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Background: Recent studies have identified several molecular subtypes of lung

adenocarcinoma (LUAD) that have different prognoses to help predict the

efficacy of immunotherapy. However, the prognostic prediction is less than

satisfactory. Alterations in intracellular copper levels may affect the tumor

immune microenvironment and are linked to cancer progression. Previous

studies have identified some genes related to cuproptosis. The characteristics

of the cuproptosis molecular subtypes have not been thoroughly studied

in LUAD.

Methods: The transcriptomic data and clinical information of 632 LUADpatients

were used to investigate the LUAD molecular subtypes that are associated with

the cuproptosis-related genes (CRGs), the tumor immune microenvironment,

and stemness. The cuproptosis score was constructed using univariate Cox

regression and the minor absolute shrinkage and selection operator (LASSO) to

quantify the prognostic characteristics.

Results: Three different molecular subtypes related to cuproptosis, with

different prognoses, were identified in LUAD. Cluster A had the highest

cuproptosis score and the worst prognosis. Patients in the high cuproptosis

score group had a higher somatic mutation frequency and stemness scores.

Patients in the low cuproptosis score group had more immune infiltration and

better prognosis.

Conclusion:Molecular subtypes of LUAD based onCRGs reflect the differences

in LUAD patients. The cuproptosis score can be used as a promising biomarker,

which is of great significance to distinguish the relationship between

cuproptosis and the immune microenvironment. The cuproptosis signature

based on the cuproptosis score and clinical characteristics of individual patients

will be useful for guiding immunotherapy in LUAD.
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1 Introduction

With an estimated 2 million new cases and 1.76 million

deaths each year, lung cancer is one of the most commonly

diagnosed cancers and the leading cause of cancer-related deaths

worldwide. Lung adenocarcinoma (LUAD) is the most common

histological type of lung cancer (Thai et al., 2021).

In recent years, immune checkpoint inhibitors alone or in

combination with chemotherapy have significantly improved

survival in patients with advanced LUAD. In the KEYNOTE-

024 study, patients without EGFR/ALK aberrations treated

with pembrolizumab had significantly improved overall

survival (30.0 months; 95% CI, 18.3 months to not reached)

compared with chemotherapy (14.2 months; 95% CI:

9.8–19.0 months) (HR, 0.63; 95% CI, 0.47–0.86) (Reck

et al., 2019). In the KEYNOTE-189 study, the overall

survival (22.0 months; 95% CI, 19.5–25.2 months) for

patients treated with pembrolizumab in combination with

chemotherapy in nonsquamous non-small cell lung cancer

was significantly longer than that in the placebo group (HR,

0.56; 95% CI, 0.45–0.70) (Gadgeel et al., 2020).

Although immunotherapy is an effective treatment, not all

patients with LUAD can benefit from it. In addition, LUAD is a

heterogeneous disease, which also makes identifying new subtypes

essential to predicting prognosis and ensuring that patients receive

personalized treatment (Liu et al., 2021). Recently, an increasing

number of molecular subtypes have been studied to predict the

efficacy of immunotherapy. For example, Zhang et al. isolated

three types of ferroptosis-related molecules in LUAD, which

helped predict the prognosis, tumor microenvironment (TME)

cell infiltration characteristics, and immunotherapy effects in

patients with LUAD (Zhang et al., 2021). Wang et al. identified

two distinct subtypes of LUAD. The high-risk subtype was

characterized by a lower TIDE score, increased programmed

death-ligand 1 (PD-L1) expression, higher tumor mutation

burden (TMB), elevated levels of the cell cycle modulators

CDK4/CDK6, and TP53 mutations, and it was implicated for

immune checkpoint blockade therapy (Wang et al., 2020). Wu

et al. (2021) established a promising immunoprognostic model

associated with TP53 to identify early-stage LUAD patients with a

high risk of unfavorable survival. These studies have shed light on

the molecular subtypes of LUAD. However, the above

classification strategies for predicting immune efficacy were not

sufficiently effective. Thus, finding new molecular subtypes of

LUAD is vital for identifying potential benefits of immunotherapy.

Copper-induced proptosis (cuproptosis) is a novel form of

cell death induced by excessive intracellular copper (Tang et al.,

2022). Copper overload induces lipoylated dihydrolipoamide

S-acetyltransferase (DLAT) aggregation, which is associated

with mitochondrial tricarboxylic acid (TCA) cycle activation.

This results in proteotoxic stress and leads to cuproptosis (Wang

et al., 2022). In recent studies, alterations in intracellular copper

levels have been linked to cancer development and progression,

including lung cancer (Ge et al., 2022). Therefore, cuproptosis

may serve as a novel target for treating LUAD. Recent studies

have shown that intracellular copper regulates key signaling

pathways mediating PD-L1-driven cancer immune evasion

(Voli et al., 2020). These findings suggest that cuproptosis

may affect the tumor immune microenvironment, and

identification of the characteristics of cuproptosis may

effectively predict the efficacy of immunotherapy.

