African descent, the CARe-COGENT consortium

(>12,000 individuals) (Smith et al., 2012). In 2017, from

emerging genetic data linked with prolonged QT syndromes, a

large cohort PRS explained a significantly increased amount of

variation in the QT interval, compared with a non-genetic model

in those of European descent, but not individuals of African

American descent (Rosenberg et al., 2017). Furthermore, an

initial pilot study demonstrated a PRS was associated with QT

prolongation and the PRS also predicted the development of

drug-induced TdP (Strauss et al., 2017). Building on this, a recent

publication assessed prediction of cardiac electrical response to

sodium-channel blockade as well as Brugada syndrome. Here, it

was demonstrated that genetic factors underlie variation in

electrical response to sodium channel blockers to a clinically
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significant level. Combining a PRS, electrocardiogram (ECG) and

family history, one could predict the development of drug-

induced Type I Brugada syndrome (Tadros et al., 2019). The

clinical utility of this score may allow a reduction in

investigation-related adverse events, such as life-threatening

arrhythmias with the use of diagnostic ajmaline (around

1.8%) (Conte et al., 2013), as well as reducing toxicity

associated with sodium channel blockade through pre-drug

screening or risk assessment based follow up with ECGs

(Tadros et al., 2019).

2.3 Cancer

Breast cancer is the most common cancer in women in

Western countries and, although BRCA1 and BRCA2 variants

are well documented risk factors for disease development, they

only account for a fraction of breast cancer cases (Mavaddat et al.,

2019). An in-depth review of the use of PRSs exclusively in breast

cancer is beyond the scope of this review, but can be located in a

contemporary review by Yanes et al. (2020). Nevertheless, the

biobanking initiatives from the Breast Cancer Association

Consortium and others have enabled development of multiple

PRSs based on large scale, robust data. A recent study constructed

a PRS using 5,218 SNPs from a previous GWAS with linkage

disequilibrium analysis based on Europeans in the

1000 Genomes Project, before validating the results in

United Kingdom Biobank. This PRS was able to identify

women at increased risk for breast cancer with ORs of 3,

4 and 5 corresponding to women within the upper 1.5,

0.3 and 0.1% of genetic risk scores, respectively. Women in

the top 0.1% of genetic risk scores had a disease prevalence of

19%, compared with 4.2% in the remaining 99.9% of the cohort.

Breast cancer screening in asymptomatic middle-aged women

remains controversial due to the low incidence of disease in this

cohort and high false positive rate. This PRS demonstrates a

possible method to provide more targeted screening (Khera et al.,

2018) rather than basing breast cancer screening on age alone

(Pashayan et al., 2011; Hall and Easton, 2013). Similarly reported

that small groups of patients with a high risk of disease can be

identified with risk scores in the top 1% of the population studied

(Mavaddat et al., 2015; Mavaddat et al., 2019). In the

United Kingdom, women become eligible for the breast

cancer screening programme at age 47, when the average

absolute risk of breast cancer over 10 years is 2.6%. However

importantly, Mavaddat et al. (2019) highlighted that 19% of those

in the highest PRS risk group will reach this 10-year risk

threshold on average at age 40, whereas women with very low

genetic risk may never surpass this threshold. NICE guidance

advocates the use of chemoprevention for 5 years in post-

menopausal women who are at high risk of breast cancer and

for chemoprevention consideration for those at moderate risk.

Identification of those at risk can be refined by use of a PRS

alongside clinical risk evaluation, although prospective trials to

investigate this strategy further are required (Garcia-Closas et al.,

2014).

Genetic risk scoring in prostate cancer first started in

2008 when a five SNP PRS was shown to account for 46% of

all prostate cancer cases when combined with family history in a

cohort of Swedish men (Zheng et al., 2008). The validity of this

score was confirmed in a United States population (Salinas et al.,

2009) and, subsequently, multiple additional SNPs have been

identified that provide incremental improvement in predicting

biopsy positive prostate cancer, compared with family history

alone (Kader et al., 2012; Sun et al., 2013; Liss et al., 2015). The

genetic score acts independently of reported family history,

indicating additional benefit (Amin Al Olama et al., 2016).

This PRS benefit could be realised through stratification of

patients based on their genetic risk score to guide screening.

One particular model, PGS-33, demonstrated an increase in

prostate cancer detection from lower to higher PRS quartiles

(Liss et al., 2015), and data from the PRACTICAL study

illustrated a significant difference in risk between the upper

1% and lowest 1% of the population based on their genetic

risk score (OR 4.2 and 0.14, respectively) (Amin Al Olama et al.,

2016). Aly et al. (2011) explored the potential clinical utility of

PRSs in relation to healthcare resources. They compared a

nongenetic model (based on age, prostate specific antigen

(PSA), free-to-total PSA, and family history) with a genetic

model (including 35 SNPs) and identified that 480 biopsies

(22.7%) could have been avoided using the PRS as a decision

tool, although a diagnosis of prostate cancer would have been

missed in 3% of patients that were classed as having aggressive

disease. Many of the prostate cancer PRS studies do not contain

replication cohorts likely due to sample size issues.

2.4 Neuropsychiatric diseases

Neuropsychiatric PRS development is a growing field largely

due to the polygenic nature of all mental health disorders but also

due to the debilitating effects on patients, population burden of

disease and the effectiveness of the medications (covered later).

Here, we focus on schizophrenia and major depressive disorder.

2.5 Schizophrenia

PRSs for schizophrenia currently explain the greatest

proportion of phenotypic variance compared with PRS for

other neuropsychiatric conditions (Binder, 2019). Additionally,

the predictive power of schizophrenia PRSs exceeds that of other

common diseases (Landi et al., 2021). One initiative identified

108 novel loci associated with schizophrenia in a large case-

control study. A PRS from this data demonstrated that the odds

of developing schizophrenia were 7.8–20.3 fold greater in those in
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the top decile compared to those in the bottom decile of the PRS,

although the specific odds varied depending on the cohort tested

(Schizophrenia Working Group of the Psychiatric Genomics,

2014). Utilising the same PRS, another working group

demonstrated a correlation between PRS scores and admission

frequency (Meier et al., 2016). However, psychiatric diagnosis in

clinical trial settings is often highly ascertained through lengthy

interview processes with “clean” patients with no previous

mental health disorders. Often in real-world settings,

schizophrenia diagnoses are not so clear cut and are often

confounded by concomitant mental health disorders. A

further PRS was derived from the same GWAS data and

tested to ascertain how a schizophrenia PRS could function in

real world healthcare settings. Results were replicated in

retrospective cohorts from four different healthcare systems.

