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Molecular biology is currently a fast-advancing science. Sequencing techniques

are getting cheaper, but the interpretation of genetic variants requires expertise

and computational power, therefore is still a challenge. Next-generation

sequencing releases thousands of variants and to classify them, researchers

propose protocols with several parameters. Here we present a review of several

in silico pathogenicity prediction tools involved in the variant prioritization/

classification process used by some international protocols for variant analysis

and studies evaluating their efficiency.
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Background

With advances in molecular biology and the increasing affordability of its techniques,

biological parameters, new organisms and pathogens, and genetic diseases can be studied

through the sequencing of genetic material. The large quantities of data produced with

these methods require high expertise and computational power to process, identify and

classify genetic variants (a new term for mutation) that may yield scientifically relevant

information.

Genomic studies allowed us to uncover information and understand the molecular

mechanisms of our biology and several genetic diseases. From the sequencing of small

sequences to disease-related gene panels and today to whole exome/genome sequencing

we are able (in some cases) to track the origin of that disease, allowing the employment of

targeted therapy, thus, deeply impacting the clinical decisions of the tested patient or, in

case of inherited disease, the family (Walsh et al., 2011; Nakagawa and Fujita, 2018; Felicio

et al., 2021).

These studies allowed the creation of several databases and beyond, like The Cancer

Genome Atlas (TCGA), ClinVar (Landrum et al., 2018), UniProt (UniProt, 2019) and The

Catalogue Of Somatic Mutations In Cancer (COSMIC) (Tate et al., 2019) and others,

which provide us the curated data of the molecular alterations related to diseases and serve

as a deposit for new studies. Another important source of information is GnomAD

(Karczewski et al., 2020), a database containing 125,748 exome sequences and
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76,156 whole genome sequences. All these databases are major

contributors to past and new studies and support variant

classification (Richards et al., 2015; Li et al., 2017).

In 2015, several parameters were proposed by the American

College of Medical Genetics and Genomics (ACMG) (Richards

et al., 2015) to be used to evaluate the pathogenicity of germline

variants and one of the most widely applicable parameters is in

silico analysis. This same analysis is also included in the

guidelines for somatic variants as recommended in 2017 by

the Association for Molecular Pathology, the American

Society of Clinical Oncology, and the College of American

Pathologists (Li et al., 2017) and more recently, in 2022, by

the Clinical Genome Resource (ClinGen), Cancer Genomics

Consortium (CGC), and Variant Interpretation for Cancer

Consortium (VICC) (Figure 1A) (Horak et al., 2022).

The delicate process of variant classification requires several

levels of evidence (from supporting to very strong evidence,

according to the last proposal from ClinGen). To assess the

candidate variants of a large-scale sequencing study, several

filters should be implemented following the guidelines and

evidence from the consortiums. To carefully remove variants

that may not be associated with the disease in question some

filters should be applied, such as sequencing quality filters,

population frequency (available in gnomAD), biological and

clinical information (segregation and functional data available

in different databases such as COSMIC, ClinVar, or PubMed),

variant location in the protein (active sites or hotspots) and

variant type (synonymous, missense, frameshift, in frame,

nonsense, stop-loss, splicing site), and the selected prediction

tools for the variant types studied (as not all tools analyze all

variant types or locations—Figure 1B).

The term “in silico” is an expression derived from the biological

experimental terms “in vivo” (in the living system) and “in vitro” (in

the test tube) and, in general, implies the acquisition of knowledge by

computer simulations and model analysis, meaning the analysis or

simulation of an experiment performed in a virtual environment. As

FIGURE 1
Evidences proposed by the international consortiums: (A) Summarized evidence of the criteria proposed by them. (B) Flowchart for filtering
variants; in silico tools scores may vary, here we present the one proposed by the authors (Ioannidis et al., 2016), although ClinGen suggests higher
than 0.800 for oncogenicity (Horak et al., 2022).
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a large portion of the variants in a sequencing file (whole genome or

whole exome or even panels) still have unknown clinical

significance, employing these in silico tools may facilitate efforts

to characterize the variants.

We here categorized the in silico pathogenicity prediction

tools according to the parameter we considered as a

differential, or as a signature analysis in the method by

which the variants are evaluated, nevertheless, they are not

necessarily exclusive to one of the following groups: 1)

analyzing sequence conservation in both evolutionary and

interspecific contexts, 2) evaluating structural/

physicochemical parameters, 3) employing supervised

machine learning, 4) employing unsupervised machine

learning, and 5) utilizing modifications of splicing.

Although these tools are highly complex and sophisticated,

they should not be used alone to classify a variant neither be used

as diagnostic parameters by themselves. The tools are only part of

the very delicate classification process, because finding a

pathogenic variant may imply medical intervention for a

person or even their families, sometimes for a lifetime, and

even influence a couple’s decision to have a child.

The aim of this paper is not to analyze and propose the best in

silico pathogenicity prediction tools but to describe or catalog the

well-established and recently developed tools (e.g., machine

learning and ensemble methods—Figure 2), that can be used

to analyze variants and help in the researcher decision.

In silico pathogenicity prediction
tools

Analysis of interspecific and evolutionary
sequential conservation

Conserved regions of DNA usually contain information that

is crucial for the homeostasis of the cellular environment and the

entire body itself. If that region encodes a protein, variants

located in that position may have a pathogenic impact on the

structure and consequently on the role/function of that protein

(Mooney and Klein, 2002).

