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Background: Immune checkpoint inhibitor therapy has changed the treatment

model of metastatic bladder cancer. However, only approximately 20% of

patients benefit from this therapy, and robust biomarkers to predict the

effect of immunotherapy are still lacking. In this study, we aimed to

investigate whether immune-related genes could be indicators for the

prognosis of bladder cancer patients and the effect of immunotherapy.

Methods: Based on bladder cancer dataset from the Cancer Genome Atlas (TCGA)

and GSE48075, 22 immune microenvironment-related cells were identified by

CIBERSORT. After performing a series of bioinformatic and machine learning

approaches, we identified distinct tumor microenvironment clusters and three

bladder cancer specific immune-related genes (EGFR, OAS1 and MST1R). Then, we

constructed immune-related gene risk score (IRGRS) by using the Cox regression

method and validated it with the IMvigor210 dataset.

Results: IRGRS-high patients had a worse overall survival than IRGRS-low

patients, which was consistent with the result in the IMvigor210 dataset.

Comprehensive analysis shows that patients with high IRGRS scores are

mainly enriched in basal/squamous type (Ba/Sq), and tumor metabolism-

related pathways are more Active, with higher TP53 and RB1 gene mutation

rates, lower CD4+/CD8+ T cell infiltration, higher M0 macrophage infiltration,

and lower immunotherapy efficacy. In contrast, Patients with low IRGRS scores

are mainly enriched in the luminal papillary type (LumP), which is associated
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with the activation of IL-17 and TNF signaling pathways, highermutation rates of

FGFR3 and CDKN1A genes, higher CD4+/CD8+ T cell infiltration content, and

The level of M0 macrophage infiltration was relatively low, and the

immunotherapy was more probably effective.

Conclusion: Our study constructed an IRGRS for bladder cancer and clarified

the immune and molecular characteristics of IRGRS-defined subgroups of

bladder cancer to investigate the association between IRGRS and its

potential implications for prognosis and immunotherapy.
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Introduction

Bladder cancer (BLCA) is one of the most prevalent urinary tract

malignancies, with an estimated 430,000 new cases and

165,000 deaths worldwide (Lenis et al., 2020). Immunotherapies

such as anti-PD-1/PD-L1 inhibitors have demonstrated substantial

antitumour activity in advanced and metastatic BLCA, although

cisplatin-based chemotherapy and radical cystectomy are still the

first-line treatments for muscle-invasive BLCA (Jordan and Meeks,

2019; Patel et al., 2020). However, patients with advanced or

metastatic BLCA ineligible for cisplatin only showed an objective

remission rate (ORR) of 23%, and the median OS was 15.9 months

after receiving the PD-L1 inhibitor atezolizumab as treatment in a

phase II trial (Balar et al., 2017). Although some advanced DNA

methylation based urinary assay could detect the early stage bladder

cancer leading to early treatment, the prognosis of bladder is still

unsatisfied (Chen et al., 2020). Besides, how to screen out patients

suitable for immunotherapy is still an urgent problem to be solved. At

present, the standard biomarkers for clinicians to select patients who

are eligible for immunotherapy are immunohistochemistry assays for

PD-L1 protein and tumour mutation burden (TMB), but some

studies have found conflicting results when using the two

biomarkers to predict immunotherapy response or overall survival.

Furthermore, many patients whose tumours have low or no

detectable PD-L1 expression can also benefit from immunotherapy

(Rosenberg et al., 2016). There was no significant association between

high TMB and the efficacy of immunotherapy in BLCA (Necchi et al.,

2018; Powles et al., 2019). Therefore, it is crucial to develop robust

predictive biomarkers to predict the effect of immunotherapy and the

prognosis of BLCA patients. Although there have been some studies

on the development of molecular markers for the efficacy of

immunotherapy (Zhang et al., 2021a; Cao et al., 2021), they did

not elucidate the mechanisms behind the molecular markers.

In this study, we analysed three BLCA transcriptomic

datasets from patient cohorts (GSE48075, TCGA-BLCA, and

IMvigor210). We used the GSE48075 and TCGA-BLCA datasets

as training sets to identify the hub genes related to the immune

microenvironment. Two computational algorithms, namely,

CIBERSORT and ESTIMATE, were used to analyse the

expression levels of 22 immune cell types and cancer-related

fibroblasts to profile the immune landscape of bladder cancer.

Then, we divided patients into different subgroups and examined

the correlations of the subgroups with corresponding genomic

characteristics and clinical features. Finally, we constructed

IRGRS based on the expression of three immune-related

genes. The IRGRS was verified to be a robust prognostic

biomarker to predict the response to immune checkpoint

inhibitors and prognosis.

Materials and methods

Dataset and processing

The Bladder Cancer Dataset from TCGAwas used in this study.