Importantly, the PRS was robustly associated with

schizophrenia and the ORs for schizophrenia remained

elevated, albeit more modestly, when comparing the top to

the bottom PRS deciles (ORs 2.3–4.6) (Zheutlin et al., 2019).

A smaller but multi-ethnic study in a United Kingdom

population demonstrated that a PRS showed good

discrimination between patients with first episode psychosis

and controls in European ancestry individuals (9.4% of

variance accounted for), but more modest discrimination in

those of African ancestry (1.1% of variance explained). In

European ancestry patients, the PRS distinguished between

those that developed a diagnosis of schizophrenia compared

to those that developed other psychotic disorders, suggesting

that a PRS may aid diagnosis in patients with a first episode

psychosis. This study also highlights the importance of

conducting genetic research in different ancestral groups to

improve PRS generalisability and avoid introducing additional

healthcare inequalities (Vassos et al., 2017).

The utility of PRSs in screening for schizophrenia is likely

limited by the low disease prevalence. The top 10% genetic risk

stratum carries an estimated average three-fold increased risk of

developing schizophrenia. However, as the population

prevalence of schizophrenia is just 1%, only 3% of this “high

risk” stratum will develop schizophrenia. Even in the top 1%

genetic risk stratum, only 6% will develop schizophrenia (Murray

et al., 2021). Thus, additional risk factors will need to be

integrated with PRSs if population schizophrenia risk

screening is to become more viable.

2.6 Depression

Heritability of major depression in twin studies has been

demonstrated to be between 30 and 40% with SNP-based

heritability measures of 9–37% (Sullivan et al., 2012;

Musliner et al., 2019). The current understanding of gene

heritability in major depressive disorder (MDD) in PRSs

explains only around 3.6% of the variance (Ni et al., 2021).

One PRS score in a Danish case-cohort study demonstrated a

30% increased risk of receiving a diagnosis of depression before

the age of 31 for each standard deviation increase in polygenic

liability (Musliner et al., 2019). In this same discovery Danish

cohort (iPSYCH 2012), a study investigating the effects of PRS,

socio-economic status and parental psychiatric history found

that the absolute risk of depression by 30 years of age differed

notably, depending on an individual’s combination of these risk

factors. Importantly, this risk of depression was almost 24%

among women in the top 2% of the PRS distribution with a

parental history of psychiatric disorders, illustrating the potential

of multivariable risk score systems (Agerbo et al., 2021).

Most MDD PRS research has focussed on early onset or

initial presentation. However, there is a significant prevalence of

depressive symptoms and depression in older adults (Kessler

et al., 2003; Zivin et al., 2010). One study utilising 11 SNPS in an

older patient cohort found that a one standard deviation increase

in PRS was associated with an approximate OR of 1.08 increase in

mean depressive symptom score, equating to approximately 18%

of the effect size of being female. They also found a (non-

significant) trend that as the PRS standard deviation

increased, participants were more likely to consistently report

high levels of depressive symptoms over time (Levine et al.,

2014).

A study by Peyrot et al. (2014) assessed genetic ×

environment interactions and found that PRS effects are

modulated by environmental factors. In particular, they

demonstrated that the strength of the association between PRS

and risk of depression increased in the presence of childhood

trauma.

Unhealthy lifestyle and high genetic risk burden based on a

depression PRS was associated with a two-fold increase in risk of

depression compared with a healthy lifestyle and low PRS-

determined genetic risk, although no formal statistical

interaction was observed. The beneficial impact of healthy

lifestyle was reported across all risk groups suggesting genetic

predisposition could be counteracted by environmental factors

(Cao et al., 2021).

In contrast to schizophrenia; the overall population risk of

major depression is relatively high (15%). Therefore, it is

estimated that 30% of those within the top 1% of the PRS

distribution will develop depression (Murray et al., 2021),

potentially making identification of at-risk individuals more

tractable for targeted research and interventions.

A small case-control study utilising adult GWAS data

extrapolated to adolescent cohorts, generated a PRS able to

explain 7.9% of observed variance itself and, when combined

with history of childhood abuse, explained 17.9% of the variance

of future depression prediction. Similarly, they demonstrated the

PRS in isolation explained 7.7% of the variance, and the additive

model explained 13.5% of the variance of depression severity in

adolescents (Halldorsdottir et al., 2019). They however did not

report the variance explained by effects of childhood abuse alone
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for comparison. Nonetheless this does support PRS use in

depression prediction in combination with clinical factors.

Furthermore; a study using GWAS data from an adult

Caucasian population developed a PRS to assess a Mexican

youth cohort for development of depression. They too found

a significant prediction of depression in this youth cohort;

however, again effect sizes were small and the AUC of PRS

models were modest (0.55–0.58) (Rabinowitz et al., 2020). Both

studies demonstrate the potential of PRS to identify risk groups

that could be targeted with preventative strategies, although the

predictive capability of the models must increase.

PRSs can also provide insights into disease pathogenesis. One

recent study generated a functionally informed PRS based on

subtle transcriptomic shifts in gene expression towards a

depression profile seen in key parts of the corticolimbic

circuit. Interestingly, this PRS was associated with widespread

reductions in neural response to neutral faces in women which,

in turn, was associated with increased self-reported anhedonia.

To corroborate this mechanistic PRS, the authors also studied a

more traditional depression (disease) susceptibility PRS using

variants from large scale case control GWAS literature data and

found a similar association with blunted reactivity to neutral

faces in women (Mareckova et al., 2020).

Two important considerations of PRS development in

psychiatry are phenotypic heterogeneity and pleiotropy.

First, it is inevitable that treated patients will show inter-

individual variability in response, and therefore will display

different symptom severity or a different constellation of

symptoms after drug treatment. This phenotypic

heterogeneity particularly after treatment has to be taken

into account as it can impact endpoint definitions that, in

turn, could impact PRS-based analyses (Santoro et al., 2018).

Second, pleiotropy, the genetic effect of the same locus on

multiple traits, can take the form of biological pleiotropy,

where the locus contributes to multiple phenotypes, or

mediated pleiotropy, where the locus increases the liability

to a second disorder that occurs as a consequence of

schizophrenia or its treatment (Zheutlin et al., 2019). A

study of 106,160 patients not only showed a strong

association with schizophrenia but also with anxiety, mood,

substance use, personality disorders and suicidal behaviour

(Zheutlin et al., 2019). Similarly, in a study in the

United States Veterans Affairs Health Care System in

patients with schizophrenia, bipolar disorder and

depression, higher PRSs were associated with higher

likelihood of mental and physical health diagnoses,

although the effect size was lower in African ancestry

individuals than in those of European ancestry (Bigdeli

et al., 2022). A phenome-wide analysis of UK Biobank

participants has shown that highly pleiotropic variants

corresponded to ubiquitously expressed genes important for

extracellular matrix, regulation of cell growth and signalling

pathways (Shikov et al., 2020).