Previous studies have identified certain genes related to

cuproptosis (Polishchuk et al., 2019; Aubert et al., 2020; Dong

et al., 2021; Ren et al., 2021; Bian et al., 2022; Kahlson and Dixon,

2022; Tang et al., 2022; Tsvetkov et al., 2022). Several studies have

reported the predictive value of these cuproptosis-related genes

(CRGs) in LUAD. Li et al. constructed a prognostic model for

patients with radiotherapy resistance based on CRGs screened

from RNA-sequencing data of radiation-treated cell lines (Li

et al., 2022). Hu et al. 2022 and Zhang et al. (2022) also used

different CRGs to construct risk models to predict the prognosis

of LUAD patients. However, the role of CRGs in affecting the

immune microenvironment in LUAD has yet to be explored. In

the present study, 632 LUAD samples were divided into three

cuproptosis-related subtypes based on differentially expressed

genes (DEGs) of LUAD subtypes according to CRGs and

immune profiles. Additionally, a model with cuproptosis

scores was established. The characteristics of the immune

microenvironment between low and high cuproptosis score

groups were explored. These findings show that the

cuproptosis score might be an independent prognostic factor

for LUAD patients and predict the clinical efficacy of

immunotherapy.

2 Materials and methods

2.1 Data sources and preprocessing

The transcriptomic data and clinical information of LUAD

patients were downloaded from the TCGA database (https://

portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). Patients of

different sexes and races were included, and patients without

survival information were excluded. The transcriptomic data

and clinical information of 632 tumor samples were collected.

Of these tumor samples, 516 were from the TCGA-LUAD dataset

and 116 were from GEO (GSE26939) (Wilkerson et al., 2012).

Additionally, information on 59 normal samples was collected

fromTCGA. Themutation information of 557 LUADpatients was

obtained from the TCGA database. The GDC GISTIC copy

number (gene-level) dataset of 531 LUAD patients was

obtained from UCSC Xena (https://xena.ucsc.edu/). All

transcriptomic data were processed to log2 form. All gene

expression levels that repeatedly appeared in multiple rows

were averaged and kept in one row. All data were downloaded
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in June 2022. The R (version 4.2.0) and R Bioconductor packages

were used for all data analyses.

2.2 Identification of CRGs in LUAD

Initially, 19 cuproptosis-related genes (NFE2L2, NLRP3,

ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, and

DLST) were identified from previous studies (Polishchuk et al.,

2019; Aubert et al., 2020; Dong et al., 2021; Ren et al., 2021; Bian

et al., 2022; Kahlson and Dixon, 2022; Tang et al., 2022; Tsvetkov

et al., 2022). Cuproptosis-related gene expression was

determined in normal cells and LUAD tumor cells from the

TCGA-LUAD dataset. The difference between the normal and

tumor groups was analyzed using the Wilcoxon test and

displayed in a box plot. p values less than 0.05 were

considered to indicate significant differences in gene ontology.

2.3 Detection of CRG-related mutations in
LUAD

The numbers of mutated genes were calculated using the

mutation information of each sample obtained from the TCGA

database. The mutation information of 19 CRGs and the

clinicopathological characteristics were displayed in a waterfall

plot using the R package “maftools”. The copy number variation

(CNV) frequencies of 19 CRGs are displayed in a bar plot. The

“RCircos” package in R was applied to show the location of the

19 CRGs on chromosomes.

2.4 Survival analysis of CRGs in LUAD
patients

The expression of the CRGs was extracted from 632 merged

data from TCGA-LUAD and GSE26939, and 17 of these CRGs

(NFE2L2, ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, and

DLST) were extracted. The 95% confidence interval (CI), hazard

ratios (HR), and p values of these 17 CRGs were calculated by

univariate Cox regression using the “Survival” package in R. The

interaction and impact of eachCRGon the prognosis are shown in a

network.

2.5 Correlation analysis of CRGs and LUAD
immune estimation

The ESTIMATE tool from the R package “estimate” and gene

expression signatures were used to estimate the fraction of

stromal and immune cells within the tumor samples and to

estimate the elements of the TME, including StromalScore,

ImmuneScore, ESTIMATEScore, and TumorPurity (Yoshihara

et al., 2013).

CIBERSORT, a method that reduces noise and

unidentified mixtures, can recognize the composition of

tumor cells by using gene expression profiles (Newman

et al., 2015). Correlations between the CIBERSORT data for

immune cell infiltration and the 4 CRGs (LIPT1, DLAT,

PDHA1, and DLST) that were significantly associated with

survival situations are displayed. Additionally, correlation

tests between these 4 CRGs and the ImmuneScore were

performed using Spearman analyses.

2.6 Clustering of LUAD patients based on
CRGs

The R package “ConsensusClusterPlus” was used for

consensus clustering and result visualization (Wilkerson

and Hayes, 2010). The clustering was based on the

2 CRGs (PDHA1 and DLAT) with the two highest

correlation scores, as determined by ImmuneScore. The

efficacy of the consensus clustering was determined by

performing principal component analysis (PCA). Two

cuproptosis subtypes (CRG cluster A and CRG cluster B)

were found. Clinical characteristics based on the cuproptosis

subtypes are displayed in a heatmap.