BLCA samples (n= 412)with bothRNA sequencing (RNA-seq) data

and detailed follow-up information were included for further

analysis. RNA-seq data of 270 bladder samples (GSE48075) and

corresponding survival information were downloaded from the

Gene Expression Omnibus (GEO). IMvigor210 was a cohort in

which 195 muscle invasive bladder cancer (MIBC) patients were

treated with an anti-PD-L1 agent (atezolizumab) to evaluate the

effect of immunotherapy in locally advanced or metastatic urothelial

bladder cancer (Mariathasan et al., 2018). Genome, transcriptomic,

and clinical data can be downloaded from http://research-pub.gene.

com/IMvigor210CoreBiologies. We removed samples whose

survival data were not available and then carried out logarithmic

processing by the “voom” function of the R package “Limma”

(Ritchie et al., 2015). All the RNA-seq datasets in the form of

fragments per kilobase of transcript per million mapped reads

(FPKM) values were converted into transcripts per million

(TPM) to make samples from TCGA and GEO more comparable.

Inference of immune infiltrating cells in
the tumour environment

To calculate the composition ratio of 22 tumour-infiltrating

immune cells in each cancer sample, CIBERSORT was utilized

based on the preset 547 barcode genes of the gene expression
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matrix (Newman et al., 2015). CIBERSORT is a deconvolution

algorithm to estimate immune cell type (including B cells, T cells,

natural killer cells, macrophages, DCs, and myeloid subsets)

proportions in data from tumour tissues with mixed cell types.

Unsupervised consensus clustering of
22 tumour-infiltrating immune cells

Unsupervised clustering methods were applied to identify

distinct immune patterns and to classify tumour samples for

further analysis based on 22 tumour-infiltrating immune cell

expression matrices. The R package “ConsensusClusterPlus” was

used to perform the above procedure, and 1000 rounds were

repeated to guarantee the robustness of classification (Wilkerson

and Hayes, 2010). A consensus heatmap was mapped for each

sequence of cluster numbers (k = 2, 3, 4, 5, . . . . . . ), and a

progression graph and corresponding cumulative distribution

function (CDF) were generated to determine the optimal cluster

number.

Identification of differentially expressed
genes associated with immune subtypes

We classified patients into four distinct immune patterns by

unsupervised consensus clustering to identify immune-related

genes. The R package “Limma” was utilized to determine DEGs

among the 4 immune subtypes (Ritchie et al., 2015). The criterion

for selecting significant DEGs was an adjusted p value < 0.01.

Construction of immune-related genes
score

DEGs among all immune clusters were identified, and a

union set of genes was extracted. First, we adopted an

unsupervised clustering method based on all DEGs to classify

patients into several groups for deeper analysis. Then, we defined

the optimal number of gene clusters to perform weighted gene

coexpression network analysis (WGCNA) to select the related

modules of the gene cluster (Langfelder and Horvath, 2008). The

“WGCNA” package in R software was used to construct an

adjacency matrix with a soft threshold of β = 5, which was then

transformed into a topological overlap matrix (TOM). The

corresponding dissimilarity (1-TOM) was calculated as the

distance to cluster genes. Then, we built a dynamic pruning

tree to identify the related modules. Five modules were identified

after setting the merging threshold function at 0.25. Gene

significance (GS) and module membership (MM) were

calculated for intramodular analysis to select the hub genes.

GS is an absolute value to quantify the correlation between a

specific gene and its phenotypic trait. MM shows the correlation

between the gene and a given module. Hub genes were screened

out by setting the cut-off criteria of GS > 0.01 and MM > 0.01.

Then, we conducted K–M survival analysis to choose the genes

associated with overall survival based on the expression value and

clinical data of the hub gene. Then, a univariate Cox regression

model was used to perform the prognostic analysis for genes

selected after survival analysis. We utilized the least absolute

shrinkage and selection operator (LASSO) to precisely predict the

outcome of hub genes in BLCA patients. The IRGRS was then

constructed by using the coefficients obtained by the

LASSO–Cox algorithm, and the IRGRS was calculated by the

sum of all gene expression levels multiplied by their

corresponding coefficients.

Immune characteristics and molecular
biological differences between the high-
IRGRS and low-IRGRS groups

According to the median value of the IRGRS in the training

dataset, we separated the samples into two groups: the high

IRGRS group and the low IRGRS group. To elucidate the

underlying biological mechanism in different IRGRS groups,

we used gene set enrichment analysis (GSEA), gene ontology

(GO), and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) method with the clusterProfiler package of R (p <
0.05 and FDR<0.25) (Yu et al., 2012). Then we performed

single sample GSEA (ssGSEA) analysis on several

representative gene sets with the GSVA (Gene Set Variation

Analysis) package of R (Hänzelmann et al., 2013). In addition, to

further identify the differences in biological pathways between

the high-IRGRS and low-IRGRS groups, GSVA enrichment

analysis was conducted by using the “GSVA” package. GSVA

is a method based on a nonparametric and unsupervised method

to estimate the variation in pathway and biological process

activity in the samples. We downloaded the gene sets of

“c2.cp. kegg.v6.2.symbols” from the MsigDB database for

GSVA. An adjusted p value less than 0.05 was regarded as

statistically significant.