2.7 Neurodegenerative disease

Alzheimer’s disease (AD) is the most common form of

dementia worldwide and constitutes one of the largest public

health issues globally, given aging populations. The strongest

known genetic link with AD is APOE ε4, although modern

GWAS data have identified multiple distinct genetic loci.

There have been many attempts to produce PRSs for AD with

mixed results (Stocker et al., 2018). The APOE ε4 allelic risk is

well documented; two copies of the allele result in increased AD

risk as well as reduced age of onset, although the strength of this

effect varies across different populations (Liu et al., 2013). PRS

development, excluding APOE ε4, have demonstrated worse

performance of disease prediction in healthy individuals than

APOE ε4 status alone. However, those that incorporated APOE

ε4 showed increased diagnostic accuracy compared with APOE

ε4 alone (Stocker et al., 2018). While there is currently no clinical

utility of genetic risk scores in AD, PRSs could potentially guide

development of future treatment stratification and trial patient

recruitment strategies to improve drug development.

Parkinson’s disease is an age-dependent

neurodegenerative condition; it has been reported that, as

the numbers of associated SNPs carried by individuals

increases, disease onset occurs at an earlier age (Escott-

Price et al., 2015; Nalls et al., 2015) and motor function

and cognition declines more rapidly (Paul et al., 2018).

2.8 Metabolic disorders

Obesity is a major public health issue with a significant

health-economic burden and has been shown to have a

notable polygenic component (Yang et al., 2007; Belsky et al.,

2013). Of note, obesity PRSs have been unable to accurately

discriminate between those at high and low obesity risk, likely

influenced by the strong environmental influence on the

development of obesity. One model demonstrated that a PRS

for obesity outperformed the monogenic risk loci with the

strongest associations to date (Belsky et al., 2013), FTO and

MC4R, which together predict around 0.59% of obesity variation

(Loos and Janssens, 2017). Although an improvement, the AUC

for this PRS was only slightly better than chance by itself (0.574)

and after being combined with a socioeconomic score (0.586).

The PRS also failed to predict BMI for African-American

patients, highlighting the complexity of PRS development and

lack of generalisability in an ethnically diverse population (Belsky

et al., 2013). Current prediction models have improved with the

addition of non-genetic obesity risk factors such as education,

employment, diet, medication, smoking, and physical activity

alongside the PRS, which collectively increase the AUC to 0.69

(Sandholt et al., 2010). In keeping with other conditions, obesity

PRSs appear more informative for those at the extremes of the

genetic risk distribution (Peterson et al., 2011).
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Measurement of islet autoantibodies in children can indicate

active type 1 diabetes mellitus (T1DM) years before clinical

diagnosis. However, they are often difficult to obtain, are

expensive, and have reduced sensitivity and specificity in adult

cohorts. As T1DM is highly heritable with its twin concordance

rate of around 70%, numerous PRSs have been developed that

demonstrate AUCs of >0.8 (Winkler et al., 2014; Oram et al.,

2016; Sharp et al., 2019). Although bothHLA-DR3 andDR4-DQ8

are known to increase the risk of T1DM, recent studies have

demonstrated increased risk stratification with additional SNPs

in PRSs (Bonifacio et al., 2018). There is hope that early detection

before clinical symptoms could lead to primary prevention trials

and novel preventative treatments.

With rising levels of obesity, it is becoming increasingly

difficult to distinguish type 2 diabetes mellitus (T2DM) from

T1DM in young patients. Importantly, a T1DM PRS has been

shown to be highly discriminative between T1DM and T2DM

(Oram et al., 2016). Furthermore, this same T1DM PRS has been

used in patients with T2DM in conjunction with

GAD65 autoantibodies to detect those that were more likely

to rapidly progress to needing insulin therapy (Grubb et al.,

2019).

Both metformin and lifestyle intervention have been shown

to prevent progression to T2DM, which in turn is a key clinical

risk factor for cardiac and renal disease globally (Knowler et al.,

2002). A T2DM PRS identified those within the top 3.5% of

genetic risk scores to have a greater than three-fold average risk of

having T2DM compared to the rest of the cohort; such an

approach could prioritise costly preventative strategies and

reduce those exposed to adverse drug reactions from

prophylactic metformin (Khera et al., 2018). Furthermore,

PRS studies have identified that risk scores add predictive

value over traditional risk factors in T2DM, although

discriminatory gains are modest (Vaxillaire et al., 2014; Lall

et al., 2017).

2.9 Venous thromboembolism

Venous thromboembolism (VTE) is a multifactorial disease

with complex interplay between acquired and genetic factors,

affecting around 0.2% of the population in America and Europe

annually. An estimated 60% of VTE risk is heritable, but

currently only two established variants within the clotting

cascade are used in clinical practice: Factor V Leiden (FVL),

and the gain-of-function 20210G>A variant in prothrombin

(Soria et al., 2014). However, the clinical utility of this genetic

testing is controversial and limited (Stevens et al., 2016). Multiple

additional common low-penetrance loci linked to unexpected

genes have been identified in recent GWAS analyses (Morange

and Tregouet, 2011; Sabater-Lleal et al., 2012; Tang et al., 2013).

In predicting a first VTE episode, de Haan et al. (2012) derived a

PRS from five highly significant SNPs to improve predictions

when used in combination with clinical risk factors, compared to

clinical risk factors alone. However, their work also demonstrated

that a risk score combining 31 individual SNPs provided no

significant added prognostic benefit over the five SNP model.

Recent work supports these findings and has identified further

SNPs that improve VTE prediction, but also suggest that low

frequency variants with lower ORs add little to VTE prediction

(Soria et al., 2014). When examining recurrent VTE episodes,

patients with multiple (two or more) SNPs associated with VTE

had a substantially higher risk of recurrence; however, the

proportion of patients with multiple SNPs was limited to

around 4% (van Hylckama Vlieg et al., 2008). Further issues

arise when examining genetic risk of VTE in breast cancer

patients. Patients in the upper 5% of genetic risk scores had a

similar risk of VTE recurrence to family history and FVL status,

although 93% of those in the upper 5% were FVL carriers

suggesting that routine FVL testing alone may be sufficient

(Brand et al., 2016).

2.10 Utility in adverse drug reactions and
drug efficacy

2.10.1 Statins
Statins are widely used group of drugs which lower LDL

cholesterol and have been shown to be efficacious for both

primary and secondary prevention of atherosclerotic arterial

disease. Although measurement of cholesterol and/or clinical

risk scores are used to determine when patients should be

prescribed a statin, research in this area has attempted to

identify whether PRSs may add value over and above clinical

risk categorization with respect to the effect of statins in

preventing cardiac events. Mega et al. (2015) demonstrated

the potential of PRSs to categorise patients into different risk

tertiles for coronary heart disease events, as described earlier.