Functional and pathway enrichment analyses of the

cuproptosis subtypes were performed. The “GSEABase” and

“GSVA” R packages were applied for pathway enrichment

analysis and to analyze the differences in biological functions

among the different cuproptosis clusters (Hänzelmann et al.,

2013). The gene sets of “c2. cp.kegg.symbol” and “c5. go.symbols”

were downloaded from Gene Set Enrichment Analysis (GSEA)

(https://www.gsea-msigdb.org/gsea/datasets.jsp) and were used

to run GSVA enrichment analysis.

The single sample gene set enrichment analysis (ssGSEA)

method was used to evaluate the scores of the TME cells in each

LUAD sample (Barbie et al., 2009). The immune infiltration of the

cuproptosis subtypes is displayed in a box plot.

2.7 Clustering of LUAD patients based on
the DEGs between the cuproptosis
subtypes

Using the linear model and empirical Bayes statistics for

differential expression in the R package “limma,” 122 DEGs

between the two cuproptosis subtypes were identified

(absolute logFC >0.585 and adjusted p values <0.05). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) were used as references, and enrichment

analysis of DEGs was performed by the R package
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“clusterProfiler.” With univariate Cox regression analysis,

72 DEGs (p values less than 0.05) were found, which were

then used for consensus clustering. PCA was performed to

check the efficacy of the consensus clustering. Three gene

subtypes (geneCluster A, geneCluster B, and geneCluster C)

were found. The clinical characteristics based on gene

subtypes are displayed in a heatmap. CRG expression

differences between gene subtypes were analyzed using the

Wilcoxon test and are shown in a box plot.

2.8 Construction of the cuproptosis
prognostic model

The samples were divided into training and testing sets randomly

and kept the numbers of the training and testing sets were the same.

The samples in the training set were used to construct the model, and

the samples in the testing set were used to verify the accuracy of the

model. The most powerful prognostic genes among the DEGs were

identified using the univariate Cox regression model with the minor

absolute shrinkage and selection operator (LASSO) (Gao et al., 2010).

Finally, eight genes and their correlative coefficients were obtained to

construct the cuproptosis gene signature. These genes were DLST

(coefficient = 0.268908425), PDHA1 (coefficient = 0.320688231),

FOXM1 (coefficient = 0.152692216), EN O 3

(coefficient = −0.249542466), CD79A (coefficient = −0.108306171),

AMBP (coefficient = −0.117611131), CPS1 (coefficient =

0.121531233), and NTS (coefficient = 0.101175652). The

cuproptosis score was defined as the sum of each gene’s

expression × correlative coefficient. LUAD samples were divided

into high and low cuproptosis score groups using the median

cuproptosis score 0.8963089 as the boundary. Survival analysis was

performed for the two groups using the R package “survminer.”

Receiver operating characteristic (ROC) curve analysis was conducted

using the R package “timeROC” to obtain the area under the curve

(AUC) value and evaluate the predictive power of the signature. A

regression nomogram of the cuproptosis score and other clinical

covariates of LUAD patients was constructed using the R package

“regplot.” The calibration curves of the cuproptosis score and other

clinical covariates of LUAD patients were estimated using the R

package “rms.”

2.9 Analysis of the immune
microenvironment and stemness of
tumors in different cuproptosis score
groups

The mutation information of LUAD patients was divided

into low and high cuproptosis score groups based on cuproptosis

scores. Waterfall plots for the mutation information of the

20 genes with the highest mutation frequency were plotted for

the low and high cuproptosis score groups. The immune

infiltration of low and high cuproptosis score groups was

displayed with the scores of TME cells in each LUAD sample

evaluated using the ssGSEA algorithm. The ESTIMATE scores,

including the StromalScore, ImmuneScore, and

ESTIMATEScore, of the low and high cuproptosis score

groups are displayed in a violin plot. Additionally, the

correlation between the stemness score (RNAss) and the

cuproptosis score was calculated and plotted.

2.10 Validation of cuproptosis prognostic
model using two LUAD immunotherapy
cohorts

Transcriptomic data and clinical information of 34 NSCLC

patients treated with anti-programmed death-1 (PD-1) therapy

were collected from Tumor Immunotherapy Gene Expression

Resource (http://tiger.canceromics.org/). Dataset IDs are NSCLC_

GSE126044 (Cho et al., 2020) and NSCLC_GSE135222 (Jung et al.,

2019). Samples that had no information about the immunotherapy

response were omitted, and 34 samples were finally included. The

cuproptosis scores were calculated. These patients were divided into

high and low cuproptosis score groups and were checked with

immunotherapy responses.

3 Results

3.1 Identification and characteristics of
CRGs involved in LUAD progression

A LUAD cohort including 59 normal samples and 539 tumor

samples from TCGAwas included in this study. Most of the CRG

expression levels were significantly different between the normal

and tumor groups (Figure 1A). Twelve out of the 19 CRGs had a

mutation frequency >1% and were closely associated with

progression or recurrence in LUAD (Figure 1B). In addition,

we detected widespread CNVs in these CRGs (Figure 1C).

