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Exosomes (EXOs) are natural nanoparticles of endosome origin that are

secreted by a variety of cells in the body. Exosomes have been found in bio-

fluids such as urine, saliva, amniotic fluid, and ascites, among others. Milk is the

only commercially available biological liquid containing EXOs. Proof that

exosomes are essential for cell-to-cell communication is increasingly being

reported. Studies have shown that theymigrate from the cell of origin to various

bioactive substances, including membrane receptors, proteins, mRNAs,

microRNAs, and organelles, or they can stimulate target cells directly

through interactions with receptors. Because of the presence of specific

proteins, lipids, and RNAs, exosomes act in physiological and pathological

conditions in vivo. Other salient features of EXOs include their long half-life

in the body, no tumorigenesis, low immune response, good biocompatibility,

ability to target cells through their surface biomarkers, and capacity to carry

macromolecules. EXOs have been introduced to the scientific community as

important, efficient, and attractive nanoparticles. They can be extracted from

different sources and have the same characteristics as their parents. EXOs

present in milk can be separated by size exclusion chromatography, density

gradient centrifugation, or (ultra) centrifugation; however, the complex

composition of milk that includes casein micelles and milk fat globules

makes it necessary to take additional issues into consideration when

employing the mentioned techniques with milk. As a rich source of EXOs,

milk has unique properties that, in addition to its role as a carrier, promotes its

use in treating diseases such as digestive problems, skin ulcers, and cancer,

Moreover, EXOs derived from camel milk are reported to reduce the risk of

oxidative stress and cancer. Milk-derived exosomes (MDEs) from yak milk

improves gastrointestinal tract (GIT) development under hypoxic conditions.

Furthermore, yak-MDEs have been suggested to be the best treatment for

intestinal epithelial cells (IEC-6 cell line). Because of their availability as well as

the non-invasiveness and cost-effectiveness of their preparation, isolates from

mammals milk can be excellent resources for studies related to EXOs. These

features also make it possible to exploit MDEs in clinical trials. The current study
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aimed to investigate the therapeutic applications of EXOs isolated from various

milk sources.
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Introduction

Newborns must adopt milk as their sole source of nutrition to

support themselves so as to grow during the early stages of life (Silva

et al., 2020). As a result, milk is much more important than other

nutritional sources. To provide this source of nutrition to the public,

vast amounts ofmilk ranging from708million to 883million tonnes

were produced worldwide between 2009 and 2019. Not only is milk

one of the best sources of nutrition, but it also has many therapeutic

applications in medical research (Ong et al., 2021). Extracellular

vesicles are particles comprising phospholipid bilayers that are

secreted by many cells throughout the body. They are

categorized into three subgroups: apoptotic bodies, microvesicles,

and EXOs. Apoptotic bodies (1,000–5,000 nm) are derived from

apoptosis cells, microvesicles (100–1,000 nm) bud off from plasma

membranes, and EXOs (30–150 nm) are endosomal in origin. EXOs

are natural extracellular nano-vesicles that contain biologically active

substances like proteins, microRNA, mRNA, DNA, and other

molecules that play an essential role in interacting with various

types of cells (Shirkhanloo et al., 2017; Rahmati et al., 2020; Rashidi

et al., 2021).

Surprisingly, EXOs are found in most biological fluids,

including plasma, urine, saliva, milk, amniotic and

cerebrospinal fluids, etc (Van niel et al., 2018; Sedykh et al.,

2020; Fontana et al., 2021). Milk-derived exosomes (MDEs) are

among the most important signaling molecules that mediate

cellular communication between a mother and her offspring

(Sedykh et al., 2020).

Interestingly, EXOs can be effectively isolated from many

different types of milk, including bovine (Pieters et al., 2021),

Porcine (Chen et al., 2014), Yak (Gao et al., 2019), Camel

(Badawy et al., 2018), Human breast (Admyre et al., 2007), Goat

(Santos-Coquillat et al., 2022). Isolated EXOs are durable in size and

biological activity until stored frozen (−80°C), because they are

protected by a phospholipid bilayer, The barrier prevents miRNAs

in EXOs from degrading in the gastrointestinal tract and from being

absorbed deeper in the gut (Izumi et al., 2012; Van Hese et al., 2020).

The current review investigated a wide range of methods used to

isolate MDEs, MDE sources, and applications for MDEs.

Biogenesis and identification of
exosomes

Through endocytosis and cell surface proteins, proteins,

lipids, tiny molecules, and ions among other things can enter

cells. A membrane bud then develops from the cell’s exterior to

its interior, becoming what is known as an endosome. The

endosome then matures, becoming a late endosome (LE)

composed of closely packed intraluminal vesicles (ILVs).