However, they also demonstrated different levels of statin efficacy

across the risk groups. Most notably, from primary prevention

trial data (JUPITER and ASCOT), they demonstrated an

approximate three-fold difference in relative risk reduction

between highest and lowest genetic risk tertiles. This translates

to a decrease in the number needed to treat (NNT) with statins to

prevent one coronary heart disease event over 10 years between

the lowest and highest genetic risk tertile groups (low genetic risk

NNT: Jupiter = 66, ASCOT = 57 and high genetic risk NNT:

Jupiter = 25, ASCOT = 20). A further study analysed patients

from the WOSCOPS primary prevention trial and developed a

larger 57 variant PRS to further investigate the effects of statins.

They coupled the outcome data with observational study data to

explain phenotypic effects on coronary disease plaques and

burden. They demonstrated a NNT of 13 in those carrying

the highest genetic burden compared to a NNT of 38 in the

rest of the study population, supporting the results seen by Mega

et al. This effect also correlated with coronary artery calcification
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and plaque burden data, showing for every standard deviation

increase in PRS, the coronary artery calcification and plaque

burden correspondingly increased (Natarajan et al., 2017).

Contrary to this evidence, however, one PRS demonstrated no

significant difference between patient PRS tertiles and serum

LDL levels after 6 months of statin therapy (Rincon et al., 2019).

To our knowledge, there have yet to be any completed

prospective studies utilising genetics on patient selection for

statins in either primary or secondary prevention strategies.

However, the addition of a PRS in a two-stage screening

strategy for primary CVD prevention has been proposed and

NHS pilot is underway (Health Education England, 2021; Devlin,

2022). The addition of the PRS could help reclassify and identify

those at intermediate risk into higher risk categories who may

then benefit from statin therapy (Tikkanen et al., 2013).

2.10.2 Clopidogrel
Clopidogrel is prescribed for the prevention of

atherothrombotic events in patients with coronary artery

disease (Valgimigli et al., 2017) and as secondary prevention

in stroke (The National Institute for Health and Care Excellence

(NICE), 2020). Growing interest in interindividual patient

variability in response to clopidogrel therapy has led to

evidence indicating that a relatively high proportion of

variability seen in response to clopidogrel is attributable to

genetic variation (Shuldiner et al., 2009). A recent study has

attempted to model this genetic variation in a PRS format. They

used a database of 3,391 European ancestry patients on

clopidogrel and assessed platelet reactivity via a variety of

platelet function assays which were standardised to allow

comparison. Clinical endpoints of cardiovascular events were

then assessed in 2,134 of these patients. A PRS was developed that

incorporated CYP2C19*2 and five SNPs that were significantly

associated with platelet reactivity in the study. They observed that

with an increasing number of risk alleles, patient’s platelet

reactivity increased and so did their risk of cardiovascular

events. Patients with eight or more alleles were more likely to

experience cardiovascular events than those with six alleles (OR =

1.78 (CI 1.14–2.76, p = 0.01). However, the six SNPs included

only accounted for 3.5% of the variation in platelet function

(Lewis et al., 2020). Importantly after adjustment for

CYP2C19*2, the remaining SNPs were non-significant for

composite CV endpoints (Lewis et al., 2020). In another

study, no other SNPs were statistically significant for platelet

aggregation after CYP2C19*2 adjustment. However multiple

regression analysis in that study population showed that a

combination of CYP2C19*2, rs2254638, and rs2487032 could

explain 28.2% of antiplatelet response (10.9%, 14.8%, and 2.5%

per SNP, respectively) which improved with additional clinical

variables such as sex. CYP2C19*2 also accounted for ~16% of

variation in active metabolite levels (Verma et al., 2020).

Interestingly in a controlled genetic cohort in an Amish

population CYP2C19*2 accounted for around 12% of genetic

variation of platelet reactivity alone compared to the explained

variation seen by the 6 SNPs in Lewis et al.’s study (Shuldiner

et al., 2009). Further studies utilising an increased cohort size and

prospective data will be needed to follow up these interesting

findings.

2.10.3 Warfarin
Warfarin remains a widely used anticoagulant, despite the

increasing use of direct oral anticoagulants (DOACs), and

remains the mainstay of long-term anticoagulation therapy for

those with mechanical heart valves, paediatric patients, those

patients with severe renal impairment, and for patients in many

parts of the developing world. Despite its effectiveness as an oral

anticoagulant, warfarin is responsible for a significant bleeding

risk of 7.2 events per 100 patient years. Moreover, it is in the top

three drugs responsible for hospital admissions, largely due to the

narrow therapeutic window and large inter-patient response

variability (Pirmohamed, 2018). A concerted effort has been

made to improve warfarin safety with development of

polygenetic and clinical dosing algorithms.

In 2009, the International Warfarin Pharmacogenetics

Consortium (IWPC) developed a pharmacogenomic

algorithm, incorporating VKORC1 and CYP2C9 genes, which

improved initial dosing of warfarin compared with clinical

algorithms and fixed dosing regimens; the improvement was

greater at dosing extremes (<21 mg and >49 mg per week)

(International Warfarin Pharmacogenetics et al., 2009).

Following this, numerous trials have compared

pharmacogenomic dosing to clinical algorithms and standard

care with mixed results; the three largest trials to date are COAG,

EU-PACT, and GIFT. The COAG trial compared a clinical to a

pharmacogenomic algorithm and showed no difference between

groups for time in the therapeutic international normalised ratio

(INR) range in the initial 4 weeks of therapy (Kimmel et al.,

2013). However, this trial was limited by including 27% African-

American patients but without considering variants that impact

warfarin dose requirements and are more common in those of

African ancestry, such as CYP2C9*5, *6, *8, *11, and

rs12777823 G>A (Drozda et al., 2015; Limdi et al., 2015).