NLRP3, LIPT2, MTF1, NFE2L2, SLC31A1, GLS, DLD, LIAS,

LIPT1, and ATP7A showed extensive CNV amplification,

whereas ATP7B, FDX1, DLAT, PDHA1, PDHB, CDKN2A,

DBT, GCSH, and DLST showed copy number loss. The

chromosomal locations of the CRGs with CNVs are shown in

Figure 1D. Univariate Cox regression was used to explore the

relationship between the CRGs and clinical prognosis in LUAD

patients, and the results showed that LIPT1 (HR = 0.702

(0.527–0.934), p = 0.015), DLAT (HR = 1.218 (1.001–1.483),

p = 0.049), PDHA1 (HR = 1.268 (1.004–1.602), p = 0.046), and

DLST (HR = 1.411 (1.112–1.791), p = 0.005) could be relevant to

the prognostic situation (Figure 1E). Next, the CRGs were

constructed into a network map, which enabled a

comprehensive analysis of the interactions and

interconnections of the genes and their impact on the
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prognosis of patients with LUAD. The interconnections between

these genes were all positive correlations. DLST, DLAT, and

PDHA1 were major risk factors, while LIPT1 was a favorable

factor (Figure 1F).

3.2 Identification of CRGs associated with
LUAD immune profiles

To explore whether the expression of CRGs impacted LUAD

immune profiles, we extracted the expression of the four CRGs

associated with prognosis and applied the ESTIMATE tool and

CIBERSORT algorithm to calculate the ESTIMATE scores and

immune cell infiltration of LUAD patients. As shown in

Figure 2A, LIPT1 had a positive correlation (p < 0.01) with

follicular helper T cells, resting mast cells, M1 macrophages, and

resting dendritic cells, while a negative correlation (p < 0.01) with

plasma cells and M0 macrophages. DLAT had a positive

correlation (p < 0.01) with neutrophils, while a negative

correlation (p < 0.01) with regulatory T cells (Tregs), CD8+

T cells, resting dendritic cells, and memory B cells. PDHA1

had a positive correlation (p < 0.001) with naïve B cells while

FIGURE 1
Identification of CRGs and detection of mutations in LUAD. (A) Cuproptosis-related gene expression in normal cells and LUAD tumor cells
(Wilcoxon test; *p < 0.05; **p < 0.01; ***p < 0.001). (B) Thewaterfall plot displays themutation frequency of CRGs in LUAD samples. (C)CNV of CRGs
in LUAD samples. (D)CNV locations of CRGs are labeled on the chromosome (red dots: CNV gain frequency is higher; blue dots: CNV loss frequency
is higher). (E) Forest plot for the univariate Cox regression analysis of CRGs associated with clinical prognosis in LUAD patients. (F) Prognostic
correlation between CRGs.
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a negative correlation (p < 0.01) with resting mast cells and

resting dendritic cells. DLST had positive correlation (p < 0.01)

with memory CD4+ T cells and M2 macrophages, while negative

correlation (p < 0.01) with Tregs, CD8+ T cells and plasma cells.

We further analyzed the correlation between the 4 CRGs and the

ImmuneScore. The results show that three CRGs (DLAT,

PDHA1, and DLST) were significantly correlated with the

ImmuneScore (Figure 2B, p < 0.001), although the correlation

coefficient was slightly weak. We selected the first two CRGs with

the highest absolute coefficients, PDHA1 (R = .0.31, p < 0.001)

and DLAT (R = .0.27, p < 0.001) (Figure 2B), to construct an

immune-associated signature.

3.3 Cuproptosis subtypes in LUAD

We extracted PDHA1 and DLAT expression data from

LUAD patients and performed consensus clustering. Two

clusters of patients were found. There were 352 patients in

Cluster A and 269 patients in Cluster B. Survival analysis

revealed that prognosis differed substantially among these two

subtypes, and Cluster A had considerable survival advantages

(p = 0.031) (Figure 3A). PCA further confirmed two

remarkably different subtypes (Figure 3B). The relationship

between the two subtypes and various clinical characteristics

was studied, which also confirmed two remarkably different

subtypes. Most CRGs were highly expressed in Cluster B

(Figure 3C). Next, the immune infiltration score of the

23 types of immune cells was evaluated in the two subtypes

using ssGSEA (Figure 3D). In Cluster A, the most significant

immune-infiltrating cells were activated B cells, activated

CD8+ T cells, activated dendritic cells, macrophages, and

natural killer cells. Most of the immune cells showed less

infiltration in Cluster B (Figure 3D). This may also indicate

that Cluster A had better immunity and prognosis. Then,

GSVA enrichment analysis was performed on the two

subtypes to examine their functional and biological

differences (Figures 3E,F). The results showed that the two

subtypes differed significantly with respect to metabolic

pathways, such as the pyrimidine metabolism pathway and

the citrate cycle (TCA cycle) pathway. These findings suggest

that metabolic alterations may contribute to the distinct

cuproptosis subtypes. Additionally, some pathways of

biological functions significantly differed between the

subtypes, such as the protein acylation pathway, histone

deubiquitination pathway, and protein import pathway.