These vesicles are then entered by cytoplasmic components,

forming what is known as multivesicular bodies (MVBs)

which can either merge with autophagosomes, at which point

(lysosomes destroy their contents, or they can join with

lysosomes and subsequently disintegrate. Otherwise, the

cytoskeleton network can move MVBs in cell microtubules to

the plasma membrane where they fuse with the plasma

membrane duct, a process known as exocytosis, thus forming

binding proteins. Thereafter, exosomes that have a similar lipid

bilayer as the plasma membrane are released (Chung et al., 2020;

Rezabakhsh et al., 2021). Because of their endosomal origin,

EXOs all have membrane-associated proteins that aid in EXO

identification through biomarkers in classifications such as

tetraspanins, heat-shock proteins, GTPases, proteins involved

in formingMVBs, and antigen-presenting cells, as well as protein

biomarkers such as CD9, CD81, CD63, TSG10,1, ceramide,

flotillin, and Alix, Diagram1 (Mathivanan et al., 2010;

Zeringer et al., 2015) (Figure 1).

Current methods for the isolation of
EXOs

Various techniques, including (ultra)centrifugation, density

gradient centrifugation, commercial precipitation kits, and size

exclusion chromatography (SEC), exist for use in separating

MDEs; however, these techniques encounter some limitations

due to the complex composition of milk.

For example, the removal of cells and cell fragments, milk fat

globules, and casein micelles are challenges in these methods.

Most studies have elected to centrifuge raw milk at

approximately 2,000 g to remove cells and cell debris, but no

study has assessed the resulting cell or cell debris concentration.

Thus, the efficacy of this method is unproven. Most research to

date has obtained mixed results, because cells and/or cell

fragments that survive centrifugation will co-isolate with all

isolation techniques currently applied to EVs (Wijenayake

et al., 2021).

During centrifugation, the fat globules in milk begin to

float, forming a separate layer, which is then removed by

skimming. To date, however, no study has examined the

efficacy of skimming or the amount of milk fat globules left
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behind (Clemens et al., 2011; Yamauchi et al., 2019). The

caseins present in milk create additional challenges. Casein is

the most common milk protein and comprises up to 80% and

35% of the total protein in cow and human milk, respectively.

Casein micelles are spherical colloidal aggregates produced by

casein range from 20 nm to 600 nm in size, overlapping EVs in

size. Their diameter varies with temperature; for example,

human milk casein micelles measure 100 nm on average at

37°C, and 570 nm at 4°C. Casein can be removed from milk

using various methods, including centrifugation, acid

precipitation, calcium ion chelation, or chymosin treatment;

however, to what extent the presence and functional integrity of

EVs found in milk are impacted by these processes remains

largely unknown (Hu et al., 2021).

Ultracentrifugation

The gold standard among methods for isolating EXOs is

ultracentrifugation (differential centrifugation). With this

procedure, the biofluid is first subjected to a low-speed spin

(300 g for 10 min). Dead cells and bulky apoptotic debris are

likely eliminated at this speed. Then a higher speed (from

1,000 to 20,000 g)is used to remove microvesicles.

Interestingly, EXOs are precipitated at the highest speed of

100,000 g (Momen-Heravi and Bala 2018). To remove the pellet

and contamination or for further purification of EXOs, they can

be washed in a large amount of phosphate-buffered saline (PBS)

and centrifugated at a speed at 100,000 g one last time. The EXO

pellets can then be resuspended in PBS and stored at −80°C for

further characterization and analysis (Langer et al., 2003).

Though ultracentrifugation is useful in isolating EXOs, this

method is time-consuming, has low portability, and can cause

damage to the EXOs because of excessive speed (Liang et al.,

2017; Merchant et al., 2017; Yu et al., 2018). Therefore,

differential centrifugation is not an appropriate way to

isolate pure EXOs from microvesicle and apoptotic bodies

because of overlapping in size with the vesicles of EXOs

(Witwer et al., 2013).

By using ultracentrifugation, exosomes were isolated from

both ultrasonically processed (USE) and non-ultrasonically

processed (NSE) bovine milk. Marker proteins were only

found in NSE by Western blot analysis. In comparison to

NSE, USE had about 93% fewer microRNAs. Lipid and

protein identities between NSE and USE showed a

significant difference (Sukreet et al., 2019). Using

conventional centrifugations and FPLC gel filtration,

exosome preparations from the milk of 18 horses, were

purified. The results of the protein identification were

unexpected: following gel filtration, one or two peaks co-

isolating proteins largely contained kappa-, beta-, and alpha-

S1-caseins and their precursors, but these proteins were absent

from exosomes that had been thoroughly purified. Beta-

lactoglobulin, CD81, CD63 receptors, and lactadherin were

present in all preparations of well-purified exosomes,

although actin, butyrophilin, lactoferrin, and xanthine

dehydrogenase were only discovered in part of them (Sedykh

et al., 2017).

FIGURE 1
Biogenesis and identification markers of exosomes.
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Density gradient centrifugation

I In this method, the sample is added into an inert gradient

medium for centrifugal sedimentation (Merchant et al., 2017).