Furthermore, there is a general lack of warfarin dosing

algorithms for African ancestry individuals (Drozda et al.,

2015; Pirmohamed, 2018). Conversely, the EU-PACT trial

demonstrated greater time in the therapeutic INR range, fewer

incidences of excessive anticoagulation and a shorter time to

therapeutic INR for those dosed with a pharmacogenomic

algorithm compared with standard dosing (Pirmohamed et al.,

2013). Lastly, the GIFT trial, which is the largest and most recent

warfarin pharmacogenomics trial, assessed perioperative

warfarin dosing and reported a decrease in a composite

clinical outcome using the pharmacogenomic dosing

algorithm, driven mostly by a reduction in episodes of

INR >4 and a borderline significant reduction in major

bleeding (Gage et al., 2017). In contrast, a recent retrospective
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real-world Finnish Biobank study observed the effects of

VKORC1 and CYP2C9 variants on adverse drug reactions to

Warfarin. They did demonstrate sensitive and highly sensitive

responders had more INR tests above 3. However, this failed to

translate into an increase in risk of bleeding complications

(Vuorinen et al., 2021). This effect may be due to considering

all major and minor bleeding events, although minor bleeding

events have previously been shown not to be associated with

genotype (Tomek et al., 2013). Moreover, the study assessed long

follow up times when most of the benefit from genetics is accrued

early after starting warfarin (Schwarz et al., 2008). Due to these

disparities (Table 1), even though cost effectiveness in the

positive trials has been demonstrated, polygenic algorithmic-

based dosing of warfarin is yet to translate into routine practice

(although to a large part, this is because the newer direct oral

anticoagulants have taken over from warfarin in the treatment of

thromboembolic conditions).

2.10.4 Taxanes
A retrospective analysis of the CALGB 40502 taxane trial

using genetic data was performed in 2018 to produce a novel PRS

combined with clinical data to improve prediction of progression

free survival in patients on taxane-based therapy with advanced

breast cancer. The resulting risk score had an AUC of 0.81,

compared to 0.64 using clinical covariates alone. The initial phase

of the genetic study focussed on those of European ancestry, but

the final risk score was validated in those of non-European

ancestry. The original trial found no superiority in the trial

agent over the current clinical standard, paclitaxel, and so has

been of limited clinical benefit in helping clinicians differentiate

between the treatment options (Rashkin et al., 2019). Their

methodology, however, demonstrates potential for other

agents in the future, by predicting which agents will be

effective for different patients to optimise outcome whilst

minimising harm.

TABLE 1 Compares the polygenic risk score trials in Warfarin prescribing.

Author Year Patient
cohort
Size

Patient
ethnicity

SNPs/Genotypes
included

Primary outcome
Measure(s)

Comparison
warfarin
dosing
model

Results

Pirmohamed
et al.*

2013 455 Largely White
British and
Swedish

CYP2C9*2, CYP2C9*3,
and VKORC1
(−1639G→A)

The percentage of time in
the therapeutic INR range
of 2.0–3.0 during first
3 months of therapy

NP Unadjusted percentage of
time with an INR in
therapeutic range was 67.4%
in the genotype-guided
group as compared with
60.3% in the control group-
difference of 7% between
groups (95% confidence
interval, 3.3–10.6; P< 0.001)

Gage et al.* 2017 1650 Largely White
American

VKORC1-1639G>A,
CYP2C9*2, CYP2C9*3,
and CYP4F2 V433M

Composite of adverse
events: major bleeding
within 30 days, INR of 4 or
greater within 30 days,
death within 30 days, and
symptomatic or
asymptomatic VTE
confirmed by objective
testing within 60 days of
arthroplasty

CM 10.8% of genotype group vs.
14.7% of clinical model
guided group experienced at
least 1 composite endpoint.
Absolute risk difference of
3.9% (95% CI, 0.7%–7.2%;
p = 0.02)

Jorgensen
et al.*

2019 212 White
European

CYP2C9*2 (rs1799853),
CYP2C9*3 (rs1057910)
and VKORC1
-1639G→A (rs9923231)

Percentage time in target
INR range (2.0–3.0) during
the first 3 months of
treatment

NP Mean percentage time in
range was 62.74% in the
implementation group vs.
55.25% in the combined
control and normal clinic
data for the region. control
group. A difference of 7.49%

Kimmel et al. 2013 1015 White
American,
Hispanic,
African
American

CYP2C9*2, CYP2C9*3,
and VKORC1

Percentage of time
participants spend within
the therapeutic INR range
(2.0–3.0) during the first
4 weeks of therapy

CM Overall no difference mean
percentage time in
therapeutic range- 45.2% in
the genotype guided group
and 45.4% in the clinically
guided group

CM = Clinical/phenotypic model, NP = normal clinical practice, * trials which support genetic testing.
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2.10.5 Neuropsychiatric agents
2.10.5.1 Antipsychotics

There has been much candidate gene research and in recent

years increasing GWAS analysis investigating both antipsychotic

efficacy and antipsychotic ADR prediction with mixed/

conflicting results (Zhang and Malhotra, 2018). A significant

proportion of patients fail to respond to conventional

antipsychotic therapy and are “treatment resistant”. The only

evidence-based therapy for treatment resistant schizophrenia is

clozapine, which comes with a risk of significant adverse drug

reactions and generally takes years of antipsychotic trials before

initiation leading to prolonged periods of untreated psychosis

and poorer prognosis (Schennach et al., 2012). A PRS developed

with a small cohort of schizophrenia patients comparing

clozapine takers and clozapine naïve patients demonstrated

PRSs were higher in the group that required clozapine therapy

(Frank et al., 2015). On the other hand, a larger study using

standard psychiatric interviews demonstrated a schizophrenia

PRS was no better than clinical factors in determining

individualised poor outcomes (Landi et al., 2021).

Furthermore, a small Danish study analysing treatment

resistant schizophrenia, defined as those on clozapine and

those hospitalised whilst on monotherapy, found no

significant association between PRS and treatment resistance

(Wimberley et al., 2017). One study assessing lurasidone

efficacy in patients with chronic schizophrenia utilised two

phase III trial cohorts: Meltzer et al. (2011) and Nasrallah

et al. (2013). The study captured a mixture of Caucasian and

African American patients. They identified a group of risk SNPs

that together successfully predicted outcome with treatment for

Caucasian patients (Li et al., 2018). Unsurprisingly, this effect

was not seen in African American patients given the PRS was

developed in a Caucasian population. Similarly, to Frank et al.

(2015) work with clozapine, increased PRS scores correlated with

increased treatment response with lurasidone.

However, in patients with a first presentation of acute

schizophrenia and naive to therapy, the opposite results were

demonstrated. Patients with a higher schizophrenia PRS value

were associated with poorer treatment response in initial

treatment (Zhang et al., 2019).

Meta-analysis of all of the candidate gene studies assessing

antipsychotic related weight gain was conducted by Zhang et al.

(2016). The lead SNP from the six most promising genetic

regions was selected and included in a weighted PRS used in

both adult and paediatric cohorts to assess for weight gain at

3 months. The generated PRS showed weak correlations with

weight gain with a R2 value of 0.056.

Results from PRS antipsychotic effectiveness studies

appear conflicting and thus far have been reliant on small

scale studies. Nevertheless, the proof of concept ideas studied

highlight the potential clinical utility for a personalised

medicine approach.

2.10.5.2 Antidepressants

Antidepressants are the first line drug for major depressive

disorder and there are >30 drugs on the market currently.