Statistical analysis

The statistical significance of the mean value of variables

between two groups was estimated by unpaired Student’s t tests.

Correlation coefficients were computed using Spearman’s and

distance correlation analyses. Spearman and distance correlation

analyses were used to compute the correlation coefficients

between each kind of TME infiltrating immune cell.

Difference comparisons of three or more groups were

conducted by one-way ANOVA and Kruskal–Wallis tests

(Robertson et al., 2017). To determine the correlation

between the IRGRS and patient survival, we divided patients
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into high- and low-IRGRS groups based on the median IRGRS

value in the training group. The Kaplan-Meier method and log-

rank tests were utilized to identify the significance of differences

in the survival curves for the prognostic analysis. A univariate

Cox regression model was adopted to compute the hazard ratios

(HRs) in the process of selecting the hub genes. A multivariable

Cox regression model was constructed to ascertain the

independent prognostic factors. We assessed the specificity

and sensitivity of the IRGRS by receiver operating

characteristic (ROC) curve analysis and quantified the area

under the curve (AUC) with the time ROC package. We used

the maftools package to present the mutation landscape in

patients with high and low IRGRS subtypes in the TCGA-

BLCA cohort. All statistical p values were two-sided, with p <
0.05 indicating statistical significance. All data processing was

done with R 4.0.2 software.

Results

Landscape of the tumour
microenvironment of BLCA

The workflow of how we constructed TME cell-infiltrating

patterns and the IRGRS was systematically evaluated (Figure 1).

The R package “ConsensusClusterPlus” was used to classify

patients with different immune microenvironment patterns

based on the amount of 22 tumour-infiltrated immune cells,

and four distinct patterns termed TME clusters A, B, C, and D

were recognized as the optimal cluster number after we evaluated

clustering stability (Supplementary Figure S1C). The 22 tumour-

infiltrated immune cell networks portrayed a comprehensive

landscape of interactions and their impacts on the overall

survival of patients with bladder cancer (Figure 2A;

Supplementary Table S1). TME cluster B revealed a

particularly prominent survival advantage, and TME cluster C

showed the worst prognosis compared with that of the other

three TME clusters (log-rank test, p < 0.01; Figure 2B). Taken

together, we can conclude that crosstalk plays roles among

different immune cells in the process of classifying distinct

patterns. Then, we visualized the immune microenvironment

of the four subtypes in a heatmap (Figure 2C), from which we

could see that TME cluster A was characterized by high

expression of CD4 memory activated T cells. TME cluster B

was characterized by high expression of CD8+ T cells and CD4+

memory activated T cells. TME cluster C was characterized by

high expression of resting mast cells. TME cluster D was

characterized by high expression of M0 macrophages. A violin

plot (Figure 2D) showed that TME cluster B had significantly

higher PD-L1 expression than that of the other three TME

clusters, and TME cluster C had the lowest PD-L1 expression

among the four TME clusters. Except for TME clusters A and D,

there were significant differences in the expression of PD-L1

between any two other groups.

Construction of the TME signature and
functional annotation

To investigate the potential biological characteristics of each

immune subtype, unsupervised analysis of DEGs gathered

between each pattern was used to identify optimal genomic

FIGURE 1
Overview of workflow about the study design.
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subtypes. Two gene clusters were recognized as the most suitable

method to separate the training cohort population into 2 distant

patient clusters (Supplementary Figure S2A), termed gene cluster

A and gene cluster B. To obtain the gene cluster-related hub

genes, WGCNA was carried out on all genes in gene clusters.

Module membership (MM) is an index to measure the

correlation between the gene and a given module (Langfelder

and Horvath, 2008). Gene significance (GS) represents the

correlation between the specific gene and gene cluster.

Selected genes and their corresponding modules are shown in

a heatmap (Figure 3A). We used a topological overlap matrix

(TOM) to cluster all selected genes by dissimilarity measure

based on the dynamic tree cut algorithm to divide the tree into

five modules (Figure 3B) labelled with different colours. The

results showed that the highest positive correlation coefficient

between GS for the gene cluster andMMwas in the greenmodule

(correlation coefficient = 0.77, p value = 9e-9), and the lowest

negative correlation was in the blue module (correlation

coefficient = −0.61, p value = 2e-56) (Figure 3B). The criteria

for selecting the hub gene were MM > 0.01 and GS > 0.01.