Various ingredients of the sample will settle on their isodensity

zone under a centrifugal force, and the EXOs can then be

separated from each other. One of the most important

limitations in employing differential centrifugation for EXO

isolation, however, is the co-precipitation of protein aggregates,

apoptotic bodies, or nucleosomal fragments. The best means to

tackle this problem is to use sucrose gradient centrifugation

(Livshits et al., 2015). Gradient centrifugation has many

benefits compared to traditional ultracentrifugation. First

and foremost, this method achieves a much greater

separation efficiency than the conventional method, thus

providing EXOs of greater purity. Secondly, EXOs cannot be

damaged and deformed with this method, and remarkably, the

solution’s ingredients are prevented from remixing.

Nonetheless, the instruments required for density gradient

centrifugation are expensive and take up significant space in

the laboratory, preventing many laboratories from acquiring

them (Witwer et al., 2013).

Microfiltration technologies

Some filtration techniques can be combined with

ultracentrifugation to isolate EXOs. The ultracentrifugation

technique was utilized to remove dead cells, apoptotic bodies,

and large debris; then, small membranes were used for further

purification. Some proteins, such as annexin V, NSE (Neuron-

Specific Enolase), and PODXL (Podocalyxin), did not attach to

the nanomembrane and were recovered by utilizing this

technique. However, other EV proteins such as AQP2

(aquaporin 2) and TSG101 (tumor susceptibility gene 101)

connected to the nanomembrane largely could not be

retrieved from the retentate. (Momen-Heravi et al., 2013). In

2010, Merchant et al. proposed amicrofiltration isolationmethod

for isolating urinary biomarkers by employing low protein-

binding size exclusion filters (Merchant et al., 2010). Simply,

they adopted hydrophilized polyvinylidene difluoride

membranes to extract EXOs from fresh urine samples. To

verify their results, they used liquid chromatography-mass

spectrometry immuno-blot analysis (Cantin et al., 2008;

Zhang et al., 2017).

Antibody-coated magnetic beads

Monoclonal antibodies can attach to the surface of

magnetic particles known as immunomagnetic beads with a

specific target. Amazingly, the same scenario is repeatable for

EXOs. Their isolation is based on the interaction between

antibodies and receptor molecules on the surfaces of these

vesicles (Cheruvanky et al., 2007; Merchant et al., 2010).

Some receptor molecules on membrane surfaces, such as

CD9, CD63, and CD81, can be utilized to isolate EXOs by

employing immuno-affinity capture methods (Théry et al.,

2002; Mathivanan and Simpson 2009; Tauro et al., 2012).

According to this technique, an EXO magnetic complex is

formed by coating these beads with antibodies against the

receptor molecules of the EXOs (EXOs isolation under a

magnetic field). This method is advantageous and does not

require expensive instruments. Based on the expression of a

specific marker and irrespective of vesicle size, a particular

subpopulation can be selected and extracted from the sample.

Although the majority of cells may generate a wide range of

EXOs, all of them have the same markers on their surfaces.

However, the antibody-coated magnetic beads technique has

many limitations (Vaswani et al., 2017). Firstly, isolating EXOs

from the magnetic beads is quite difficult to carry out and can

result in the EXOs not able to be utilized in downstream

experiments (Tauro et al., 2012). Immunoisolation-based

devices have a shorter assay time (around 1.5 h)compared to

other methods. Optimistic analytical tools are required to

analyze EXOs when they are isolated from plasma. This

method is unsuitable for point-of-care testing, so it cannot

be applied to all samples. It also has expensive reagents.

Furthermore, the ono-neutral PH and non-physiological salt

concentrations that are adopted probably impact the EXOs’

biological activity. Last but not least, experimentation on the

isolated EXOs becomes less and less possible (Lamparski et al.,

2002).

Microfluidic devices

Microfluidics is the behavior and control of liquid streams

that are geometrically obliged to a bit of scale at which surface

powers overcome volumetric strengths. At small scales, the

mechanics of fluid flow are dominated by frictional forces

rather than kinetic energies. The use of microfluidic devices

can be nominated as the best way to decrease material costs,

energy consumption, and sample size, while also affecting growth

capacity and the use of many standard laboratory processes (Le

and Fan 2021). Microfluidic processes and devices can exhibit

characteristic dimensions between 100 nm and several hundred

micrometers, large surface-area-to-volume ratios, and low

Reynolds number, holding them firmly within the laminar

flow organization. One valuable technique for medical

diagnoses and blood tests in clinical care is simply the use of

lab-on-chip devices. Microfluidic devices are based on the

binding between EXOs to the surface that can be coated by

antibodies. The selected biofluid is then loaded onto a pump and

injected slowly through the chip, allowing targeting isolation of

EXOs (Cheruvanky et al., 2007).
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Precipitation

Utilization of an Exoquick kit is currently one of the most

common strategies for extracting EXOs from human

biological fluids and should be respected commercially. It is

based on the law of polymer precipitation of compounds.