To evaluate the pathogenicity of variants, the following tools

examine the conservation of the region with a variety of

mathematical and biochemical methodologies to score how

much that variant altered a conserved region; some of these

tools require data entry or use one to several sequences (from

different species) to compare the conservation of the region and

to predict the variant effect score, thereby increasing the

probability of human error or bias, because the sensitivity of

these tools relies on the amount and type/species of sequences to

compare (Ng and Henikoff, 2003; Siepel et al., 2005; Stone and

Sidow, 2005; Tavtigian et al., 2006; Davydov et al., 2010; Pollard

et al., 2010; Reva et al., 2011; Choi et al., 2012; Shihab et al., 2013;

Mi et al., 2019).

Tools in which sequence conservation is the main type of

analysis are outlined below, as well as the suggested score in

Table 1.

Sorts intolerant from tolerant (SIFT)

The SIFT tool was designed by John Craig Venter Institute in

2003, and at present, it is only available through annotation

software [such as Ensembl Variant Effect Predictor (VEP)

(McLaren et al., 2016) or ANNOVAR (Wang et al., 2010)].

This tool compares the submitted sample with several similar

sequences. SIFT analyzes all the possible amino acid substitutions

for the inputted sequence and classifies them as tolerated,

whereas the amino acid change is predicted to not

compromise the protein’s function, or not tolerated, the

pathogenic prediction implying a possible altered function.

The classification is performed using Bayes (probabilistic

theorem) supplemented by Dirichlet [distributive for analysis

FIGURE 2
Timeline of the described in silico tools methods and the criteria implemented suggesting their use.
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TABLE 1 Information about in silico tools for variant analysis categorized by the differential analytic features.

Software Pathogenicity score Link Reference Citationsa

Interspecific and evolutionary sequential conservation

SIFT <0.05 N/A Ng et al. (2003) 5,656

Align-GVGD > C35 http://agvgd.hci.utah.edu/agvgd_input.php Tavtigian et al. (2006) 678

MAPP Not tolerated http://mendel.stanford.edu/sidowlab/downloads/MAPP/ Stone et al. (2005) 404

PhastCons N/A http://compgen.bscb.cornell.edu/phast Siepel et al. (2005) 4,252

PhyloP N/A http://compgen.bscb.cornell.edu/phast Pollard et al. (2010) 2,244

GERP ≥2 http://mendel.stanford.edu/SidowLab/downloads/gerp/ Davydov et al. (2010) 1,524

Mutation Assessor 0.8 < x ≤ 1.9 > low impact http://mutationassessor.org/r3/ Reva et al. (2011) 1,817

1.9 < x ≤ 3.5 > medium impact

<3.5 > high impact

FATHMM <0 http://fathmm.biocompute.org.uk/ Shihab et al. (2012) 1,044

PROVEAN −2,282 NA Choi et al. (2012) 2,781

Panther Deleterious http://www.pantherdb.org/about.jsp Mi et al. (2019) 2,356

Sequence/Structure tools

MutPred >0.5 http://mutpred.mutdb.org/index.html Li et al. (2009) 807

SNPeffect Reduced Stability http://snpeffect.switchlab.org/ De Beats et al. (2012) 247

PolyPhen-2 Probably damaging (≥0.957) http://genetics.bwh.harvard.edu/pph2/index.shtml Adzhubei et al. (2013) 12,463

Possibly damaging (0.453 ≤ x ≤
0.956)

Supervised Machine Learning Analysis

VEST >0.5 https://karchinlab.org/apps/appVest.html Carter et al. (2013) 389

Mutation Taster >0.5 (Disease Causing) http://www.mutationtaster.org/ Schwarz et al. (2014) 3,054

Mutation Taster
2021

Deleterious https://www.genecas2003cade.org/MutationTaster2021/ Steinhaus et al. (2021) 32

CADD >20 https://cadd.gs.washington.edu/ Kircher et al. (2014) 5,163

M-CAP >0.025 http://bejerano.stanford.edu/mcap/ Jagadeesh et al. (2016) 621

REVEL >0.5 N/A Ioannidis et al. (2016) 1,109

BayesDel >0.0692655 http://fengbj-laboratory.org/BayesDel/BayesDel.html Feng et al. (2017) 75

Unsupervised Machine Learning Analysis

GenoCanyon >0.5 http://zhaocenter.org/GenoCanyon_Index.html Lu et al. (2015) 151

Eigen >0.5 http://www.columbia.edu/~ii2135/download.html Ionita-Laza et al.
(2016)

483

Splicing analysis

Nnsplice 0.4 https://www.fruitfly.org/seq_tools/splice.html Reese et al. (1997) 1904

MaxEntScan N/A http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_
scoreseq.html

Yeo et al. (2004) 1959

HSF N/A https://www.genomnis.com/access-hsf Desmet et al. (2009) 2,556

dbscSNV 0.6 http://www.liulab.science/dbscsnv.html Jian et al. (2014) 365

SpliceAI 0.5 https://spliceailookup.broadinstitute.org/ Jaganathan et al.
(2019)

826

aNumber of citations according to Google Scholar.
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of unknown results from Bayesian analyses (Ng and Henikoff,

2003)].

Mutation assessor

This tool was designed by Memorial Sloan Kettering Cancer

Center (cBio@MSKCC) in 2011 and is available for annotation

software and on the website http://mutationassessor.org/r3/. The

tool extracts alignment information from protein families of large

numbers of homologous sequences grouped into aligned sets

(families and subfamilies) and explores 3D structures of

homologous sequences. These structures are evolutionarily

(through conservation and entropy) compared with the

mutated protein. This approach generates a low, medium, and

high risk regarding the deleterious impact of the substituted

amino acid protein function (Reva et al., 2011).