Among them, a total of 86 hub genes were identified in the green

module (Supplementary Table S2), and 48 hub genes were

identified in the blue module (Supplementary Table S3). To

determine the independent prognostic genes, univariate Cox

regression analysis and K-M survival analysis for OS were

performed among the 134 hub genes in the blue and green

modules. Twenty-one genes were determined by the selection

criteria of Cox p value < 0.05 and K-M value < 0.05

(Supplementary Table S4). In order to solve the problem of

overfitting of variables, we performed lasso-cox regression to

remove 8 genes causing multicollinearity, and obtained 14 genes

for subsequent analysis (Figures 3C,D). According to the results

of the multivariate Cox hazard model, EGFR (p < 0.05), OAS1

(p < 0.01), and MST1R (p < 0.01) were significantly related to

overall survival in BLCA patients (Figure 3E). Then, we

constructed a prognostic index for all cancer samples

calculated by the formula IRGRS = expression level of

EGFR*0.228279845567824 + expression level of OAS1*(-

0.264868237274861)+expression level of MST1R*(-

0.167523923476614). We used the median IRGRS as the cut-

off value, and high-IRGRS patients had a worse OS than low-

IRGRS patients (p < 0.0001, log-rank test; Figure 3F).

FIGURE 2
Landscape of the TME in bladder cancer and characteristics of TME subtypes. (A) The interaction between TME cell type in bladder cancer. Cell
cluster A, orange; cell cluster B, blue; cell cluster C, red; cell cluster D, brown.The size of each cell represents survival impact of each TME cell type,
calculation used the formula log10 (log-rank test p values indicated) respectively. The lines linking TME cells showed their interactions, and thickness
represented the correlation estimated by Spearman correlation analysis and strength between regulators. Negative correlation was indicated
with blue and positive correlation with red. (B). Kaplan–Meier curves for overall survival (OS) of 241 bladder cancer patients from training cohorts
(TCGA +GSE48075) with the TME infifiltration clusters. The numbers of patients in TMEcluster-A, -B, -C,and-D phenotypes are n= 79, n= 83, n= 28,
n = 51 respectively. Log-rank test shows overall p < 0.01. (C). Heatmap of 22 TME cells and ImmuneScore for 249 patients in the training cohort. (D).
Comparison of the PD-L1 among four TME subtypes in the training cohort.*p < 0.05, **p < 0.01, ***p < 0.001.
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Molecular characteristics and functional
enrichment analysis in different IRGRS
subgroups

Then we investigated somatic mutation differences between

the high- and low-IRGRS groups to further elucidate the

biological mechanism of IRGRS. The two groups’mutation

landscapes are depicted in Figure 4A and Figure 4B. We listed

the top 20 genes with the highest mutation rates in the IRGRS

subgroups and found that missense variations were the most

common mutation type in both types. The mutation rates of

TTN, TP53, MUC16, ARID1A, PIK3CA, KMT2D, NOTCH1,

and SYNE1 were higher than 15% in both groups. The mutation

rate of the TP53 and RB1 genes in the high-IRGRS subgroup was

higher than that in the low-IRGRS subgroup. We determined the

DEGs to further investigate the underlying biological behaviour

of IRGRS by using the limma package (Ritchie et al., 2015), GO,

KEGG, GSEA, GSVA, and ssGSEA were performed by The

clusterProfiler package (Yu et al., 2012) and GSVA package

(Huang et al., 2021) for the DEGs between the high-IRGRS

group and the low-IRGRS group. We conducted GO and KEGG

pathway enrichment analyses to explore the functional

characteristics of the DEGs. In the GO functional enrichment

analysis, the top 10 enriched biological processes were

“extracellular matrix organization”, “extracellular structure

organization”, “axonogenesis’, “connective tissue

development”, “ossification”, “cell−substrate adhesion”,

“skeletal system morphogenesis”, “cartilage development”,

“neuron projection guidance” and “sulfur compound

metabolic process” (Figure 4C). Based on DEGs from the

IRGRS, we performed GSVA to explore the biological

behaviour differences between the IRGRS subgroups. We

found that the low IRGRS subgroup was markedly enriched

in drug metabolism, steroid hormone biosynthesis, and retinol

metabolism. The high-IRGRS subgroup presented enrichment in

the cell cycle, gap junctions and regulation of the actin

cytoskeleton (Figure 4D).