EXOs with sizes between 60 and 180 nm are separated by

mixing samples with Exoquick reagent and forming a

reticulated polymer network. This strategy is faster and

easier than other strategies (Chen et al., 2010), and EXOs

extracted using this technique are more highly uniform in

size. Furthermore, this method is the best means to isolate

EXOs from small samples, for example, serum samples.

However, Exoquick has a wide range of drawbacks.

Contaminants with lipoprotein are likely extracted with the

EXOs, which has a negative effect on analysis (Tauro et al.,

2012). In addition, Exoquick is expensive and might put a

significant financial strain on clinics with a high sample

throughput (Merchant et al., 2017). The advantages and

disadvantages of each exosome isolation method are

mentioned in Table 1.

MDEs sources

Mammalian milk is a heterogeneous fluid that contains

significant amounts of biological compounds such as proteins,

antibodies, and peptides. It protects infants against various

diseases such as diabetes, inflammatory bowel disease, and

obesity. Moreover, the antibodies in it help to strengthen the

child’s immune system (Ashcroft et al., 2012). Studies have also

shown that cognitive function development is better in

exclusively breast-fed infants, dependent upon the duration of

feeding (Shao et al., 2012). MDEs are expected to have these

amazing properties, and, in fact, because they are nanoparticles,

they are much easier to use in more effective medical and

research processes. Studies have demonstrated the advantages

of milk isolated from mammals of different species, including rat

(Alvarez et al., 2012), Horse (Le Doare et al., 2018), Buffalo

(Victora et al., 2016), Donkey (Hock et al., 2017), Goat (Santos-

Coquillat et al., 2022), Sheep (Le Doare et al., 2018), Bovine,

Human (Samuel et al., 2017; Pieters et al., 2021), Porcine (Samuel

et al., 2017), Yak (Gao et al., 2019), Camel (Ibrahim et al., 2019;

El-Kattawy et al., 2021). The properties of MDEs differ somewhat

TABLE 1 Advantages and disadvantages of various exosome isolation methods.

Methods for the
EXOs isolation

Advantages Disadvantages Ref

Differential centrifugation/
Ultracentrifugation

Elimination of dead cells and bulky apoptotic debris
in minimum (300 g) and maximum speed

Time-consuming low portability damaging to the
EXOs due to excessive speed

Momen-Heravi and Bala.
(2018)

Precipitation of dead cell and bulky apoptotic
debris at the highest speed (100000 g)

Overlapping with the vesicle sizes of EXOs like

Density gradient
centrifugation

High Separation efficiency Instruments cost Witwer et al. (2013)

EXOs are safe Limitation space

Avoiding the solution’s ingredients for mixing
again

Microfiltration technologies Removing dead cells, apoptotic bodies, and large
debris

AQP2 (Aquaporin 2) and TSG101 (Tumor
susceptibility gene 101) connected to the Nano-
membrane could not be retrieved from the retentate to
a great extent

Cantin et al. (2008); Zhang
et al. (2017)

Antibody-coated magnetic
beads

Affordable selection and extraction of a specific
subpopulation from the sample can be made based
on the expression of specific markers, regardless of
vesicle size

EXOs isolation from the magnetic beads is so hard Lamparski et al. (2002); Tauro
et al. (2012)Requiring optimistic analytical tools to analyze EXOs

when isolated from plasma

It is not suitable for point of care

This method cannot be applied among all Expensive
reagents

Microfluidic devices Reducing material costs, Reducing consume energy Large surface-area-to-volume ratios Cheruvanky et al. (2007)

Decreasing sample size Low Reynolds numbers, Holding them firmly within
the laminar flow organization. Suitable techniques for
lab-on-chip devices

Growing capacity Microfluidic devices are based on binding between
EXOs to the surface can be coated by the antibody,
allowing targeting isolation of EXOs

Many standard laboratory processes can be used

Precipitation Faster and easier than other strategies Expensive method Chen et al. (2010); Tauro et al.
(2012); Merchant et al. (2017)Having high uniforms in their size and this way is

the best means to isolate EXOs from small samples
Having high sample throughput
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based on the animal species, but the most important of them are

the anti-inflammatory properties, modulation of the immune

system, regulation of epithelial cell growth, and antioxidant

activity. A combination of these factors can be effective in the

treatment of various diseases, which is discussed in the following

(Ibrahim et al., 2019) (Figure 2).

Milk–Derived exosomes applications

Milk is a source of nutrition for all newborn mammals; breast

milk aids in the growth and development of the gut microbiota

and immunity (Vaswani et al., 2019; Quan et al., 2020). In

reference to MDEs, research has been done on drug delivery,

imaging, and therapeutic applications in which MDEs can

influence metabolic regulation, microRNAs function, and

other biomolecules and disease treatment. These nano-carriers

have been nominated as optimum for pharmaceutical ingredients

(Lin et al., 2020).