These pathways were highly activated in Cluster B and

contributed to poor prognosis.

To further study the potential biological function of cuproptosis

clusters in LUAD, differential expression analysis was performed,

and 122 DEGs were identified. GO enrichment analysis showed that

the cuproptosis-related DEGs were considerably enriched in the

process of mitotic division (Figure 4A). KEGG enrichment analysis

showed that cuproptosis-related DEGs were considerably enriched

in some metabolic pathways, such as carbon metabolism,

glutathione metabolism, amino acid biosynthesis, and the TCA

cycle. These enrichments could indicate the specific

metabolic demands of cuproptosis, which is an idea that

is supported by emerging literature on the participation

of lipoylated TCA cycle proteins in cuproptosis (Li et al., 2022).

Then, we performed univariate Cox regression analysis, and

72 DEGs were used for consensus clustering. Three clusters of

FIGURE 2
Identification of CRGs associated with LUAD immune profiles. (A) Correlation between the CIBERSORT data of immune cell infiltration and the
4 CRGs (LIPT1, DLAT, PDHA1, and DLST). (B) Correlation between the ImmuneScore of ESTIMATE and the 4 CRGs.
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patients were found. There were 178 patients in Cluster A,

249 patients in Cluster B, and 194 patients in Cluster C.

Survival analysis revealed that prognosis differed substantially

among these three subtypes, and Cluster C had considerable

survival advantages (p < 0.001) (Figure 4C). The three subtypes

could be significantly separated on the basis of the expression

levels of the DEGs (Figure 4D). The relationship between the

three subtypes and various clinical characteristics was studied

and is shown in a heatmap (Figure 4E). Next, CRG expression

was evaluated in these three subtypes. As expected, there were

significant differences in the expression of the CRGs among the

three gene clusters (Figure 4F).

FIGURE 3
The landscape of the cuproptosis and the biological characteristics of the cuproptosis subtypes in LUAD. (A) Clustering of patients with LUAD
based on PDHA1 and DLAT expression. Consensus clustering matrix for k = 2. Kaplan−Meier plot of the CRG clusters and overall survival probability.
(B) PCA of two cuproptosis subtypes. (C) Relationship between the cuproptosis subtypes and various clinical characteristics. (D) TME-infiltrating cell
composition between the two cuproptosis subtypes (Wilcoxon test; *p < 0.05; **p < 0.01; ***p < 0.001). (E,F) Functional and biological
differences between the cuproptosis subtypes.
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3.4 Construction of a prognostic
cuproptosis signature

To further understand the characteristics of cuproptosis in

each patient with LUAD, we performed univariate Cox

regression and LASSO to select the 8 most powerful

prognostic genes among the DEGs (Figure 5A). A higher

cuproptosis score was associated with increased death and

decreased survival time both in the training set and the

testing set. The expression distribution of DEGs for modeling

was different in the low and high cuproptosis score groups

(Figure 5B).

FIGURE 4
The landscape of the biological characteristics of cuproptosis gene cluster. (A) GO enrichment analysis of DEGs. BP: biological process, CC:
cellular component, MF: molecular function. (B) KEGG enrichment analysis of DEGs. (C) Clustering of LUAD patients based on DEGs associated with
the cuproptosis subtypes. Consensus clustering matrix for k = 3. Kaplan−Meier plot of the gene clusters and overall survival probability. (D) PCA of
three gene clusters. (E) Clinical characteristics of the three gene clusters. (F) CRG expression differences among the three gene clusters
(Kruskal–Wallis test; *p < 0.05; **p < 0.01; ***p < 0.001).
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A Sankey diagram demonstrated the association between

clusters, cuproptosis score, and clinical status. Most LUAD

patients in DEG-related Cluster A had a high cuproptosis

score. Most LUAD patients in DEG-related Cluster C had a

low cuproptosis score. Additionally, the cuproptosis score

influenced the status of the patients (Figure 6A). The

cuproptosis score was significantly higher in CRG-related

Cluster B and DEG-related Cluster A (Figure 6B), which is

consistent with the former result that CRG-related Cluster B

and DEG-related Cluster A had a poor prognosis (Figures

3A,4C). Thus, the cuproptosis score could be considered a

prognostic factor of LUAD.

To further explore the prognostic difference between the low

and high cuproptosis score groups, survival analysis and ROC curve

analysis were performed to evaluate the predictive power of the

cuproptosis signature. In the training set, testing set, and all sample

groups, patients with a higher cuproptosis score had a significantly

shorter survival time (p < 0.001) (Figure 6C). The AUCs of the 1-

year, 3-year, and 5-year ROC curves were all between 0.6 and 0.8

(0.745, 0.725, and 0.653 for the training set; 0.719, 0.649, and

FIGURE 5
DEGs selection for the construction of the cuproptosis prognostic model. (A) Partial likelihood deviance and coefficients for LASSO. (B)
Distribution of the cuproptosis score, survival status, and the expression of DEGs (DLST, PDHA1, FOXM1, ENO3, CD79A, AMBP, CPS1, and NTS) for
modeling in the training set and testing set.