Align-GVGD

The tool was designed by Tavtigian et al. (2006) in the

International Agency for Research on Cancer (IARC) in

2006 but is now housed and available only through

Huntsman Cancer Institute (University of Utah)’s website

(http://agvgd.hci.utah.edu/agvgd_input.php). This tool

compares the protein evolutionarily by two indices, the

Grantham variation and deviation (GV and GD, respectively).

The minimum and maximum values of composition, polarity,

and volume are used as coordinates of a plane on different axes

forming a “box.” The GV index is calculated by Euclidean

distance (distance following the Pythagorean theorem

parameters) from the main diagonal of the normal protein

boxes (evolutionary chain), while the GD index is calculated

by plotting the mutation and determining the Euclidean distance

from the normal protein box to the mutated one. In other words,

the larger the GD is, and the smaller the GV is, the greater the

likelihood that the amino acid substitution will be pathogenic.

The result is a table classification ranging from C0 (low chance of

being deleterious) to C65 (probably deleterious) with the

association of the two quantities.

Multivariate analysis of protein
polymorphism (MAPP)

The tool was designed by Stanford University in 2005 and

can only be used through command lines. This tool compares

hydrophobia, polarity, charge, volume, free energy in an alpha

helix conformation, and free energy in a beta chain conformation

among species submitted and predicts the impact that a variant

causes by analyzing the conservation of these parameters in the

protein. By testing each possible amino acid substitution, the

results are classified into tolerable and intolerable substitutions

(Stone and Sidow, 2005).

Protein analysis through evolutionary
relationships (PROVEAN)

The tool was designed in the Thomas laboratory at the

University of Southern California in 2003 and later updated

in 2013, being available only through its website (http://www.

pantherdb.org/about.jsp). This tool has several implementations

that combine factors such as complete organisms genomes, gene

function classification, pathway analysis, and statistical tools

(hidden Markov models) to analyze several parameters of

sequencing and genetic information. Pathogenicity variant

prediction functions by estimating the likelihood that an

encoding nonsynonymous single nucleotide polymorphism

will have a functional impact on the protein by calculating the

length of time (in millions of years) of a given amino acid being

preserved in the protein of interest. The longer the preservation

time of the region or the reference allele, the greater the chance of

functional impact (Mi et al., 2019).

Functional analysis through hidden
Markov models (FATHMM)

This tool was designed by the University of Bristol in

2012 and is available for annotation software and on the

website (http://fathmm.biocompute.org.uk/). The tool

combines a species-independent method where homologous

sequences are automatically collected [from UniRef90 (Suzek

et al., 2007)], aligned, built in a hidden Markov model, and

matched (lowering the human intervention). Also, sequences

from the manually curated databases SUPERFAMILY (Wilson

et al., 2009) and PFAM (Punta et al., 2012) are analyzed to

capture important sites (important structures, domains, and

conserved regions) with species-specific weightings derived

from relative frequencies of disease-associated and functionally

neutral amino acids mapping onto conserved protein domains to

predict the functional impact of protein variants. The lower the

score (<0) is, the more deleterious the variant is (Shihab et al.,

2013).

Genomic evolutionary rate profiling
(GERP)

GERP was developed by the Sidow Lab with Stanford

University and is available for annotation software and

download on its website (http://mendel.stanford.edu/

SidowLab/downloads/gerp/). GERP relies on multiple

alignments by calculating the position-specific constraint score
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and also the significant aggregation of the segments using a

continuous-time Markov process and maximum likelihood.

GERP’s score ranges from −12.3 to 6.17, the higher the score,

the more conserved that nucleotide/region and more likely to be

deleterious (Davydov et al., 2010).

Protein variation effect analyzer
(PROVEAN)

PROVEANwas developed by the John Craig Venter research

institute in 2012 and is available for annotation software.

PROVEAN is one of the few tools not limited to SNV, but

can also analyze in-frame variants. PROVEAN analysis consists

basically of two steps: collecting and clustering sequences from

NCBI NR (protein database) through BLASTP. The algorithm

CD-HIT, then, removes redundant sequences and up to the

45 first most similar to the entry sequence are clustered.

Secondly, a delta score is calculated for each of the clustered

sequences by the BLOSUM62 substitution matrix algorithm.

Finally, an average delta score of each cluster is calculated and

the PROVEAN score is generated. PROVEAN score ranges

from −12 to 4 with a threshold of −2,282: the lowest the score

the more likely deleterious the variant although it generates a

prediction between deleterious and neutral (Choi et al., 2012).

Phylogenetic analysis with space/time/
conservation models (PhastCons)

PhastCons was developed by the University of California,

Pennsylvania State University, Washington University School of

Medicine, and Baylor College of Medicine in 2005. It is available

through annotations software and as part of the PHAST package

(http://compgen.bscb.cornell.edu/phast). PhastCons works on a

phylogenetic hidden Markov model and maximum likelihood

(using an expectation-maximization algorithm). It uses multiple

alignments from several species considering the individual and

the flanking columns of the alignments. It ranges from 0 to 1 and

the higher the score, the more conserved the region (Siepel et al.,

2005).

Phylogenetic P-values (PhyloP)

PhyloP was developed by the University of California and

Cornell University in 2010 and is available through annotation

software and also available as part of the PHAST package (http://

compgen.bscb.cornell.edu/phast). To generate its score, PhyloP

considers four tests in its phylogenic model (of 46 genomes): a

likelihood ratio test, a score test (Fisher information matrix and

Monte Carlo), an exact distribution of numbers of substitutions

based test, and the genomic evolutionary rate profiling (GERP)

test. PhyloP’s score ranges from −20 to 9.631 and the higher the

score the more conserved the region (Pollard et al., 2010).