Studies are currently investigating MDEs as nanodevices

as novel chemotherapeutic/chemopreventive drug carriers

(Feng et al., 2021). Human milk is known to induce blood

clotting; a recent study demonstrated that human milk gets its

coagulant activity from the tissue factor (i.e., transmembrane

protein) present on EVs (Hu et al., 2020). Which appears to be

the only coagulation factor present in human milk.

TABLE 2 Types of applications of MDEs in the treatment of various diseases.

MDEs
origin

Study model Major outcome Ref

Camel Breast cancer cells (MCF7) (in vitro) Anticancer activity Badawy et al. (2018); Ibrahim et al.
(2019)Albino rats Antioxidant activity

YAK Intestinal epithelial cell line (IEC-6) (in vitro) Induce hypoxia tolerance Gao et al. (2019)

Human Intestinal organoids Anti-inflammatory activity Moatsou and Sakkas. (2019); Silva et al.
(2020)Monocyte-Derived Dendritic Cells (MDDCs) and CD4+

T cells (in vitro)
Anti-HIV-1

Porcine Jejunum of a neonatal unsuckled piglet (IPEC-J2) (in vitro) Intestinal cell proliferation Chen et al. (2014)

blood T cells (in vitro) Digestive tract development and immunity of
newborn piglets

Miura et al. (2022)

Bovine Mice Attenuates Arthritis Ong et al. (2021); Han et al. (2022)

Goblet cell (in vitro) Rheumatoid

Anti-Necrotizing

Enterocolitis

Immune response and growth

Buffalo Bioinformatic Preventing Infectious and inflammation Rani et al. (2020)

Goat Mice (in vivo) Anti-inflammatory properties Santos-Coquillat et al. (2022)

Sheep Bioinformatic Inflammation and immune responses during
infection

Quan et al. (2020)

Rat Intestinal epithelial cell (in vitro) Anti-Necrotizing Colombo et al. (2014)

Enterocolitis

TABLE 3 The list of Source of Milk Exosomes contains their micRNAs.

microRNA Source
of milk exosomes

REF

29b, 21,155,148a pasteurized milk Melnik and Schmitz (2019)

25-3p,182-5p, 200c-3p, 148a-3p Porcine Gu et al. (2012)

let-7a-5p,148a, let-7c Buffalo Chen et al. (2020)

let-7a,148a, let-7b, 21 Sheep Quan et al. (2020)

let-7b-5p, 125a-5p,30d-5p, let-7a-5p Human Leiferman et al. (2019)

2,478, let-7b,1777a, 1777b Bovine Izumi et al. (2015)
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Coagulation requires a membrane surface; because they are

covered in phospholipid bilayer membranes, EVs make

excellent vehicles for drug delivery. Many breast-feeding

mothers suffer from nipple skin damage (Tripisciano et al.,

2017; Nakamura et al., 2018). Rapid activation of the

coagulation system can accelerate wound sealing, thus

reducing the risk of infection. Therefore, it can be deduced

that tissue factor-exposing EVs in human milk protect the

mother’s health by preventing infection. Surprisingly,

research has determined that this hemostasis-promoting

property is totally absent in cow milk. Therefore, the lack

of tissue-factor coagulant activity in bovine milk-derived EVs

may signify an important functional difference in the milk of

various mammalian species.

Milk-derived EVs affect a breast-feeding mother’s

immune responses by regulating immune cell activity.

Milk-derived EVs have been reported to promote

macrophage absorption of the human immunodeficiency

virus (HIV)-1 while simultaneously inhibiting T cell

uptake. A breast-fed infant does not contract HIV from an

HIV-positive mother perhaps because dendritic cells and

CD4+ T cells cannot acquire the HIV virus when linked to

antigen-presenting cells by EVs. This type of antiviral activity

against the cytomegalovirus (CMV) has been previously

reported. The risk of CMV being transmitted to infants,

particularly premature newborns, through their mothers’

epithelial tissue is significant; however, only a few cases of

this have been reported. This may be explained by the

presence of defensive mechanisms in breast milk. CMV was

shown to adhere to human foreskin fibroblast-1 cells

when milk EVs were processed with trypsin, suggesting

that EV surface proteins may be involved (Näslund et al.,

2014; Donalisio et al., 2020; Komine-Aizawa et al., 2020)

(Figure 3) (Table 2, 3).

MDEs applications in hypoxia condition

Yaks live on the Qinghai-Tibet Plateau at altitudes of

2,500–6,000 m (Desai et al., 2021). These species have been

modified in a harsh environment, resulting in adaptations to

hypoxia conditions and promoted metabolic capacity. Scientific

research has shown that intestinal epithelial cells (IEC-6 cell line)

treated with yak-MDEs had notably higher cell survival rates

under hypoxic conditions than cow-MDEs post-treatment.