Frontiers in Genetics frontiersin.org09

Wang et al. 10.3389/fgene.2022.1006938

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1006938


FIGURE 6
Construction of the cuproptosis signature. (A) Sankey diagram displaying the relationships among CRG-related clusters, DEG-related clusters,
the cuproptosis score, and the status of LUAD patients. (B) Cuproptosis score differences in CRG-related clusters and DEG-related clusters
(Wilcoxon test). (C) Kaplan−Meier plots of the cuproptosis signature and overall survival probability in the training set, testing set, and all samples. (D)
ROCs for one-year, three-year, and five-year survival prediction. (E) Nomogram model in LUAD patients. The cuproptosis score is an
independent prognostic factor. (F)Calibration curve for the overall survival (OS) of the nomogrammodel. A dashed diagonal line represents the ideal
nomogram.
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0.611 for the testing set; 0.732, 0.689, and 0.635 for all samples),

which represented fair model quality (Figure 6D).

To facilitate the clinical application of the prediction model,

we integrated clinical information (sex, age, T stage, and N stage)

and gene features of LUAD patients and performed the

multivariable Cox regression analysis model to develop the

nomogram (Figure 6E). Calibration curves demonstrated

favorable concordance between the predicted OS and the

observed OS at 1, 3, and 5 years of survival (Figure 6F),

reflecting a relatively excellent predictive performance of the

nomogram. The cuproptosis score could be used as an

independent prognostic factor.

3.5 Characteristics of the cuproptosis
signature

Somatic mutations were compared in LUAD patients with

low and high cuproptosis scores, and the top 20 genes with the

highest mutation frequency were visualized. The total mutation

frequencies of these top 20 genes were relatively higher in

patients with high cuproptosis scores (93.51%) than in those

with low cuproptosis scores (87.62%) (Figures 7A,B). Fisher’s

exact test showed that the mutation frequencies of TP53 (p =

0.015), TTN (p = 0.029), and SPTA1 (p = 0.039) were significantly

different between these two groups (Supplementary Table S1).

However, the univariate Cox regression showed that none of

these three gene mutations affected the prognosis

(Supplementary Figure S1). The immune infiltration score of

the 23 types of immune cells was evaluated in low and high

cuproptosis score groups. Activated B cells, activated CD8+

T cells, activated dendritic cells, and T helper cells were

significantly higher in the low cuproptosis score group

(Figure 7C), which indicates that a low cuproptosis score may

be related to strengthened antitumor immunity. The

StromalScore, ImmuneScore, and ESTIMATEScore were all

significantly lower in the high cuproptosis score group

(Figure 7D), which indicates that tumors in the high

FIGURE 7
Characteristics of the cuproptosis signature. (A) Somatic mutations in the high cuproptosis score group. (B) Somatic mutations in the low
cuproptosis score group. (C) TME-infiltrating cell composition between high and low cuproptosis score groups (Wilcoxon test; *p < 0.05; **p < 0.01;
***p < 0.001). (D) ESTIMATE score in the low and high cuproptosis score groups (Wilcoxon test; *p < 0.05; **p < 0.01; ***p < 0.001). (E) Spearman
correlation analysis between the stemness score (RNAss) and cuproptosis score.
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cuproptosis score group were purer, more aggressive, and had a

worse prognosis. Additionally, the stemness score (RNAss) was

positively correlated with the cuproptosis score (R = 0.29, p <
0.001) (Figure 7E). This finding indicates stronger heterogeneity

and a worse prognosis in the high cuproptosis score group.

3.6 Relationship between the cuproptosis
score and the effect of immunotherapy

At present, anti-PD-1 therapy plays an important role in

LUAD immunotherapy. To further illustrate the relationship

between the cuproptosis score and the efficacy of

immunotherapy, two LUAD anti-PD-1 treatment cohorts

were investigated. The patients were divided into high and

low cuproptosis score groups. As shown in Figure 8A, the high

cuproptosis score group had a lower objective response rate

[ORR, the percent of patients with complete response (CR)

and partial response (PR), 24.0% vs. 44.4%, p = 0.395]. In

addition, the rate of patients with high cuproptosis scores was

higher in the nonresponder [defined as patients with

progressive disease (PD) and stable disease (SD), 79.2% vs.

60.0%, p = 0.395, Figure 8B].

4 Discussion

In recent years, immunotherapy has become an important

treatment modality and significantly prolonged the survival of

patients with LUAD (Reck et al., 2019; Gadgeel et al., 2020).