Around one third of patients will respond to first line

antidepressant therapy with another third requiring an

alternative agent and the final third fail to respond to at least

two agents (Garcia-Gonzalez et al., 2017). Data from seven

antidepressant pharmacogenomic trials were included in the

largest scale study to date assessing antidepressant response.

However, a PRS for antidepressant efficacy was not significant

and the polygenetic liability to MDD or schizophrenia did not

influence response to antidepressants. The latter finding suggests

there are differences in genetic risk variants between depression

susceptibility and treatment efficacy (Garcia-Gonzalez et al.,

2017).

A study in a much smaller cohort of patients assessed aMDD

PRS and a PRS for neuroticism for association with response to

SSRIs in patients with MDD. They too were unable to produce a

model which remained significant after correction for multiple

testing. However, they did demonstrate a direction of effect

where higher PRS for MDD and neuroticism were associated

with less favourable response to SSRIs (Ward et al., 2018), which

should be followed up in larger samples.

Another study using smaller numbers of genetic variables,

that also incorporated clinical factors into the risk scores was able

to predict treatment response in patients with a diagnosis of

MDD who were randomly allocated to receive either

escitalopram, or nortriptyline. In cross-drug specificity

analyses, neither the risk score for nortriptyline nor

escitalopram predicted remission in the opposing group,

suggesting each risk score was drug specific. For escitalopram,

the AUC in the model training dataset was 0.8, and it remained a

moderate prediction (AUC of 0.77) in the replication cohort. The

nortriptyline risk score demonstrated similar AUC results with

an AUC of 0.83 in the training cohort and 0.77 in the validation

cohort (Iniesta et al., 2018). The sample size for this study was

small, however, necessitating replication in larger datasets.

For treatment resistant depression, esketamine nasal spray

has been demonstrated to be useful for those at imminent risk of

suicide. One study evaluated PRS models to predict remission/

improvement in clinical symptoms after 4 weeks of initial

therapy in two phase III clinical trial cohorts. Their PRS

model for depression did not predict treatment response to

esketamine after replication corrections; however, there was a

trend towards positive correlation for responder and remission

status (Li et al., 2020).

2.10.5.3 Lithium

Lithium is the first line treatment option for patients with

bipolar affective disorder; however, treatment response varies

between individuals with around 30% being only partially

responsive and 25% showing no response (Amare et al., 2018).
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There is significant overlap reported between genetic

susceptibility of major depression and schizophrenia with

bipolar affective disorder; two studies have investigated effects

of both a major depression PRS and schizophrenia PRS on

prediction of lithium response in bipolar disorder.

Furthermore, lithium is not an early treatment for either

condition so higher genetic predisposition for either

depression or schizophrenia could predict an unfavourable

response to lithium. The international consortium on lithium

genetics study identified an inverse relationship between

treatment response and schizophrenia PRS values. An

adjusted OR of 3.46 in favour of a positive treatment outcome

with lithium was observed in those within the lowest decile of

schizophrenia PRS compared to those in the highest decile

(Amare et al., 2018). Similarly, the same inverse relationship

between PRS decile and lithium response was observed using the

MDD PRS, albeit to a lesser extent (adjusted OR 1.49 comparing

the lowest to the highest PRS deciles) (Amare et al., 2021).

Interestingly, both studies PRSs explained <1% of genetic

variance in the Bipolar disorder patients’ response to lithium

(Amare et al., 2018; Amare et al., 2021). This suggests that as

PRSs are developed based on larger samples, and potentially

based on novel bipolar disorder specific PRS scores, prediction of

lithium response could improve significantly in the future.

2.11 Clinical trials

Over the past few decades, drug trials for neurodegenerative

disease-modifying drugs have largely been unsuccessful with

99.6% of Alzheimer’s disease trials between 2002 and

2012 failing (Cummings et al., 2014). Furthermore, a large

proportion of these drug trials failed at the very costly phase

three stage. Similar trends have been observed in other

neurodegenerative diseases, such as Parkinson’s disease, and

one of many suggested reasons for this failure may be

imbalance of genetics during trial randomisation (Leonard

et al., 2020). This imbalance in clinical trials is supported by

growing evidence that different phenotypic presentations of

disease are due, in part, to differences in underlying genetic

architecture, such as faster progression or predominance of

certain symptoms. For instance, in Parkinson’s disease, disease

variants in the glucocerebrosidase gene have been linked to

poorer survival and increased risk of early dementia (Cilia

et al., 2016). This imbalance in clinical trials is encapsulated

by the post-hoc analysis of phase III solanezumab trials. Subsets

of participants were screened for biomarkers of amyloid status,

revealing that 25% of those with mild AD were amyloid negative,

which could have led to the lack of expected effect seen in the trial

(Chen et al., 2016). Underlying genetic variation is likely to have

similar effects to those seen with downstream biomarkers such as

amyloid status. One research group has attempted to model the

effects of single SNP, multiple SNP, or PRSs on variant

distribution after randomisation and they found instances

where significant differences after randomisation between

investigative arms might confound true therapeutic effects

(Leonard et al., 2020). Nevertheless, there is currently limited

research on the effects of underlying genetics between treatment

arms after randomisation and its impact on clinical trial

outcomes. Theoretically, adjusting for underlying differences

in genetics could lead to greater trial success and decrease

drug development costs.

One such trial adopting a genetic enhanced recruitment

process, albeit for monogenetic markers, is the PRIZE trial.

The protein, endothelin 1 (ET-1), is encoded by EDN1, and is

the most potent, longest-lasting vasoconstrictor in humans.

Increased production of ET-1 and subsequent binding to the

ETA receptor has been demonstrated to promote atherosclerosis

(Gupta et al., 2017). The allele, rs9349379-G, has been associated

with higher circulating serum ET-1 levels and subsequent

coronary microvascular dysfunction without obstructive

coronary disease and thus an increased risk of CAD (Ford

et al., 2020). The PRIZE study is currently using an enriched

genomic recruitment strategy to assess zibotentan, which acts as a

potent inhibitor of the ETA receptor, in a patient cohort with

microvascular angina. They are aiming to recruit to ensure a

rs9349379-G allelic frequency of >50%, which will both

investigate the hypothesis that rs9349379-G will act as a novel

biomarker associated with treatment response (Morrow et al.,

2020) and may also maximise efficacious drug response.

2.12 The future of polygenic risk scores

Pharmacogenomics has been the subject of intense research

over the last three decades. However, to date, there has been

limited implementation into clinical practice for several reasons.

The advances in pharmacogenomics led to the first PRS

development in 2007 (Wray et al., 2007) and, since then,

there has been tremendous growth in samples sizes, GWAS

analyses, and PRS-based research; so, what is the future for PRSs?