We performed GSEA to identify the corresponding gene sets

enriched in different IRGRS subgroups. The top five significantly

enriched pathways in the high- and low-IRGRS groups are

shown in Figures 5A,B. Genes in the low IRGRS groups were

mostly enriched in “cell cycle”, “ECM-receptor interaction”, “IL-

17 signalling pathway”, “protein digestion and absorption” and

“TNF signalling pathway”. These factors are tightly associated

with the immune response. Genes in the high-IRGRS group were

mostly enriched in pathways related to chemical carcinogenesis

and metabolism. Detailed results of the GSEA are listed in

Supplementary Table S5. To evaluate how IRGRS reflects the

cell type in the tumour immune microenvironment, the

ESTIMATE and CIBERSORT algorithms were applied to

FIGURE 3
Methods about how to filter the hub genes to construct IRGRS system. (A). Clustering dendrograms shows the relationshiop between gene and
its corresponding module. (B). Heatmap by WGCNA suggests Module-trait associations. Each row corresponds to a ME and column corresponds to
genecluster. The number in the rectangle is the correlation coefficient, and the number in brackets is the corresponding p value. (C). Least absolute
shrinkage and selection operator (LASSO) coefficient profiles of 21 genes. (D). Partial likelihood deviance for LASSO coefficient profiles. The
vertical dotted line is shown at the optimal values, The red dots represent the partial likelihood values, the gray lines represent the standard error (SE).
(E). Forest plots of the multivariate Cox hazard model for overall survival. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Unadjusted HRs are
shown with 95% confidence intervals. (F). Survival analyses for high and low IRGRS patient groups in training cohort using Kaplan-Meier curves (p <
0.0001, Log-rank test).
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compute the infiltration of immune cells in BLCA. Differentially

infiltrated cells between the low- and high-IRGRS groups are

presented in Figures 5C–F. We observed that the high-IRGRS

group had lower levels of immune cells (including CD8+ T cell

infiltration, CD4+ memory-activated T cells, and follicular helper

T cells). Conversely, the level of M0 macrophages was higher in

the high-IRGRS group than that in the low-IRGRS group. In the

ssGSEA analysis(Figure 5G), many immune-related

cells(including activated B cells, activited CD4+ T cells,

immature B cell and so on) showed a higher amount in high-

IRGRS group than that in low-IRGRS group. KEGG pathway

analysis revealed the significant pathways between high and low

IRGRS groups (Figure 5H).

Relationship between IRGRS grouping and
other immune and molecular subtypes

A consensus molecular classification subtype can describe the

landscape of bladder cancer according to the RNA-sequence data

and can be summarized as six molecular subtypes, namely, Ba/Sq,

LumNS, LumP, LumU, stroma-rich, and NE-like (Kamoun et al.,

2020), which is a classification system based on six published

classification systems. Then, we focused on the distribution of

different molecular subtypes in the IRGRS groups. Because the

number of NE-like samples was below 10, we did not include it in

our analysis. In our study, the low-IRGRS subgroup comprised

26% Ba/Sq samples, 2% LumNS samples, 48% LumP samples,

14% LumU samples, and 9% stroma-rich subtype samples, while

the high-IRGRS subgroup comprised 51% Ba/Sq samples, 8%

LumNS samples, 16% LumP samples, 12% LumU samples, and

13% stroma-rich subtype samples (Figure 6A). We found that the

Ba/Sq and LumP subtypes accounted for a large proportion of all

samples from the TCGA database. There were more LumP

samples in the low-IRGRS subgroup than in the high-IRGRS

subgroup (p < 0.01). The violin plot (Figure 6B) shows the

different molecular classifications and their corresponding

IRGRS. The Ba/Sq subgroup was markedly associated with a

higher IRGRS than the LumP and LumU subtypes. The LumP

subgroup was associated with a lower IRGRS than the LumU and

stroma-rich subtypes. Several genes (such as FGFR3, TP53, and

RB1) have been identified as being vital for the characterization

of each consensus class (Kamoun et al., 2020). Therefore, we

analysed the relationship between the IRGRS and the mutation

status of the three genes mentioned (Figures 6C–E). The IRGRS

of p53-mutated samples was higher than that of p53 wild-type

samples (p < 0.01). Conversely, in the FGFR3 gene, FGFR3-

mutated samples had lower IRGRS values than FGFR3 wild-type

FIGURE 4
Molecular characteristic and functional enrichment analysis between high and low IRGRS groups. (A). The waterfall plot of tumor somatic
mutation established by those with low IRGRS groups, Mutated genes (rows, top 20) are ordered by mutation rate; Each column represented
individual patients. The upper barplot showed the overall number ofmutations. The right barplot showed the percentage of each variant type and the
mutation frequency of each gene. The color coding indicates the mutation type. (B). The waterfall plot of tumor somatic mutation established
by those with high IRGRS group. (C). The GO terms are defined as indicated color bars at the bottom and shown on the right of chord diagram, the
involved genes are listed on the left. The genes associated ten significant signaling pathways. (D). Heatmap by GSVA analysis between high and low
IRGRS group.The upper barplot showed the IRGRS defined subgroups (high-IRGRS and low-IRGRS) and the origin of dataset (TCGA and IMvigor210).
The rows of the heatmap showed the activation of corresponding pathways.
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samples. However, there was no significant difference in IRGRS

levels between RB1-mutated samples and wild-type samples. We

evaluated the survival prediction ability of IRGRS in TCGA-

BLCA datasets by using time-dependent ROC analysis. We

found that the AUCs for the IRGRS were 0.66, 0.71, and

0.69 at 1, 3 and 5 years, respectively (Figure 6F).