Sequence or structural protein
alteration

Sequence conservation itself is important for a protein to

keep functioning, but is not the only criterion. The structure must

be stable enough for the protein to perform its activity. Some

variants may not be located in conserved regions; therefore, they

may not be detected as deleterious by some of the tools cited

previously that only/mainly rely on conservation, but they could

still disrupt the cores, active sites, or important components of

the protein (Li et al., 2009; De Baets et al., 2012; Adzhubei et al.,

2013). The following tools have, among other features, structural

parameters as differential criteria in their analyses for variant

classification, and, for this reason, some of them require specific

knowledge to interpret the results properly. The proposed scores

are located in Table 1.

Polymorphism phenotyping-2
(PolyPhen-2)

This tool was developed by Harvard in 2010 and is available

for annotation software and online (http://genetics.bwh.harvard.

edu/pph2/index.shtml). The tool assesses sequence features on

how fundamental the location where the variant is (such as active

or binding sites). It also uses the 3D protein mapping on Protein

Structure Database (PDB) to assess the conservation of the input

sequence. And how much the variant changed parameters, such

as accessible area, hydrophobia, chemical-electrostatic

interactions, secondary structure conformation, solvent-

accessible surface area, and Phi-Psi dihedral angles. The Naïve

Bayes classifier of PolyPhen-2 was trained with supervised

machine learning using pathogenic and non-damaging

alterations from UniProtKB(28).

Despite having conservation and supervised machine

learning in its methodology, the structure features used by

PolyPhen-2 were the differential to present in this section.

After calculating these parameters by submitting the protein

with the mutated amino acid, the probability that this mutation is

deleterious is estimated by Bayes, and the score is converted into

classes: probably benign, possibly benign, possibly damaging, or

probably damaging (Adzhubei et al., 2013).

SNPeffect

SNPeffect was developed by the VIB Switch Laboratory in

2011 and is only free for academic purposes (http://snpeffect.

switchlab.org/). This tool has a database containing four
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algorithms: TANGO, which detects regions prone to

aggregation in protein sequences by analyzing hydrophobia

and propensity of beta-leaf formation; WALTZ, which

accurately and specifically predicts the regions of amyloid

formation in protein sequences; LIMBO, which is a

chaperone binding site predictor for Hsp70 chaperones; and

FoldX, which calculates the mutation free energy difference

through structural information. Functional sites and structural

characteristics, cell processing, posttranslational modification,

and domain annotation are derived from studies performed by

other researchers and databases such as PFAM (Punta et al.,

2012). Each algorithm produces a score, and their association

indicates how altered the protein function was (De Baets et al.,

2012).

MutPred

The tool was developed and is maintained by Indiana

University, the University of Washington, and the University

of California San Diego in 2009 (available at http://mutpred.

mutdb.org/index.html). The methods for this tool were

inspired by SIFT but it was improved for human diseases

based upon protein sequence, changes in structural features,

and functional sites between wild-type and mutant

sequences. This tool was upgraded with the addition of

gain/loss of 14 different structural and functional

properties and an evolutionarily conservative calculation.

The tool was trained using HGMD deleterious mutations

and neutral polymorphisms from the Swiss-Prot protein

database. Despite being trained, the tool has several

structural parameters differentiating itself, maintaining it

in this section. The training dataset has been updated to

contain 39,218 HGMD (Stenson et al., 2009) disease-

associated mutations and 26,439 putatively neutral Swiss-

Prot (Boeckmann et al., 2003) substitutions. A new version

was updated in 2020 using neural network, also trained with

53,180 pathogenic variants and 2,06,946 (putatively) neutral

variants from HGMD, SwissVar and dbSNP. This tool

provides an empirical p-value of a possible altered

biological parameter; if it is significant, that parameter is

altered (Li et al., 2009; Pejaver et al., 2020).

Supervised machine learning analysis

Supervised machine learning is a system based on neural

networks, random forests, support vector machines, and

mathematical/statistical classifiers. These tools need to be

“trained” with variants already associated and not associated

with disease for the software to “learn” how to predict

pathogenicity. This category utilizes several computational,

mathematical, and biochemical parameters that could not be

captured by tools focused on conservation or structure only,

but they require databases to be trained; therefore, the

databases must be curated, and the larger the amount of

data available is, the better the tool will be trained, and

consequently, more accurate the classification will be. All

suggested scores are presented in Table 1.

MutationTaster

MutationTaster was one of the first tools to analyze intronic,

synonymous, and short indels. This tool was developed by

Universitätsmedizin Berlin and Cardiff University in 2014 and

is available for annotation software and on its website

(mutationtaster.org). To predict the variant effect, the tool

contains single nucleotide polymorphisms and deletions from

the 1000 Genomes Project (Genomes Project et al., 2012) and

pathogenic variants found in ClinVar and the HGMD (Stenson

et al., 2014). Variants common (more than four times in

homozygous genes) on 1000 Genomes/HapMap are

automatically neutral, while pathogenic variants in ClinVar

are automatically disease-causing. In addition, regulatory test

data from the ENCODE (Consortium, 2012) and JASPAR7

(Portales-Casamar et al., 2010) projects have been integrated

along with evolutionary conservation scores on DNA variants.

This tool also uses a Grantham standard splicing analyzer tool

that provides comparative biochemical measurements of amino

acids according to their polarity, volume, and composition in

addition to the internal implementation of the NNsplice tool

(Reese et al., 1997). Through all this database information, the

tool estimates Bayes on disease-causing or polymorphisms

(Schwarz et al., 2014).