These findings demonstrated that yak-MDEs help improve

gastrointestinal tract (GIT) development under hypoxic

conditions and regulate the proliferation of IEC-6 and

intestinal tract development at high altitudes through

hypoxia-related pathways (Gao et al., 2019).

FIGURE 2
Various sources of exosome isolation from mammalian milk.
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MDEs applications in immune response

MDEs can transfer genetic information from a mother to her

infant. This plays a crucial role in treating some diseases and

results in the modulation of a newborn’s immune response. This

state is likely repeated for camel-MDEs (Haug et al., 2007;

Torregrosa Paredes et al., 2014). Camel milk proteins have a

wide variety of benefits, such as immunomodulatory and

antioxidant effects. Camel-MDEs and their related genes can

improve oxidative stress and increase antioxidant properties;

lastly, they can be nominated as the best EXO to regulate

inflammatory patterns and improve the immune response in

the cyclophosphamide (CTX)-treated species (Adriano et al.,

2021; Badawy et al., 2021; Singh et al., 2021).

Human breast milk also has various components, such as

milk fat globules (MFG), immune-competent cells, and soluble

proteins like IgA, cytokines, and antimicrobial peptides

(Zempleni et al., 2017), and can protect against early

infections in infants (Pieters et al., 2015). These nanoparticles

are secreted from a wide variety of cells, such as dendritic cells,

macrophages, lymphocytes, epithelial, and tumor cells that

belong to MHC class I- and class II-bearing nanovesicles

30–100 nm in size. They have been found in physiological

fluids such as bronchoalveolar lavage, human plasma

malignant effusions, and urine, and on the surface of follicular

dendritic cells. The MHC class II, CD86, and the tetraspanin

proteins CD63 and CD81 are expressed and exist in mammal

milk and mature human breast milk, which contains EXOs

(Munagala et al., 2016). Anti-CD3-induced cytokine

production from peripheral blood mononuclear cells (PBMC)

and increases in Foxp3 CD4+/CD25+ T regulatory cells can be

inhibited because of MDEs. This suggests that the EXOs in

human breast milk can influence an infant’s immune system

(Admyre et al., 2007).

Porcine milk EXOs contain several miRNAs; a class of non-

coding small RNAs of 18–25 nucleotides packaged in the

FIGURE 3
Mechanism of MDEs effects on different diseases, miRNA148a, DNA methyltransferase 1 (DNMT1), Rho-associated Coiled Coil-containing
Protein Kinase 1 (ROCK1), Trefoil factor 3 (TFF3), Mucin 2 (MUC2), Glucose-regulated protein 94 (GRP94), Tumour Necrosis Factor alpha (TNF alpha),
Interleukin 6 (IL6), Interleukin 12 (IL 12), BCL2-Associated X-Protein (BAX), B-Cell Leukemia/Lymphoma 2(BCL2), Interleukin 1 beta (IL1b), Nuclear
Factor Kappa-light-chain-enhancer of activated B cells (NF-κB), Vascular Endothelial Growth Factor (VEGF), Malondialdehyde (MDA), Inducible
Nitric Oxide Synthase (Inos), Superoxide Dismutase (SOD), Glutathione peroxidases (GPXs), CAT (Catalase).
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exosomes of porcine milk may play an important role in the

development of piglets. The present study revealed that these

molecules greatly influenced the regulation of digestive tract

development and immunity in newborn piglets. These

findings increase our knowledge about the roles of miRNAs in

porcine-MDEs and demonstrate the foundation for

understanding their physiological functions and regulatory

mechanisms (Chen et al., 2014).

The HIV-1 virus can be transferred from a mother to her

child over the time period of breastfeeding, however the

percentage of transmission possibility is less than 30%. Studies

have shown a lower risk of postnatal HIV-1 infection in

exclusively breastfed infants than in mixed breastfed children

during the first months of life. Many studies have shown that

components in milk, such as bile-salt stimulated lipase (BSSL)

and soluble mucin 1 (MUC1), can provide barriers to protect

dendritic cells against HIV-1 infection (Näslund et al., 2014).

MDEs applications in intestinal diseases

Necrotizing enterocolitis (NEC) is one of the most common

intestinal diseases and has a high rate of mortality in premature

and fragile infants. The symptoms of this disease range from

colonic inflammation to intestinal perforation, extensive

necrosis, multiple organ failure, and death. Bovine-MDEs can

prevent intestinal injury by increasing the number of goblet cell

and ER (endoplasmic reticulum) functions and have been shown

to impact NEC prevention in experimental mice by improving

mucin expression by goblet cells. In the inflamed intestine,

depletion of mucin production from goblet cells occurs prior

to epithelial cell damage. Further studies have demonstrated that

milk-derived EXOs decrease myeloperoxidase (MPO) expression

in experimental NEC. Interestingly, the beneficial anti-

inflammatory effect of EXOs is associated with the restoration

of mucin production (Li et al., 2019).