The benefit of immunotherapy in different
IRGRS subgroups

We then explored the potential clinical efficacy of IRGRS in

predicting the effect of immunotherapy based on the

IMvigor210 dataset. All samples were classified into immune-

desert, immune-excluded and immune-inflamed phenotypes.

The immune-desert phenotype was characterized by the

suppression of immunity. The immune-excluded phenotype

was characterized by innate immune cell infiltration and

stromal activation. The immune-inflamed phenotype was

characterized by adaptive immune cell infiltration and

immune activation. In our results, the immune-excluded

phenotype had a higher IRGRS than those of the other two

subgroups, implying that high-IRGRS patients could benefit less

from immunotherapy than low-IRGRS patients (Figure 7A).

Then, we evaluated whether the IRGRS could predict patients’

response to immune checkpoint blockade therapy based on

IMvigor210 cohorts. Survival analysis (Figure 7B) showed that

high-IRGRS patients had worse OS than low-IRGRS patients,

which was consistent with the results of the training datasets. We

included Ba/Sq, LumNS, LumP, LumU four subgroups into our

survival analysis. Patients with a low IRGRS exhibited a greater

clinical response to anti-PD-1/L1 immunotherapy than those

with a high IRGRS (Figure 7C). We could find from Figure 7D

that there were more Ba/Sq samples and fewer Lump samples in

the high-IRGRS subgroup than in the low-IRGRS subgroup (p <
0.001, x2 test). The result of which was consistent with training

dataset from TCGA +GSE48075. Given that the immune cell(IC)

level, tumor cell(TC) level, immune phenotype, consensus

subtype had been shown to be highly predictive of the

response to immune therapy (Tsao et al., 2018; Kamoun et al.,

2020; Hornburg et al., 2021), we speculated that they might

function as synergistic factors in predicting the response to

immunotherapy. Therefore, a nomogram was developed to

include all factors above to offer a quantitative approach for

predicting the effect of immunotherapy. The nomogram was

constructed in the IMvigor210 cohort and the corresponding

FIGURE 5
Difference in tumor infiltrated immune cells between high and low IRGRS groups. (A). high score pathways enriched by GSEA analysis between
high and low IRGRS groups. (B). low score pathways enriched byGSEA analysis between high and low IRGRS groups. (C–F). different kinds of T cells in
tumor environment expressed diffrently between high and low IRGRS groups. (G). tumor infiltrated immune cells analysed by ssGSEA analysis
between high and low IRGRS groups. (H). KEGG analysis of DEGs between high and low IRGRS groups.
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calibration curve was constructed (Figure 7E). To find a

relationship between IRGRS and bladder cancer immune

landscape, we portray the IRGRS-defined subgroups to

contrast the IRGRS-defined subgroups with IC, TC and

immunotherapy responsein (Figure 7F). Consistent with the

importance of TMB, we observed that the low-IRGRS subtype

was significantly enriched for response of immunotherapy.

Discussion

Increasing evidence suggests that the tumour immune

microenvironment plays an important role in innate

immunity as well as antitumour effects through

interactions between immune cells and tumour cells

(Binnewies et al., 2018). Based on the mechanism of

immune evasion, immunotherapy has proven to be

effective for patients unsuitable or recurrent after

cisplatin-based treatment. However, only a few patients

can benefit from immunotherapy (Ott et al., 2020).

Biomarkers including PD-1 expression, PD-L1 expression,

tumour mutation burden and MSI status are not efficient for

predicting the benefits of immune checkpoint blockade

(Subrahmanyam et al., 2018; Ganesh et al., 2019; Jardim

et al., 2021). In addition, the clinical prognosis heterogeneity

of BLCA reveals that immune-relevant subtypes may exist

between BLCA samples in the same clinical stage. This

situation highlights the urgent need to develop a robust

biomarker and subgroup analysis for guiding

immunotherapy in BLCA.

In our study, based on 22 tumour-infiltrated immune cell

lines, we identified four distinct tumour microenvironment

patterns. These four patterns had significantly different

tumour-related immune cell characteristics. Cluster A was

characterized by a low expression level of CD8+ T cells and a

high level of resting memory CD4+ T cells. In contrast, cluster B

displayed more CD8+ T cells and less resting memory CD4+

T cells. Cluster C showed a higher resting mast cell quantity than

those of the other clusters. Cluster D was characterized by a high

level of M0 macrophages. Each TME cluster showed unique

features with respect to the tumour-infiltrated immune

microenvironment. In many previous studies, only the results

from the transcriptome profile and enriched pathways associated

with immunity were considered. However, in our study, to

identify the underlying mechanism and hub genes connected

with the TME clusters, we conducted several computational

algorithms to construct an IRGRS system. The IRGRS is

proven to be a robust biomarker for guiding the

immunotherapy of bladder cancer, with better survival in low-

IRGRS patients and worse survival in high-IRGRS patients in

both training and validation cohorts.