The lack of ethnic diversity in genetic studies conducted to

date is widely documented, with most originating from white,

Western, European ancestry populations. From the first 10 years

of PRS research, 67% of studies included exclusively European

ancestry participants and 19% included only East Asian ancestry

participants. Only 3.8% of studies analysed from this time period

included cohorts of African, Hispanic, or Indigenous peoples,

highlighting the huge disparities in genetic research populations

(Duncan et al., 2019). Importantly, it has been demonstrated that

the European-ancestry derived PRSs predictive ability is lower in

non-European populations (Duncan et al., 2019; Martin et al.,

2019). Interestingly, cross-evaluation of data from the

United Kingdom and Estonian biobanks, and from a German

population, showed that the highest performance of the PRSs

with respect to coronary artery disease was highest in their

Frontiers in Genetics frontiersin.org11

Cross et al. 10.3389/fgene.2022.1000667

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1000667


corresponding population dataset, but dropped when applied to

different European populations of the same ethnicity (Gola et al.,

2020). This highlights the issue that a PRS developed in one

population cannot be applied to another population without

taking into account population structure (Reisberg et al., 2017).

Further to ethnic disparities, there are also significant sex

disparities in PRS research. Women have higher rates and

severity of adverse drug effects (Pirmohamed et al., 2004;

Melloni et al., 2010; Franconi and Campesi, 2014). Large

numbers of medications taken off the market in recent times

have been due to disproportionately harmful effects in women

(Carey et al., 2017). For many conditions it is generally observed

that women feature less in clinical trials than men and this is

particularly apparent in CVD trials (Melloni et al., 2010). CVD is

the leading cause of death in both men and women and so this

disconnect between female representation in clinical trials and

clinical practice could be an avenue for future research. For

example, in one United Kingdom study assessing hospital

admission for ADRs, aspirin was the most common culprit

drug (Pirmohamed et al., 2004). Women are more likely to

experience both thrombosis and bleeding linked with

antiplatelet therapy, compared with men, for cause(s) not fully

understood (Wang et al., 2012). Women are also more likely to

experience drug-induced QT prolongation (Franconi et al., 2011;

Darpo et al., 2014) for reasons we do not fully understand. One

potential future use of PRSs could be investigating ADRs

specifically in women. However, it is currently unclear what

the genetic disparities between the sexes are, and sex

chromosomes are often excluded from GWAS analyses

(Lambert et al., 2019).

To date, PRSs which have focused on disease risk have

outnumbered PRS studies focusing on pharmacogenomic end-

points. This is perhaps not surprising given that disease PRSs can

compare individuals with and without the disease, and this has

been accelerated by the availability of large biobanks such as the

United Kingdom biobank. However, the use of disease/no disease

stratification is relatively crude and does not take into account

disease sub-types. To undertake PRSs on pharmacogenomic end-

points (efficacy or safety) is more difficult for many reasons.

Pharmacogenomic studies have to date relied on specifically

defined end-points, which are often not recorded to the same

resolution in large biobanks, and thus sample sizes for

pharmacogenomic studies, which have had to rely on field

based studies, have been small and may thus lack power.

Efficacy end-points used in pharmacogenomic studies require

specific tools, such as the Montgomery-Asberg Depression

Rating Scale for depression studies, which will not be available

in biobanks. For safety end-points, stratification based on

severity may be important as some of the single gene variants

have been associated with severe, but not the milder, phenotypes

(Biswas et al., 2022). Another major issue which needs to be

considered in pharmacogenomic PRSs is polypharmacy (i.e. the

co-prescription of several drugs, typically more than 5, to the

same patient). Polypharmacy increases the risk of drug-drug

interactions and may modify the genetic effect. Similarly, the risk

of toxicity from a drug may also be modulated by underyling

disease, such as renal impairment, which may interact with a

genetic risk factor to increase susceptibility (Park et al., 2019). In

the medium- to longer-term, improving the resolution of

phenotypes within biobanks and standardising data collection

tools with core outcomes is going to be essential in order to

upscale work on pharmacogenomic PRSs.

There are many social barriers to the future utility of PRSs

but, here, we briefly cover the main issues. It is unclear

currently the long-term psychological effects of genetic risk

knowledge on patients and, furthermore, legislation around

information governance with this data will have to evolve to

include access, identification, and risk profiling issues.

Physician and public education around PRSs would be

required to maximise clinical utility and this could lead to

either under or over treating patients. For the public, this may

lead to perceptions of clinicians withholding treatment

(Torkamani et al., 2018).

As PRS research and clinical utility increases, disparities in

statistical assessment and genetic risk score design between

studies will require standardisation to allow comparisons. For

example, in primary and secondary prevention of ischaemic

heart disease, Rincon et al. (2019) developed their PRS by

summation of the number of risk alleles across genetic

variants and then dividing into tertiles. Morieri et al.

(2018) used similar methodology, but weighted the effect

alleles based on literature risk effects and then standardised

their risk score. Mega et al. (2015), however, scored their PRS

with the sum of the number of risk alleles for each SNP

weighted by the log of the odds ratio reported with the

SNP in the original literature. Vaara et al. (2016) used a

further altered methodology by summation of the number

of weighted risk alleles and then dividing by the total number

of SNPs included in each of their respective models. Small

variations such as this can have large downstream effects on

the overall outcome and prediction of the model. Moreover,

different analysis methods focus on making comparisons

between different subgroups of patients, such as tertiles

(Morieri et al., 2018; Rincon et al., 2019), quintiles (Mega

et al., 2015) or analysing the risk score as a whole (Vaara et al.,

2016). This variation is echoed in other fields, such as breast

cancer, where deciles and extreme upper and lower one

percentiles are analysed (Mavaddat et al., 2015; Khera

et al., 2018). With ever increasing pressure on healthcare

systems, rationing of therapy offered to those who receive

benefit in a more personalised way, and using targeted

screening as opposed to blanket screening with novel PRSs,

could help improve efficiency, as outlined earlier. Costs of

whole genome sequencing have rapidly declined, moving from

estimates of US$10 million in 2007 to below US$1,500 in late

2015, and are falling further as investment increases (NIH
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National Human Genome Research Institute, 2016; Payne

et al., 2018). Some pilot data on limited numbers of

participants has suggested that, as costs reduce, an

increased diagnostic yield from genetics and reducing

target therapy could indeed become cost effective in clinical

practice with obvious differences in diagnostic yield

depending on disease process (Sagoo et al., 2017). Whole

exome sequencing has already been demonstrated to be

more cost effective than traditional diagnostics in

paediatric populations with muscle disorders (Schofield

et al., 2017), as well as in paediatric monogenetic disorders,

particularly when the test is conducted early (Stark et al.,

2017). However, mixed success of cost-effective models in

adults, such as genetic testing to guide ibrutinib therapy, has

demonstrated improved health outcomes but at a significant

cost. Unless treatment or diagnostic costs are reduced, this is

unlikely to be an acceptable price in current medical practice

(Buchanan et al., 2017). Similarly, targeted lung cancer

therapy was found to not be cost effective (Doble et al.,

2017); however, in dilated cardiomyopathy, family testing

before symptoms and guided screening of those individuals

is highly likely to be cost effective (Catchpool et al., 2019).