A new version of MutationTaster has been released in

2021 and is currently available on its website (https://www.

genecascade.org/MutationTaster2021). Due to being recent, it

has not been tested against other tools yet. Other than a friendlier

interface, several major changes were implemented, such as

adapting the tool for next-generation sequencing data,

updating new variants (including rare variants) from

gnomAD, ClinVar, and HGMD Professional with

conservation information on the tool training set, and

implementing gnomAD to remove homozygous benign

variants that occur in healthy individuals. Besides, they

included new databases for variant pathogenicity information

[Ensembl (Howe et al., 2021) and UniProt], splicing prediction

was changed from NNsplice to MaxEntScan, pLI scores

(tolerance of a gene to loss of function considering the

amount of truncating variants) (Ziegler et al., 2019) from

ExAC and integration of MutationDistiller (disease phenotype

analysis) were included. Mutation Taster now does not use the

Naïve Bayes classifier anymore, a new model using Random

Forest has been implemented to improve the results which are

now binary: deleterious or benign (Steinhaus et al., 2021).
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Combined annotation dependent
depletion (CADD)

The tool was developed by the Berlin Institute of Health,

Universitätsmedizin Berlin, the University of Washington, the

HudsonAlpha Institute for Biotechnology, and the Brotman Baty

Institute for Precision Medicine in 2018. The tool is available for

annotation software and online (https://cadd.gs.washington.edu/).

This tool was designed to score most single nucleotide variants or

small insertions/deletions using a support vectormachine; itmeasures

the deleteriousness of the variant according tomolecular functionality

and pathogenicity. To classify the variants, annotation is performed

with the software VEP (SIFT and PolyPhen-2), with conservation

scores from PhasCons, phyloP, and Gerp++, plus some data from

gene expression values, acetylation, methylation, nucleosome

occupancy, chromatin status, genomic studies, transcription

factors, 1,000 Genomes, and Exome Sequencing Project (ESP) (Fu

et al., 2013) frequency and Granthan scores (Grantham, 1974).

CADD’s support vector machine was trained using several public

databases (such as ClinVar and Exome Sequencing Project) and data

from the literature’s study databases. A higher score indicates a higher

chance of deleteriousness, and the authors suggest a cutoff between

10 and 20 (Kircher et al., 2014).

Variant effect scoring tool (VEST)

The tool was developed by Johns Hopkins University in

2012 and is available through annotation software and can be

downloaded from its server (https://karchinlab.org/apps/appVest.

html). VEST uses the supervised machine learning Random Forest

systematic (its “forest” containing 1,000 “trees”): all features were

standardized with the Z-score, and the tool was trained with variants

from HGMD (Professional v2012.2) and ESP; these mutations were

annotated with 86 available functional features. For functional

prediction, this tool uses statistical hypothesis testing from

CHASM, which is also a random forest classifier (its “forest”

containing 500 “trees”) trained with variants from several

sequencing studies available in the literature; the system was

implemented with new parameters from the original random

forest methodology and with 49 prediction features. A last gene

score prediction was also implemented to predict whether the

malfunctioning of that gene and its mutation results in disease

and the score was generated with Fisher’s Method and Stouffer’s

Z-score. The VEST final score ranges from 0 to 1, and the higher the

score is, the more deleterious the variant is (Carter et al., 2013).

Mendelian clinically applicable
pathogenicity (M-CAP)

The tool was developed by Stanford University in 2016 and is

available for annotation software and on the website (http://

bejerano.stanford.edu/mcap/). Developed with the ensemble

method, this tool employs pathogenicity scores from nine

prediction tools [CADD, SIFT, PolyPhen-2, MutationTaster,

MutationAssessor, FATHMM, LRT, MetaLR, and MetaSVM

(Dong et al., 2015)] and incorporates seven established

measurements of base pairs, amino acids, genomic regions,

and gene conservation (GERP ++, RVIS, PhyloP, PhastCons,

PAM250, BLOSUM62, and SIPHY), exhibiting 95% sensitivity.

The tool also incorporates 298 new parameters derived from

multiple sequence alignments of 99 primates, mammals, and

vertebrates with the human genome. The higher the score is (>0.
025), the more deleterious the variant is (Jagadeesh et al., 2016).

Rare exome variant ensemble learner
(REVEL)

The tool was developed by a collaboration among more than

25 research centers and is available through annotation software and

by its precomputed scores (https://sites.google.com/site/

revelgenomics/). This tool is designed in the ensemble method

that integrates 18 pathogenetic prediction scores from 13 tools

(GERP ++, SIFT, PolyPhen-2, MutationTaster, Mutation

Assessor, FATHMM, LRT, PhyloP, PhastCons, SIPHY, MutPred,

PROVEAN, and VEST) with eight sequence conservation scores

and ten functional scores. REVEL was also trained with rare

pathogenic variants [SwissVar (Mottaz et al., 2010) and ClinVar],

excluding those already used in one of the included tools. The score

varies according to the preference of the user: a more sensitive

deleterious score is higher than 0.5, and a more specific deleterious

score is higher than 0.7 (Ioannidis et al., 2016); a recent study

suggests using a score higher than 0.8 for deleteriousness and lower

than 0.4 for benign variants (Wilcox et al., 2021).

BayesDel

This tool was developed by the University of Utah in

2018 and is available through its software (http://fengbj-

laboratory.org/BayesDel/BayesDel.html). The tool is designed

with the ensemble method integrating the pathogenicity scores

from several tools, including PolyPhen-2, SIFT, FATHMM, LRT,

MutationTaster, Mutation Assessor, PyloP, GERP++, and SiPhy.

To combine the pathogenicity predictors for each of them,

likelihood ratios were created, and a naïve Bayesian model

was subsequently applied. To train the tool, pathogenic

variants were obtained from ClinVar and UniProtKB

(excluding variants from the ENIGMA dataset), and neutral

variants were obtained from the UniProtKB, dbSNP,

1000 Genomes Project, Exome Aggregation Consortium

(EXAC), ALSPAC, and TWINSUK cohorts (UK10K Project).

