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Introduction

Next-generation sequencing technologies have made it feasible to generate large

amounts of data per plant genome, and now it is even possible to generate long reads for

large and complex genomes as well (Amarasinghe et al., 2020; Lan et al., 2017). Many

plant genera, multiple genotypes, and many species have been sequenced (Schatz et al.,

2014; Golicz et al., 2016; Zhao et al., 2020). This, in turn, has resulted in the reference

genome (the genome used for the subsequent alignment of other genotypes of the same

species) and pangenome (alignment of all possible representatives of different species of a

particular genus) (Tettelin et al., 2021; Morgante et al., 2007) availability across multiple

plant species. Some such crops are barley (Jayakodi et al., 2020), maize (Lu et al., 2015),

rice (Qin et al., 2021), and soybean (Li et al., 2014; Liu et al., 2020). The next step is to

utilize this information such that targeted gains for traits of importance can be achieved.

This, in turn, would require a shift from the predominant approach of molecular breeding

(which essentially targets a few genes/loci by making use of markers that target desired

alleles) to haplotype breeding (wherein a set of alleles across loci are identified and selected

simultaneously).

Haplotype-based utilization of genomic data

Climate change and population increase are the two main factors driving the demand

for progressive increase in agricultural productivity. Stress matrix data on different

combinations of environmental conditions have already suggested significant negative

impact on agricultural production (Mittler and Blumwald, 2010). This, in turn, puts

pressure on limited genetic and land resources available for increasing agriculture

production and productivity (Anderson et al., 2020). One way to address this gap is

to utilize the emerging genomic data across various crops in a way that the genetic

variation under selection can be best understood and then effectively selected upon for

breeding-improved crops.

The attempts to enhance the genetic gain across any plant species would require the

understanding of the genetic structure of that species. This means the number of sub-

population groups, genetic diversity available in the cultivated gene pool, ploidy, etc., for

every species need to be looked into along with the genomic information available such
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that utilization of the available information is incorporated while

designing breeding programs targeting desired haplotypes

(Figure 1).

The earliest suggestion of identifying haplotype tag SNPs

(htSNPs) within haplotype-based blocks came after the

human genome sequence was available with an idea of

reducing the number of markers needed to capture useful

information within a genomic region (Daly et al., 2001).

Developing “hapmap” was suggested as a key way of

understanding diseases in humans (Couzin, 2002).

However, it was soon realized that the inherent genetic

structure understanding of various sub-population groups

was crucial (Gabriel et al., 2002), and the concept of

common haplotypes emerged. The common haplotype

approach has the problem of common and rare alleles

being over-represented and under-represented, respectively.

Pritchard and Cox (2002) suggested that this would unlikely

be a problem if common diseases are caused by common

variants. Therefore, traits governed by common variants/

alleles can use significantly associated htSNPs once they are

identified, irrespective of the population structure.

In plants, genome-wide association studies (GWAS) with

diverse genotypes/populations emerged as one of the key

strategies for unlocking genetic diversity (Ersoz et al., 2007).

However, analyzing variants with minor or rare alleles still poses

a problem due to cut-off criteria set for selection of markers.

Minor allele frequencies ≤5% and markers with a missing rate

higher than 10% are not considered in most studies. Also, a better

understanding of differences (Tibbs Cortes et al., 2021) that arise

when different GWAS methods are used is also needed. With the

emergence of the concept of genomic prediction (Spindel et al.,

2016; Crossa et al., 2017; Xu et al., 2020), the determination of the

breeding value of an individual genotype (determined by average

performance of its progeny) is now being suggested as the best

way to decide selections in a breeding program. Studies in rice (a

self-pollinated crop with a distinct genetic structure) have

revealed that GWAS along with pedigree data and genomic

selection could be effective in increasing the efficiency in

breeding (Spindel et al., 2016) and that accuracy of genomic

prediction was higher in less structured populations (Guo et al.,

2014). If majority of the genetic variation under selection is

governed by multiple small additive loci, genomic prediction and

breeding value estimation would be simpler as long as an

appropriate population size and the number of markers for

the target species are taken into account. It is proposed that

targeting ~1 SNP every 0.2 cM (~6–7 K SNPs) will be ideal for

performing genomic selection in rice (Spindel et al., 2015). In an

out-crossing crop like maize that is rich in transposons, the

requirement of markers will be more as linkage disequilibrium

(LD) decays much faster. As it is costly to screen large collections

for specific traits of breeding interest (Holbrook and Stalker,

2003), subsets (in the form of core andmini-core collections) that

FIGURE 1
Decision-making tree involved in using genomics data for crop improvement. Genotypic data will lead to selection of significantmarker(s) in the
desired haplotype. The selection of a marker and haplotype will depend on the genetic structure, diversity available in the cultivated gene pool, and
ploidy of the crop. Selected marker haplotypes along with the breeding value estimation of a particular genotype would help achieve genetic gains
for the trait of interest. The challenges (mentioned in the box) in generating the data (root traits) and utilizing the variation (cryptic variation, rare
alleles, synonymous SNPs, etc.) that still exists are also mentioned.
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represent the genetic diversity are currently being created,

evaluated, and characterized for various traits across plant

species (Krishnamurthy et al., 2003; Chamberlin et al., 2010;

Upadhyaya et al., 2012; Schläppi et al., 2017). SoySNP50K,

Illumina MaizeSNP50 Bead-Chip, and SNP data on

44,100 markers for 346 accessions of soybean, 273 accessions

of maize, and 352 accessions of rice, respectively, when used to

calculate pairwise SNP LD decay among these crops, revealed

that the decay of LD to the r2 = 0.25 level was much faster in

maize (1 kb) than in soybean (150 kb in euchromatic and 5 kb in

heterochromatic regions) or rice (123 kb) (Kaler et al., 2022). The

study also revealed that prediction accuracy was the greatest for

all crops when using a subset of markers that were significant at

p ≤ 0.05. Moreover, subsets of markers selected based on the LD

level did not show any change in accuracy.