The IRGRS consists of three genes: EGFR, OAS1, and

MST1R. Epidermal growth factor receptor (EGFR) is widely

recognized because it is of great importance in many kinds of

FIGURE 6
Relationship between molecular classification and IRGRS (A). Heatmap and table showing the distribution of bladder cancer consensus
molecular subtypes between the IRGRS and subgroups in TCGA dataset. (B). Five bladder cancermolecular subtypes and their corresponding IRGRS.
(C). Comparison of IRGRS between the FGFR3 mutated groups and FGFR3 wild type groups.M =mutated, WT = wild type. (D). Comparison of IRGRS
between the TP53 mutated groups and TP53 wild type groups. (E) Comparison of IRGRS between the RB1 mutated groups and RB1 wild type
groups. (F). Time dependent ROC curve analysis of survival prediction by the IRGRS.
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cancers (Ganesh et al., 2019; Zeng et al., 2020). Mutations and

amplification in its exon region have been identified to be driving

events in many cancer types. The protein encoded by EGFR is a

receptor for members of the epidermal growth factor family.

Many research and drug development efforts have been

prompted by its role in non-small-cell lung cancer (Harrison

et al., 2020), basal-like breast cancers (Gonzalez-Conchas et al.,

2018) and glioblastoma (Eskilsson et al., 2018). Tyrosine kinase

inhibitors such as gefitinib and erlotinib have shown efficacy in

tumours with EGFR exon amplification. However, some studies

revealed that patients diagnosed with EGFR-mutated non-small-

cell lung cancer could draw limited benefit from immunotherapy

(Proto et al., 2019). These results suggest that the EGFR gene is a

vital factor influencing whether immunotherapy can exert a

positive effect in patients. In addition, EGFR has been

identified as an oncogenetic mechanism in the basal/

squamous (Ba/Sq) subtype among the six molecular

classification subtypes (Kamoun et al., 2020). Oligodenylated

synthase 1 (OAS1) is a protein encoded by OAS1 that results in

RNA degradation and the inhibition of viral replication; it has

been included in several prognostic signatures and has been

found to be a robust biomarker to predict the effect of

immunotherapy (Luo et al., 2020; Jin et al., 2021).

Macrophage stimulating 1 receptor (MST1R) is a gene that

encodes a cell surface receptor for macrophage-stimulating

protein with tyrosine kinase activity. Studies have found that

suppression of MST1R expression results in reduced pancreatic

tumour size, changes in macrophage polarization and enhanced

T-cell infiltration (Braun et al., 2018; Tan et al., 2019).

Then, we studied the gene mutations of different IRGRS

subgroups to uncover the underlying immunologic

mechanism. The most common gene mutations in both the

high-IRGRS and low-IRGRS samples were missense

variations. However, for some other mutation types, such

as nonsense mutations and frameshift mutations, there was

quite a difference between the different IRGRS groups.

TP53 mutation was the most differentially expressed gene

in the top 20 mutated genes between high-IRGRS and low-

IRGRS samples. TP53 mutation is one the most common

mutation types in many kinds of cancer and can lead to poor

FIGURE 7
The role of IRGRS in predicting the effect of immunotherapy of bladder cancer. (A). Comparison of the IRGRS of different immune phenotype in
bladder cancer. (B). Survival analysis of immunotherapy gene set in diferent IRGRS groups (high-IRGRS and low-IRGRS). (C). The proportions of
clinical response (CR/PR, SD/PD) after accepting immunotherapy in the high-IRGRS and low-IRGRS groups in IMgivor210 dataset (D). Heatmap and
table showing the distribution of bladder cancer consensus molecular subtypes between the IRGRS and subgroups in IMgivor210 dataset. (E)
Nomogram and corresponding calibration curve for predicting survival probability in the validation cohort. (F). Heatmap representing evaluated
patients first sorted based on a IRGRS-based subtyping scheme, Immune cell and tumour cell PD-L1 status are given. Then by response to
atezolizumab. In addition, TMB andmutation status (black, mutated; grey, patients without mutation data) for a few genes of interest are shown. The
rows of the heatmap show expression (Z scores) of genes of interest, grouped into the biologies or pathways.
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outcomes (Vousden and Prives, 2005; Olivier et al., 2006).

TP53 can regulate the p53/TGFβ signalling pathway, which

has an influence on tumour cell proliferation by the cell cycle.