The score ranges from −1.29334 to 0.75731, and the higher the

score is, the more deleterious the variant (Feng, 2017).
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Unsupervised machine learning
analysis

The unsupervised tools may also be based on the same

systems as the supervised ones, although they do not rely on

extensive databases to be trained, thereby avoiding any bias that

may be associated with them. Theoretically, supervised tools are

more reliable than unsupervised ones when researchers have a

proper training database, but if the information being researched

is new or there is little/no evidence available, unsupervised tools

are preferable (Lu et al., 2015; Ionita-Laza et al., 2016). The

suggested scores for unsupervised tools are presented in Table 1.

Eigen

The Eigen tool was developed by Columbia University and

the Icahn School of Medicine at Mount Sinai in 2016 and is

available through its precomputed scores (http://www.columbia.

edu/~ii2135/download.html) or annotation software. This tool

uses the support vector machine and is based on several

annotations for a set of variants obtained from conservation

tools and regulatory/functional information from studies and

databases. With this information, Eigen uses the population

frequency from the 1000 Genomes Project and data from the

literature to calculate a meta-score classifying the variant: the

higher the score, the higher the chance of the variant being

pathogenic (Ionita-Laza et al., 2016).

GenoCanyon

GenoCanyon is a whole genome unsupervised annotation

tool employing statistical models with 22 computational and

experimental parameters. The statistical model calculates

whether the location is functional. The annotations

concerning conservation or biochemical activity were

downloaded from the UCSC Genome Browser and

included information on genomic conservation measures

(GERP and PhyloP), chromatin status, histone

modifications, and transcription factor binding sites.

Finally, with a total of 49 parameters, a score (higher

scores have a higher chance of pathogenicity) is calculated

to estimate the extent of the alteration in functionality (Lu

et al., 2015).

Splicing site alteration analysis

Most of the bioinformatics tools cited above analyze variants

located on coding parts of the DNA (the exons) or the amino acid

substitution; therefore, any variant outside that range may not

even be classified.

Splicing is an important biological phenomenon that allows

the removal of introns and attachment of exons; thus, if an error

occurs, the protein may lose part of its sequence or gain new

fragments, possibly resulting in loss of function.

Variants may occur in any region of the genome, although

some regions are more prone to accumulate or receive damage.

Splicing regions may also harbor variants able to cause exon

skipping. To perform more powerful bioinformatics analysis of

sequencing, splicing should not be overlooked.

The tools to analyze splicing are primarily based on sequence

patterns where the spliceosome binds. The absence of these

sequences in the splicing region or the presence (i.e., the

creation of a new site due to an alteration) of these sequences

inside an exon may affect protein function. These tools use

several mechanisms to classify canonical and noncanonical

alterations. Most of them rely on neural network systems;

thus, in this section, we present tools based on that system,

based on entropy, and those that integrate both systems (Reese

et al., 1997; Yeo and Burge, 2004; Desmet et al., 2009; Jian et al.,

2014; Jaganathan et al., 2019). Data for these tools are also

presented in Table 1.

NNSplice

This tool, which was developed by Lawrence Berkeley

National Laboratory and the University of California in

1997, is one of the oldest and was used as the basis for other

tools (available in: https://www.fruitfly.org/seq_tools/splice.

html). NNSplice uses a generalized hidden Markov model in

which it states corresponds to a gene feature (such as donor/

acceptor site, intron/exon, start/end, and UTR). To capture

these features (states), the tool uses identifying sensors (sensors

containing data from multiple sources) where those features/

states occur and infer a likelihood of alteration. Splice site

recognition occurs through a neural network trained to

recognize donor and acceptor sites. The detection score

ranges from 0 to 1: lower scores indicate that the region is

lost or is not a splicing site, while higher scores indicate a

probable splicing site or the formation of a new splicing site

(Reese et al., 1997).

SpliceAI

The construction of the SpliceAI tool involved the Illumina

Artificial Intelligence Laboratory, the University of California,

Stanford, Massachusetts Institute of Technology, and Harvard. It

was developed in 2018 and is available online (https://

spliceailookup.broadinstitute.org/). SpliceAI relies on a deep

neural network with 32 sequencing recognizing layers as an in

silico model of the spliceosome to predict splicing site and crypt

splicing variants. It was trained with the database GENCODE-
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annotated (Harrow et al., 2012) pre-mRNA transcript sequences.

A delta score is generated after several equations comparing the

variant and several sequences and its surroundings, it ranges

from 0 to 1, and the higher the score the more likely the variant

affects the splicing (local or surroundings); the authors

recommend a threshold score of 0.5 (Jaganathan et al., 2019).

Database for splicing consensus regions
single nucleotide variants (dbscSNV)

The dbscSNV was developed by the University of Texas in

2014 and is available through its software or annotated database

for download (http://www.liulab.science/dbscsnv.html) and on

annotation software. It consists of an ensemble splicing

method: the authors tested the accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative

predictive value (NPV) of several splicing tools/models

(Position Weight Matrix (PSM), MaxEntScan, NNSplice,

GeneSplicer, Human Splicing Finder (HSF), NetGene2,

GENSCAN, and SplicePredictor) with 13,000 variants; after

checking their performance, those with better performance

(PSM, MaxEntScan, HSF, and NNsplice) were selected. To

improve the performance, conservation scores (phyloP) and

whole-genome functional scores (CADD) were implemented.

Thus, both ensemble methods (Adaboost and random forest)

generate one pathogenicity prediction score each. The authors

suggest a cutoff of at least 0.6 for splicing altering variants for

both methods (Jian et al., 2014).