Despite the considerable therapeutic potential, not all patients

benefit equally well from immunotherapy. Therefore, it is

necessary to explore the characteristics of patients who may

benefit from immunotherapy and help to guide individualized

treatment. Previous studies showed that TMB (Carbone et al.,

2017), PD-L1 expression (Herbst et al., 2016), neoantigen (Hugo

et al., 2016) might influence the efficacy of immunotherapy. Still,

sometimes these markers also failed to predict the efficacy

accurately. Novel markers to predict the outcomes of

immunotherapy are urgently needed. Copper has been associated

with cancer for more than a century, and numerous observations

have suggested that tumors require higher levels of copper than

healthy tissues (Blockhuys et al., 2017). Recently, Tsvetkov et al.

reported a novel form of copper-dependent cell death, which is

termed “cuproptosis” (Tsvetkov et al., 2022). They revealed that

excess intracellular copper binds to the lipoylated components of the

TCA cycle, resulting in proteotoxic stress and, ultimately, cell death.

This finding provides new ideas for the application of regulating

intracellular copper levels in the treatment of cancers. Additionally,

the role of intracellular copper in tumor immune environments has

also been found. Voli et al. reported that intracellular copper

regulates key signaling pathways that mediate PD-L1-driven

cancer immune evasion (Voli et al., 2020). This prompts us to

test whether cuproptosis-related signatures could predict the

prognosis and immunotherapy efficacy in LUAD patients.

Based on previous studies, we identified 19 CRGs involved in

cuproptosis regulation. By comparing their expression levels and

mutations between LUAD and normal samples, we found that these

19 CRGs are closely related to LUAD progression. Besides, the

expression levels of four CRGs (LIPT1, PDHA1, DLAT, and DLST)

are significantly correlated to the overall survival in LUAD patients.

To further explore the association between these four CRGs and the

FIGURE 8
The role of cuproptosis score in anti-PD-1 immunotherapy. (A) Proportions of anti-PD-1 immunotherapy response in high and low cuproptosis
score groups. PR, partial response, PD, progressive disease, SD, stable disease, CR, complete response. (B) Proportions of patients with high and low
cuproptosis scores in different anti-PD-1 immunotherapy responses.
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immune microenvironment, we used the ESTIMATE and

CIBERSORT tools to calculate the correlation of these CRGs

with ImmuneScore and immune cell infiltration. Three of them

(PDHA1, DLAT, and DLST) had a significant correlation with

ImmuneScore, though the correlation coefficient was slightly

weak. Consistent with the survival analysis results, as risk factors

of LUAD, these three CRGs show a negative correlation with

ImmuneScore. However, as a favorable factor of LUAD, LIPT1

fails to correlate with ImmuneScore. LIPT1 encodes lipoyl

transferase 1, which plays an important role in mitochondrial

energy metabolism (Stowe et al., 2018). Recently, LIPT1

deficiency was demonstrated to suppress TCA cycle metabolism

(Solmonson et al., 2022). Although LIPT1 showed prognostic

significance for survival in LUAD, the underlying mechanism is

far to be known. In our study, we suppose that LIPT1 may act as a

tumor suppressor in LUAD by regulating other pathways rather

than influencing the immune microenvironment. Besides, we were

surprised to find that DLAT andDLST negatively correlate to Tregs

infiltration, which is recognized as immunosuppressive cells. A

recent study reported that nonresponders to PD-1 blockade

therapies have a high frequency of PD-1+ effector Tregs

(CD45RA–Foxp3hiCD4+ T cells) rather than the total of Treg cell

subsets (Kumagai et al., 2020). This result suggests that different

subsets of immune cells may play totally different roles in the tumor

immune microenvironment. Maybe more detailed phenotyping of

immune cells will lead to a more comprehensive understanding of

the role of these CRGs in influencing immune cells.

According to the correlations between CRGs and immune

profiles, we constructed CRG-related LUAD molecular

subtypes. 122 DEGs were obtained from differential

expression analysis of the two subtypes. Then, functional

analyses were performed and indicated that metabolic

pathways were highly enriched. Metabolic reprogramming

is an important feature of tumors. Tumor cells undergo

pronounced metabolic reprogramming to meet the nutrient

and energy demands of rapid proliferation (Hanahan and

Weinberg, 2011). As firstly described in the 1920’s, cancer

cells showed enhanced glycolysis even when oxygen was

abundant, which is known as the Warburg effect (Warburg,

1956). In recent years, the role of mitochondrial metabolism in

tumor development has attracted more and more attention

(Porporato et al., 2018). The occurrence of cuproptosis has

been reported to be also closely related to mitochondrial

metabolism (Tsvetkov et al., 2022; Zheng et al., 2022),

which is consistent with our findings. Our study provides

some clues for regulating cuproptosis by metabolic pathways.

To further understand the characteristics of cuproptosis in

each patient with LUAD, we established the eight-gene

cuproptosis signature (DLST, PDHA1, FOXM1, ENO3,

CD79A, AMBP, CPS1, and NTS). The α-ketoglutarate

dehydrogenase complex DLST encodes the enzyme

responsible for the irreversible conversion of α-

ketoglutarate into succinyl-CoA10 inside the TCA cycle,

and the depletion of this enzyme impairs the growth,

survival, and migration of cancer cells that have relatively

intact TCA cycle function (Shen et al., 2021). As part of the

pyruvate dehydrogenase enzyme complex, PDHA1 links

glycolysis with the TCA cycle and plays an important role

in cancer metabolism (Liu et al., 2018). FOXM1 is a master

regulator of tumor metastasis (Raychaudhuri and Park, 2011).