In addition, there was a higher rate of RB1 mutation in the

high-IRGRS subgroup than in the low-IRGRS

subgroup. RB1 was the first tumour suppressor gene found,

and the protein encoded by RB1 is a negative regulator of the

cell cycle. Therefore, high-IRGRS patients with high TP53 and

RB1 mutation burdens have a worse outcome than low-IRGRS

patients with low TP53 and RB1 mutation burdens, in

agreement with our survival results. GO, GSVA, and GSEA

analyses between the high and low IRGRS groups suggest that

apart from activated immune-related pathways, there are also

many other mechanisms in the tumour immune

microenvironment.

Several molecular classifications have been reported in the

development of a more precise patient stratification (Choi et al.,

2014; Robertson et al., 2018; Tan et al., 2019). However, even the

consensus classification system of subtypes has not translated

universally into clinical trials or clinical applications (Kamoun

et al., 2020). Thus, we analysed the association between the

IRGRS and the consensus classification system (LumP, LumU,

stroma-rich, LumNS, and Ba/Sq). Each consensus class has

distinct differentiation patterns, oncogenic mechanisms,

tumour microenvironments, and histological and clinical

associations.For example, the tumor driving mechanism of the

Lump subtype is mainly related to the overexpression of FGFR3,

and the Ba/Sq subtype is mainly related to the overexpression of

EGFR.In addition, the mutation spectrum of different molecular

subtypes is also different. For example, the mutation rate of the

RB1 gene in the Ba/Sq subtype is significantly higher than that of

other subtypes, and the KDM6A gene has the highest mutation

rate in the Lump subtype. We found that more than half of the

high-IRGRS samples were distributed in the Ba/Sq classification,

and nearly half of the low-IRGRS samples were enriched in the

LumP classification. The Ba/Sq subtype was identified to be more

sensitive to immunotherapy than the other subtypes (Kamoun

et al., 2020), which was consistent with our results.

FGFR3 mutation has been recognized as one of the oncogenic

mechanisms in the development of the LumP subtype of MIBC

(Robertson et al., 2017). We also revealed that the IRGRS

correlated with FGFR3 mutation in our study. FGFR3-targeted

therapy may be an encouraging choice for low-IRGRS tumours,

especially in the LumP subtype of MIBC. Molecular classification

of bladder cancer showed tumour biological heterogeneity, which

could provide an innovative approach to improving therapeutic

effectiveness. When we combined the IRGRS with a molecular

classification system, we could classify MIBC subgroups and

guide personalized antitumour therapies more precisely.

Prospective clinical trials need to be performed to certify the

therapy-related predictive value of the IRGRS, and certain

therapies need more investigation through in vitro or in vivo

experiments.

Then, we confirmed the effect of the IRGRS in predicting

the efficacy of immunotherapy based on the

IMvigor210 dataset. We found different immune

microenvironment-related cells between the high and low

IRGRS groups, which might partly explain the different

responses to immunotherapy between the two groups.

Integration with 3 immune-related subtypes (immune

desert, immune exclusion, and immune inflamed) allowed

IRGRS grouping to distinguish different immune subtypes of

BLCA. Unfortunately, there were no significant differences

between the immune-desert and immune-excluded groups,

which may be because the number of samples in the

IMvigor210 dataset was not large enough. It has been

recognized that the effective rate of immunotherapy for

PD-L1 positive bladder cancer patients is only about 20%,

which suggests the limitation of PD-L1 as an indicator. While

in patients with low IRGRS, the effectiveness of

immunotherapy can reach 32%. This further demonstrates

the superiority of the IRGRS. More importantly, our study

has developed several new insights for bladder cancer

immunotherapy that target the IRGRS phenotype and

immune phenotype. By combining the IRGRS and

molecular classification, we might select patients who are

suitable for immunotherapy more accurately. Further

reversing the adverse TME cell infiltration may contribute

to exploiting the development of novel drug combination

strategies or novel immunotherapeutic agents in the future.

Moreover, the patients in the high-IRGRS group had a

shorter follow-up time than those in the low-IRGRS

group. Several limitations of this study should be

considered. First, Recent studies suggested that OICR-

9429 and HSF1 played important roles in regulating the

tumor microenvironment of bladder cancer. They

conducted in-depth study about how the two genes work

(Zhang et al., 2021b; Huang et al., 2022). Although we have

reviewed the roles of the three genes that construct IRGRS in

tumors, the underlying molecular mechanisms require

further exploration of in vivo and in vitro functional

experiments. Second, our study is a bioinformatics

analysis based on public databases and lacks validation of

independent clinical cohorts.

Conclusion

By applying a series of bioinformatics methods, we

constructed IRGRS that could accurately predict the effect

of immunotherapy and prognosis in bladder cancer. In

addition, when we conbined IRGRS with bladder cancer

consensus classification system, we could improve the

robustness of prediction. However, further prospective

clinical studies are needed to verify the absoluteness of

our conclusion.
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