MaxEntScan

This tool was developed by the Massachusetts Institute of

Technology in 2004 (available in: http://hollywood.mit.edu/

burgelab/maxent/Xmaxentscan_scoreseq.html). The tool is

based on the maximum entropy (measure of disorder or

randomness) principle (MEP) for short sequence motifs:

calculated by Shannon entropy, which is a measure of the

average uncertainty in a random variable; or by the principle

of minimum relative entropy (MRE), as minimizing MRE is

equivalent to maximizing the MEP. To generate a final score,

several entropic formulas are applied to the input data: the higher

the score is, the more likely that the region has or is a true/strong

splice site (Yeo and Burge, 2004).

Human splicing finder

The Human Splicing Finder tool (https://www.genomnis.

com/access-hsf) was developed by INSERM in 2008. It

combines several different algorithms to identify and predict

the effects on splicing sites, including donors and receptors,

ramification points, and auxiliary sequences that raise or

diminish splicing: exonic splicing enhancers or silencers.

These algorithms are based on position weight matrix,

entropy, and motif (nucleotide sequences with biological

meaning) comparisons. For each of these algorithms,

consensus values and a score variation limit are defined based

on literature data. The tool generates interpretations for the

alteration analyzed for each relevant algorithm showing why

the submitted variant is altering the splicing and one final say as

altering or not altering splicing (Desmet et al., 2009).

Which tool to use?

After understanding the mechanisms of the tools, they must

be used according to the purpose of the research; therefore, there

is not an optimal tool for everything. As the tools are

computational systems, algorithms, and software designed to

execute codes contacting mathematical and statistical models

regarding biological and biochemical parameters to calculate the

probability of an alteration to nullify the gene product. The result

may not truly coincide with the true conditions, but the result is

not “wrong”; rather, it is simply what that mathematical model

indicates. Therefore, choosing the right tools and understanding

their functionality is important because, as noted above, the tools

employ different types of analysis, and understanding these

analyses is essential to understand why a variant is or is not

deleterious (some pros and cons observed are available on

Supplementary Table S1). As this paper is focused on variants

related to diseases, such as cancer, we selected some studies that

tested these tools for that purpose or a similar one.

Grimm et al. (2015) evaluated 10 tools in five datasets:

PolyPhen-2, SIFT, FATHMM (weighed and unweighed),

MutationTaster, Mutation Assessor, CADD, LRT, phyloP, and

GERP++. To that end, these researchers extracted variants from

the datasets HumVar, ExoVar, VariBench, predictSNP, and

SwissVar and separately analyzed Condel and Logit after

performing measurements of true/false negatives/positives by

accuracy, precision, recall/sensitivity, specificity, F-score, NPV

and Matthews correlation coefficient (MCC). The researchers

concluded that FATHMM (weighed) had the best performance.

In 2015, Dong et al. (2015) evaluated the performance of

18 tools: PolyPhen-2, SIFT, MutationTaster, Mutation Assessor,

FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO,

MutPred, GERP++, SiPhy, PhyloP, CADD, PON-P, KGGSeq,

and CONDEL. These researchers used one training set and three

databases for their analysis: UniProt for training, information

from Nature Genetics publications, VariBench, and the Cohorts

for Heart and Aging Research in Genomic Epidemiology

(CHARGE) databases for testing. After analyzing associations

with false/true positives/negatives (by sensitivity and specificity),

the researchers concluded that FATHMM had the best

discriminative power followed by KGGSeq, an ensemble tool.
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Ghosh, Ninad, and Plon evaluated the performance of

25 algorithms in 2017: CADD, Condel, DANN, EA, Eigen,

FATHMM, GenoCanyon, GERP++, hEAt, integrated_fitCons,

LRT, M-CAP, MetaLR, MetaSVM, Mutation Assessor,

MutationTaster, Mutpred, phastCons100way, phyloP100way,

Polyphen2, PROVEAN, REVEL, SIFT, and SiPhy. For the

evaluation, these researchers obtained 14,819 missense variants

(7,346 benign and 7,473 pathogenic) from ClinVar. Due to the

blank values, as not all tools predict all variants, and to minimize

bias, the authors created a subset containing 8,386 variants, which

were the ones obtained from the 14,819 variants that all tools could

predict. Additionally, these researchers converted all the tools’ scores

into two categories only: pathogenic and benign. It was observed that

773 of the 7,346 benign variants (10.5%) were wrongly classified by

all tools as pathogenic versus 64 of the 7,473 pathogenic variants

(0.8%). For the performance analysis (based on sensitivity and

specificity), several datasets were analyzed by the tools and

estimated by the AUC (>0.90) of a receiver operator

characteristic (ROC) curve. REVEL outperformed in all tests and

slightly behind VEST3 followed by MetaSVM and MetaLR, which

failed in only one of the 16 tests. The authors recommend using

meta predictors (new ensemble and machine learning tools) alone if

necessary, as they achieved the highest performance, and not simply

selecting tools when they all (evenmeta predictors) agree onwhether

variants are benign or pathogenic, as suggested by the ACMG

guidelines (Ghosh et al., 2017).