Deleted regions related to ENO3 are involved in lung cancer

(Tsuchiya et al., 2000). CD79A is altered in many cancers,

including lung cancer (2017). ABMP may play a role in the

regulation of inflammatory processes. CPS1 is the rate-limiting

mitochondrial enzyme in the urea cycle (Wu et al., 2020). NTS

are autocrine growth factors that are secreted by tumor cells

and bind to receptors on the cell surface to stimulate tumor

growth (Moody et al., 2018). As expected, a higher cuproptosis

score predicted a poor prognosis in LUAD. When checking

the somatic mutation frequencies, we found TP53, TTN, and

SPTA1 were significantly different between high and low

cuproptosis score groups. TP53 mutation profoundly

affects tumor cell genomic structure and expression

(Donehower et al., 2019). TTN is a key component in

muscle assembly and function and plays a role in

chromosome condensation and chromosome segregation

during mitosis (Mayans et al., 1998; Itoh-Satoh et al.,

2002). SPTA1 is the major constituent of the cytoskeletal

network underlying the erythrocyte plasma membrane. And

interestingly, TP53mutation is reported to be associated with

poor prognosis of lung cancer patients (Ma et al., 2016). We

did not find the prognostic significance of TP53 mutation in

our study. Only the cuproptosis score suggests a significant

correlation with LUAD prognosis in the univariate Cox

regression analysis, which demonstrated the independent

predictive power of the cuproptosis score.

We also analyzed the characteristics of the immune

microenvironment between the high and low cuproptosis

score groups. The expression of some immune cells, such as

activated B cells, activated CD8+ T cells, activated dendritic

cells, and T helper cells, was significantly higher in the low

cuproptosis score group. This finding indicates that with a

decrease in the cuproptosis score, the antitumor immune

effect was promoted. B cells can present tumor-associated

antigens to T cells or produce antibodies that increase

antigen presentation to T cells or kill tumor cells (Fridman

et al., 2021). CD8+ T cells are the most powerful effectors in the

anticancer immune response (Raskov et al., 2021). Dendritic

cells are central regulators of the adaptive immune response

and are necessary for T-cell-mediated cancer immunity

(Gardner and Ruffell, 2016). Thus, a low cuproptosis score

is associated with activated antitumor immunity. In addition,

the stemness score (RNAss) was positively associated with the

cuproptosis score. Cancer stem cells are capable of self-

renewal, differentiation, and proliferation, which are

responsible for the reconstitution and propagation of the
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disease (Prasad et al., 2020). Additionally, cancer stem cells

influence on immune cells, including tumor-associated

macrophages, myeloid-derived suppressor cells, and T cells

(Chen et al., 2021). The higher the cuproptosis score is, the

stronger the heterogeneity of the tumor and the worse the

prognosis.

We further demonstrated the predictive power of the

cuproptosis score for immunotherapy. In our study,

34 patients of LUAD treated with anti-PD-1 were divided

into high and low cuproptosis score groups. The ORR was

much lower in the high cuproptosis score group. What’s more,

patients with high cuproptosis scores tended to be distributed in

the nonresponder group. Although these differences were not

statistically significant, the limited sample sizes might bias the

result. We will expand the sample size in future studies to verify

our findings.

Our study is the first to establish a prognostic model in

LUAD patients based on cuproptosis and immune profiles.

This model integrated gene features, clinical information (sex,

age, T stage, and N stage) of LUAD patients, and the

cuproptosis score, which helped predict the survival

probability of LUAD at 1, 3, and 5 years. Internal and

external validation demonstrated the good predictive value

of this model, and the cuproptosis score itself can be used as an

independent prognostic factor for LUAD patients. These

findings may advance our understanding of the relationship

between cuproptosis and the immune microenvironment,

which will help predict the prognosis and efficacy of

immunotherapy in LUAD.

This study has some limitations. A large number of LUAD

samples were needed to verify the stability of the typing. To

date, the number of identified CRGs is still small, and our

study also relied on the correlation between CRGs and the

ImmuneScore. The relationship between

cuproptosis and immunity requires further experimental

verification.

5 Conclusion

In summary, we identified novel cuproptosis subtypes

based on CRGs and immune profiles, providing insight into

cuproptosis in LUAD. Additionally, we evaluated the

underlying mechanisms of the cuproptosis subtypes,

including the characteristics of the TME, metabolic

processes, and multi-omics properties. Finally, we

developed a new cuproptosis score for individual tumors,

which may advance our understanding of the relationship

between cuproptosis and the immune microenvironment. The

cuproptosis signature based on the cuproptosis score and

clinical characteristics of individual patients will be useful

for guiding immunotherapy in LUAD.
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