Logic would dictate that early genetic testing to predict future

disease risk and guide future therapies could be the most cost-

effective test in healthcare. However, decisions around who

will pay and manage such initiatives will certainly play a role

in the future, and currently, healthcare systems still focus on

treating rather than preventing diseases.

As we learn increasing amounts about the role of genetics,

disease development models will have increasing predictability

and clinical utility. We are able to detect SNPs with smaller and

smaller effect sizes due to larger sample sizes in clinical research

and subsequently the number of SNPs reaching genome wide

significance continues to rise (Figure 1). Khera et al. (2018) used

PRSmethodology to identify larger fractions of a population with

comparable, if not increased disease risk compared to known

monogenic risk variants. This increased detection has further

impacted genetic prediction models, demonstrated by a gradual

increase in the AUCs for T2DM, breast cancer, coronary heart

disease and prostate cancer prediction models from 2007 to 2013

(Krier et al., 2016). The incremental improvements to PRSs over

time have also been exemplified in CAD. Importantly, this

increase in risk prediction in one PRS crossed the clinically

significant 6% threshold from the American College of

Cardiology/American Heart Association pooled cohort

equations atherosclerotic cardiovascular disease estimator that

assesses the value of new biomarkers in addition to current

models for making primary prevention predictions in IHD

(Morieri et al., 2018). As research increases and more patient

genetic data becomes available, the strength of genetic risk

FIGURE 1
Common features of PRSs and the ideal individualised areas an optimal PRS identifies to produce a personalised medicine approach to future
healthcare.
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models should continue to increase, hopefully increasing clinical

utility. At the date of writing, there are currently 22 clinical trials

in progress involving PRSs across a variety of pathologies

including breast cancer and CVD (Supplementary Material).

Further to this, the United Kingdom government’s

Department of Health and Social Care green paper on disease

prevention has made genetic information a priority of the

United Kingdom healthcare system research with the

ambition to embed genetic information into routine

healthcare practice (UK Department of Health and Social

Care, 2019). The ambitious United Kingdom plans are further

outlined in the new National Genomic Healthcare Strategy

(Department of Health and Social Care, 2020) and are

reflected in other healthcare systems globally, such as the

CDC considering PRS utilisation in the United States

(Khoury, 2019).

With the increasing availability of sequencing data, an

important issue which needs further work is how to integrate

rare variants together with common variants in order to determine

whether this improves predictability. Studies evaluating this aspect

are now beginning to appear. Lali et al. (2021) were able to develop

a rare variant genetic risk score which was able to identify 1.5% of

people with a risk of early for coronary artery disease even when

adjusting for Mendelian genes, clinical risk factors and common

genetic variants. A recent study showed that PRSs based on

common genetic variants for obesity, and the risk of severe

obesity and early bariatric surgery, was enhanced by

incorporating rare variants associated with significant gene

expression changes (which they termed expression outliers),

highlighting the potential utility of combining common and

rare genetic variants in PRSs (Smail et al., 2022).

Large GWAS and sequencing studies and the

development of PRSs can also provide insight into how

different biological pathways interlink and identify

potential key genes and downstream metabolites to

develop novel drug targets and therapies. GWAS studies

have already confirmed or contributed to identification of

novel therapeutic targets such as SLC30A8 for T2DM and IL-

23 for Crohn’s disease (Nabirotchkin et al., 2020). A recent

novel approach to drug targeting, termed ‘pharmagenic

enrichment score (PES)’, aims to increase the clinical utility

of PRSs in complex diseases. The PES approach combines

known biological pathways with individuals’ genetic risk for a

given disease process with drugs known to act on these

pathways to provide an individualised therapeutic strategy

to best manage that individual patient’s risk. This strategy

also provides the potential to repurpose drugs not commonly

used in the disease but known to act on the associated

pathway(s) (Reay et al., 2020). It has been estimated that

selecting genetically supported drug targets in drug

development could double success rates in clinical

development (Nelson et al., 2015). It seems that PRSs have

the potential to aid target discovery and patient stratification

(Figure 2).

The complex issue of how to implement PRS into clinical

practice has not been adequately investigated. Implementation of

FIGURE 2
A diagram demonstrating positive and negative factors influencing PRS development and the potential clinical utility of PRSs from birth to death.
The strengths of the current studies are highlighted in green at the top of the figure, while limitations are shown in red. The bottom half of the figure
provides the potential timepoints for utilization of PRSs through the life cycle from birth to death.
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novel products or tests into healthcare is complex and requires

multidisciplinary expertise that is often not utilised in the initial

discovery studies. Researchers in the PRS field should also bear in

mind that implementation of pharmacogenomic variants, even

when the effect size is much greater than that seen with PRSs, has

been limited despite efforts over decades. The difficulties in

implementation of PRSs is going to be further compounded

by the fact that PRSs are much more complex comprising large,

and differing, numbers of variants, as shown in this review, when

compared with pharmacogenomic tests which consist of single/

few variants.

Direct to-consumer (DTC) genetics has also expanded

rapidly, providing the public with access to individual

genetic profiles and interpretation of common genetic

variants. Since 2015, a group of academic geneticists have

developed an online open access genetics platform which

utilises this DTC data to produce PRS scores for various

health traits and diseases. The platform touches on

uncharted territory at the forefront of current debate about

PRS utilisation in clinical practice, including how best to

present genetic data to the public and what the lasting

effects of knowing one’s genetic profile might be (Folkersen

et al., 2020). Growth of other online public platforms, such as

openSNP, SNPedia/Promethase and The Personal Genome

Project, allow customers to publish their DTC results for

research purposes, data aggregation and sharing of

scientific information (Greshake et al., 2014).

3 Conclusion

Since the first polygenic risk scores were developed,

research in this area has progressed at pace. PRSs have been

shown to have some potential in disease risk identification, drug

targeting and stratified medicine across a range of therapeutic

areas including oncology, cardiovascular and psychiatry.

Nevertheless, further evidence of clinical utility is required to

spark translation and implementation into routine practice. As

costs and other barriers impinging genetic testing are navigated,

and multi-ethnic sample sizes for development and validation

of PRS grow, the future of polygenic risk scores looks cautiously

optimistic.
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