Applications of haplotype for trait
enhancement in various species

Although the sequencing costs have drastically reduced,

obtaining genomic data through resequencing with a high

genome coverage or de novo assembly in crops with complex

genomes for hundreds of individuals is still beyond the reach of

individual research groups (Xu et al., 2020). Research groups

supported by various institutes have come forward and have been

working toward having open-source datasets available in the

public domain. In polyploid species, the genomic data generated

should be able to identify alleles distinct from the contributing

parental genomes, and variants of these well-annotated

previously ideal haplotypes can be discussed. In an

allotetraploid species like groundnut, which lacks an available

reference genome, the target enrichment sequencing approach

has been applied to identify SNPs and generate haplotype-based

markers for developing a genotyping platform (Peng et al., 2017;

Clevenger et al., 2018). Studies in rice have revealed that the

performance of an allele varies widely across different genetic

backgrounds. For example, PSTOL1 (Phosphorus Starvation

Tolerance 1) introgressed from the aus-type sub-group into

diverse genetic backgrounds behaves differently across genetic

backgrounds (Wissuwa et al., 2015), and superior haplotypes

other than those originally reported are now known (Pariasca-

Tanaka et al., 2014; Yumnam et al., 2017). Some of the key genes

for yield and grain quality have been analyzed in detail across a 3

K rice panel, and desirable haplotypes for multiple traits have

been identified with a purpose of enhancing genetic gain through

haplotype selection (Abbai et al., 2019). Complex quantitative

traits including yield would require an in-depth understanding of

the various component traits in diverse germplasm before

functionally desirable haplotypes emerge, which can be

incorporated into a breeding program. It is important that

molecular basis/functionality (especially in the case of cryptic

genetic variations) of the desired haplotype selected be

ascertained, and markers with a higher prediction accuracy be

identified. In case the crop has a narrow genetic base, wild-

crosses followed by 1–2 generation of backcross must be

attempted, and this breeding material can then serve as a

source of novel haplotypes with minimum noise (linkage

drag). In species where hybridization barriers exist, de novo

domestication by genome editing by targeting multiple genes

that control desired traits simultaneously can be attempted

(Pramanik et al., 2021). In the case of post-fertilization

barriers, by the use of coupled haploid induction and gene

editing, it is now possible to generate transgene-free and gene-

edited haploids (He et al., 2022). Still, challenges like marker

design for SNPs/indels which do not meet the basic quality

parameter of multiplexing (lying in the hypervariable region

or underlying the “predicted” pseudogenes) exist. Also,

understanding the role of rare alleles, cryptic variations

(UTRs/epigenetic variations), codon bias underlying

synonymous SNPs having a role in the efficiency and

accuracy of gene transcription and translation, etc., implies

that further understanding of nucleotide variation is needed to

target its usage in crop improvement programs (Figure 1).

Improvement for below ground traits is an ongoing challenge.

Although tremendous progress has been made in understanding

root-related traits and root–soil/root–microbe interaction, a lot

more is yet to be understood. The emergence of concept of

practical haplotype graph (PHG), which uses a graph of

haplotypes to represent the variability in a breeding program

and can merge genotypes from whole-genome sequencing and

marker technologies, has led to successful utilization of large

genomic datasets in plants like sorghum (Jensen et al., 2020) and

maize (Franco et al., 2020).

Conclusion

The major challenge in the utilization of large-scale genomics

data is to understand the variation and then target it for crop

improvement programs. This, in turn, requires simultaneous

identification and selection of superior allelic combinations

across loci or haplotype(s) for targeting trait enhancement.

The phenotypic and genotypic data available for multiple

locations and diverse genotypes, respectively, have to be sieved

into two parts: 1) explaining breeding value and 2) number of loci

underlying a trait. Components of variations observed explaining

breeding value of a trait, and haplotype needs to be clearly

dissected and then targeted for marker development and

deployment such that desired haplotype(s) can be fixed as

early as possible in the targeted genetic background in a

breeding cycle. To achieve this, genomic data currently

available and being generated need to be looked from a

genetics perspective of the target trait and crop species. The

progress made in understanding traits (simple/complex, types of

inter/intra-genic interactions, etc.) and crops (domestication
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history, ploidy, pollination, etc.) will have to be leveraged to make

trait-specific mini-core/core collections or practical haplotype

graphs with suitable marker sets available for selection of the

“ideal” haplotype. The design of markers having a higher

prediction value and the use of only a significantly associated

subset of markers in prediction and selection will ensure that

genotyping costs are not prohibitive. These can then be used by

crop improvement programs targeting a particular trait.
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