Li et al. (2018) performed measures of 23 tools in 2018:

FATHMM, fitCons, LRT, Mutation Assessor, MutationTaster,

PolyPhen-2 (HDIV), PolyPhen-2 (HVAR), PROVEAN, SIFT,

VEST3, GERP++, phastCons, phyloP, SiPhy, CADD, DANN,

Eigen, FATHMM-MKL, GenoCanyon, M-CAP, MetaLR, MetaSM,

and REVEL. These researchers utilized three datasets to compare

pathogenic and benign variants from ClinVar and pathogenic/likely

pathogenic and benign/like benign variants from the IARC

TP53 database (Kato et al., 2003; Bouaoun et al., 2016) and

International Cancer Genome Consortium (http://icgc.org/), and

the last dataset was obtained from a large-scale study (Majithia

et al., 2016). After measuring the performance rate of the tools’

true and false positives and negatives (by sensitivity, specificity,

positive predictive value (PPV), NPV, false positive rate (FPR),

false negative rate (FNR), accuracy and MCC), the researchers

concluded that REVEL and VEST3 outperformed the rest of the

tools discriminating the variants on most tests and PROVEAN had a

better performance on somatic and experimentally validated variants

than with germline ones. However, the authors also suggest that the

other tools should not be simply discarded because someof themhave

the advantage of predicting certain regions, such as noncoding or

regulatory variants, that others do not.

In 2019, Hassan et al. (2019) analyzed the performance of eight

tools, that is, FATHMM, SIFT, PROVEAN, iFish, Mutation

Assessor, PANTHER, SNAP2, and PON-P2, using a dataset

composed of 2,144 pathogenic variants and 3,777 neutral variants

extracted from the Varibench database (http://structure.bmc.lu.se/

VariBench/GrimmDatasets.php). After testing the true and false

positive and negative rates (sensitivity, specificity, positive and

negative likelihood ratio, PPV, NPV, and accuracy) of the tools,

these researchers concluded that FATHMMoutperformed the other

tools evaluated.

In 2019, Niroula and Vihinen (2019) analyzed how well

10 selected in silico tools performed in detecting benign variants

using common variants extracted from 10 subpopulations from the

EXAC database (from the interval 1% ≤ frequency < 25%): CADD,

FATHMM, LRT, Mutation Assessor, MutationTaster, PolyPhen-2,

PROVEAN, SIFT, VEST, and PON-P2. Although PON-P2 had the

FIGURE 3
Graphic illustrating new citation number per year (according to Google Scholar) of the top threemost cited tools (PolyPhen-2, SIFT, and CADD)
versus the four tools that had frequent outperforming analysis (VEST3, REVEL, FATHMM, and BayesDel).
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highest number of unclassified variants, it also had the best

specificity followed by VEST and FATHMM, which exhibited

similar performance, and PROVEN, while the others exhibited

similarly poorer performances in recognizing benign variants.

Tian et al. (2019) used 4,094 variants in 66 clinically relevant

genes extracted from the ClinVar database in 2019 to compare SIFT

and PolyPhen-2 and to evaluate five meta predictors: REVEL,

BayesDel, CADD, Meta-SVM, and Eigen. Using sensitivity

analysis from true/false and negative/positive data associations

(PPV, NPV, and yield rate for calculating overall prediction

performance), REVEL and BayesDel outperformed the other

three meta predictors and surpassed SIFT and PolyPhen-2

agreements in all tests performed by the study.

More recently, in 2021, Wilcox et al. (2021) also tried to

understand the applications of the ACMG criteria regarding the in

silico tools PP3 (supporting evidence for pathogenic predictions) and

BP4 (supporting evidence for benign predictions). They analyzed how

frequently PP3 and BP4 were used in 727 variants curated by Clinical

Genome Resource expert groups. They optimized the thresholds and

among the four tools used (MPC,VEST, REVEL, andFATHMM) the

authors found VEST and REVEL perform the best. The authors

conclude that the data provided in their article “provide robust,

quantitative evidence that in silico predictors, when properly

calibrated, can provide evidence at the supporting or, in some cases,

moderate level for pathogenicity classification.”

In this study, we described some of the most commonly

employed tools for in silico analysis in the genomic research

setting. As shown by several studies, VEST3 outperforms several

tools, as do FATHMM and REVEL, although their use is slowly

rising (Figure 3). Based on the characteristics of the tool as well as its

performance in several studies in the literature, REVEL can be

considered one of the best variant analysis tools available. It has been

demonstrated to frequently outperform others and it combines

VEST and FATHMM (two of the tools that frequently

outperformed other tools) within its algorithm. Similarly does

Bayesdel, which also outperformed several other tools. Three of

them are among the newest developed tools (supervised machine

learning) and compile several predictors inside their classification

algorithm (ensemble method), as well as mathematical (statistics),

computational, biological, and biochemical parameters.

Currently, there is no standardized method to use these tools,

the consortiums advice using them with care, and advices to use as

supporting evidence and that they should not be counted

independently. Even so, Wilcox et al. (2021) shows that their

evidence may be considered stronger if they are properly

calibrated, and Ghosh et al. (2017) demonstrate that their use

should be considered individually (especially for meta-predictors)

if necessary, not in series, highlighting the importance of in silico

prediction tools on variant classification and their further

understanding. Perhaps, with the new tools developed by

ensemble methodology, a new form of interpretation may be

implemented, for instance considering these new outperforming

meta-predictors (such as REVEL or BayesDel) instead of all the

other tools (as they are already in use “inside” these new predictors),

which may be redundant to consider a tool that is already being

considered inside another one.

Conclusion

Bioinformatics is a notably new field of research, and as with any

new field, it is constantly evolving. In silico analysis is only one

parameter for variant classification according to the three last

proposals from international consortiums for variant analysis criteria.

Sequencing and variant analysis can identify several lifetime

problems and disease predispositions, but it requires a specialized

team, high-tech material, and computational processing power. With

advances in molecular biology, these techniques are becoming less

expensive and more accurate and may therefore become more

accessible to the general population. Thus this review may help to

amplify the knowledge of these in silico variants classification tools

and, together with other available information that may serve as

evidence for variant analysis, it may contribute in better patient care,

early disease management and hence in an increase in survival rates.
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