Milk-derived EXOs contribute to reducing colitis induced by

dextran sulfate sodium (DSS) and histopathological scoring

grade, and statistics have shown that shortening of the colon

can be reduced. Moreover, the expression of interleukin 6 and

tumor necrosis factor-alpha can be reduced by treatment with

MDEs. Furthermore, miRNAs such as miRNA-320, 375, and Let-

7 are highly expressed in milk and can be found in the colon of

MDE-treated mice compared with untreated mice. It has been

indicated that miRNAs play an important role in treating colitis

by using MDEs and regulating the expression of target genes

(Reif et al., 2020).

Certain studies have suggested that colorectal cancer cells

can be reduced by utilizing exosomes obtained from pasteurized

milk. The pMDEs have two primary micRNAs, micRNA148a

and micRNA155, and the expression levels of these two

genes—DNA methyltransferase 1 (DNMT1) and rho-

associated coiled coil-containing protein kinase 1—were

reduced (ROCK 1). Both genes were blocked by both

micRNAs, because they can cause tumor progression and

metastasis. Moreover, micRNA 148a is essential to

controlling the immune system, as it reduces cytokines such

as TNF, IL6, and IL12, among others (Melnik and Schmitz

2019).

MDEs applications in cancer therapy

Previous studies have demonstrated the anticancer effects of

crab blood-derived exomes. Recent research has shown that milk,

as a biological fluid, also has anticancer properties (Othman et al.,

2021; Rezakhani et al., 2021; Rezakhani et al., 2022). Camel-

MDEs have a wide range of benefits, such as reducing metastasis

of breast cancer, 2) increasing the number of markers of

apoptosis, and 3) reducing oxidative stress and gene

expression related to inflammatory and immune response

induction (Badawy et al., 2018; Abu-Farha et al., 2020).

Another study has shown how cow milk can provide notable

amounts of exosomes, which can transport chemotherapy and

chemoprevention medications. Drug-loaded exosomes have been

shown to be significantly more effective than free exosomes in

preventing lung tumor xenografts in vivo and in cell culture tests.

Tumor-targeted ligands such as folate have also been reported to

enhance the targeting of exosomes by cancer cells, thereby

intensifying tumor reduction (Munagala et al., 2016).

Chemotherapeutic agents such as paclitaxel can be loaded

into EXOs in the membrane’s lipid bilayer. Exosomes can carry

stable drugs in simulated gastrointestinal conditions and are

suitable carriers for oral drug delivery. These nanoparticles

can be adopted to load vast amounts of curcumin as an

optimum route against tumors. Exosomes carrying curcumin

can address some challenges associated with curcumin, such as

lack of stability, solubility, and bioavailability in the adverse

conditions of the digestive tract compared to free curcumin

(Strobel 2001; Rappa, Caruso Bavisotto et al., 2019; Corrado

et al., 2021).

Few studies have investigated exosomal drug encapsulation

for the oral delivery of peptide/protein medications, and what

biological factors underpin their capacity as oral delivery

vehicles remain unknown. Insulin-loaded milk-derived

exosomes (EXO@INS) have been developed, and their

hypoglycemic effects were examined in vivo in type I

diabetic rats. Surprisingly, EXO@INS achieved a greater and

longer-lasting hypoglycemic effect than that of subcutaneously

administered insulin (Wu et al., 2022).

As indicated above, yak-MDEs reduce hypoxic conditions, a

key point in treating cancer cells, because there is much less

tumor oxygen in the microenvironment than in another

environments, which explains why metastasis can occur easily.

Yak milk EXOs, however, can overcome these conditions and

improve the treatment of cancer cells (Gao et al., 2019).
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MDEs applications in wound healing

EXOs are biocompatible and produced by natural cells; they

control the inflammatory response and promote cell migration

and proliferation, which makes them one of the best treatments

for wound healing. All of the positive aspects of EXOs occur

because of their compounds. Stem cells have been most

commonly used for wound healing until now; however,

aspects of stem cell usage, including biosafety, administration,

and bio-distribution, should be more deeply investigated, and an

alternative in more bio-stable materials is needed (Yan et al.,

2022). The mechanisms of scar-free healing are not yet clearly

understood. Apparently, TGF-b3/TGF-b1 is a key factor in the

wound healing process. Research has shown that MDEs in

Intestinal Epithelioid Cell line number 18 (IEC-18 cells)

induce anti-cell migration. In addition, the expression of

transforming growth factor beta-3 (TGFb3) was shown to be

elevated in response to Mi-EXO treatment, but the level of

TGFb1 remained unchanged Research has indicated that

wound healing primarily follows the TGFb/Smad signaling

pathway. Smad protein is a crucial transcription factor in

TGFb signaling that has a different function than TGFb,

including 1) receptor-activated Smad (Smad1, Smad2, Smad3,

Smad5, and Smad8); 2) commonmediator Smad (Smad4); and 3)

inhibitory Smad (Smad6 and Smad7). Smad3 protein is

phosphorylated because of the activation of transforming

growth factor-beta receptor1 (TGFbRI) and transforming

growth factor-beta receptor 2 (TGFbRII), and phosphorylated

Smad3 plays a significant role in cell growth and ECM formation.

Generally, these findings suggest that MDEs could be an

interesting material for minimizing various scars or keloids,

such as skin tissue damage, abrasion, acne extrusion, and

surgical skin incision (Ahn et al., 2021).

Research has shown that bovine milk-derived EXOs

positively impact UV-induced aging and damage in

keratinocytes, melanocytes, and fibroblasts put in three

parts of skin cells. Interestingly, milk EXOs can prevent the

induction of UV and intracellular reactive oxygen species in

epidermal keratinocytes. In UV-stimulated melanocytes, milk

EXOs can reduce the production of the skin-darkening

pigment melanin, which may reduce the production of vast

amounts of melanin caused by skin hyperpigmentation

disorders. Milk EXOs can suppress the expression of matrix

metalloproteinase in human dermal fibroblasts. In contrast,

increased cell proliferation was accompanied by enhanced

production of collagen, a major extracellular matrix

component of skin. Remarkably, research indicates that

bovine milk-derived EXOs have great potential as natural

FIGURE 4
Isolation of EXOs from milk and its effect on wound healing, cyclo-oxygenase (COX-2), Tumor susceptibility gene 101 (TSG101).
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therapeutic agents to repair UV-irradiated skin aging and

damage (Han et al., 2022) (Figure 4).

The applications of MDEs in Bone-related
diseases

The bioactive ingredients found in milk significantly

influence bone metabolism. Research has shown that proteins

isolated from bovine milk can reduce bone loss. These

nanoparticles have many microRNAs, which have beneficial

impacts on the host. The effects of bovine milk–derived EXOs

(BCE) on osteoclast differentiation has been evaluated in vitro

conditions, and the results indicate that BCE is beneficial for

osteoporosis in an animal model (Vashisht et al., 2017; Li et al.,

2019; Raimondo et al., 2019).

Challeng of exosomes in clinical
medicine

Harvested EXOs lack sufficient conventional surface markers

but contain other extracellular vesicle types, such as

microvesicles; therefore, they usually suffer from co-isolation

and impurities. When employing conventional techniques like

ultracentrifugation, one must be acutely aware of morphological

and functional changes in EXOs. Exosomes isolated using high-

speed pelleting can incur mechanical damage, protein

aggregation, lipoprotein contamination, and low-rate purity,

and using ultracentrifugation may result in low yield rates and

exosomal payloads. Extracting EXOs by ultracentrifugation may

result in some indicators having different final concentrations

compared to parent cells. Previous studies have shown that

extracting EXOs through ultracentrifugation lowered calnexin

but left CD81 and CD9 levels unchanged. Storage presents a

significant issue when applying EXOs in regenerative medicine. It

has been suggested that the lack of storage options may cause

modifications to their size and composition. In temperatures of

4 and 20°C, EXOs showed more severe changes compared to

lower temperatures like 80°C. For example, CD63 and

HSP70 levels were reduced when EXO was kept for 10 days at

higher temperatures, such as 4°C. Notably, exosomal cargo loss

was greater at room temperature. The dispersion of XOs became

more even as storage conditions became warmer. Phosphate-

buffered saline is commonly used as a cryopreservation storage

buffer in procedures. Trehalose is a substance that can be added

to phosphate-buffered saline to avoid EXO edema. Cryodamage

(i.e., exosomal aggregation) occurs when objects are kept at low

temperatures and results in the loss of EXO functionality after

administration. EXO aggregation and subcellular localization is

affected by the number of freezing/thawing cycles after treatment

with target cells. Studies have shown the absorption of EXOs by

cells and storage pH. EXOs kept at a pH between 4 and

10 displayed higher uptake levels than those maintained at

pH 7. Further studies are necessary to complement our

understanding of the underlying processes that provide

optimal cryopreservation without compromising exosomal

integrity and function (Haraszti et al., 2018).

Conclusion

The promising results of research in recent years on the use of

EXOs as drug carriers and biomarkers have been of great interest

to scientists. MDEs have been introduced to the scientific

community as biocompatible and cost-effective nanoparticles

with high availability and the potential for preparation in high

volumes. Considering the unique properties of these

nanoparticles, they can be considered suitable candidates for

use in treating diseases. Further study of different approaches and

treatment strategies with MDEs are suggested to determine

appropriate future cure plans for various diseases.
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