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Background: N6-methyladenosine (m6A) mRNA modification triggers

malignant behavior in tumor cells, which promotes malignant progression

and migration of gastric cancer (GC). Nevertheless, studies on the

prognostic value of m6A-related long non-coding RNA (MRlncRNA) in GC

remain quite restricted. The study aimed to develop a reasonable predictive

model to explore the prognostic potential of MRlncRNAs in predicting the

prognosis of GC patients and monitoring the efficacy of immunotherapy.

Methods: Transcriptomic and clinical data for GC were derived from TCGA.

Next, univariate Cox, LASSO andmultivariate Cox regression analyses were next

used to identify prognostic MRlncRNAs, calculate risk scores and build risk

assessment models. The predictive power of the risk models was then validated

by Kaplan-Meier analysis, ROC curves, DCA, C-index, and nomogram. We

attempted to effectively differentiate between groups in terms of immune

cell infiltration status, ICI-related genes, immunotherapy responses, and

common anti-tumor drug sensitivity.

Results: A risk model based on 11 MRlncRNAs was developed with an AUC of

0.850, and the sensitivity and specificity of this model in predicting survival

probability is satisfactory. The Kaplan-Meier analysis revealed that the low-risk

group in the model had a significantly higher survival rate, and the model was

highly associated with survival status, clinical features, and clinical stage.

Furthermore, the model was verified to be an independent prognostic risk

factor, and the low-risk group in the model had a remarkable positive

correlation with a variety of immune cell infiltrates. The expression levels of

ICI-related genes differed significantly between the different groups. Lastly,

immunotherapy responses and common anti-tumor drug sensitivity also

differed significantly between different groups.

Conclusion: The risk model on the basis of 11-MRlncRNAs can serve as

independent predictors of GC prognosis and may be useful in developing

personalized treatment strategies for patients.
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1 Introduction

Gastric cancer (GC) is the third leading cause of cancer-

related mortality and the fifth most lethal tumor, with an

incidence that widely varies across regions, i.e., >70% in

developing countries, mainly in East Asia (Smyth et al., 2020;

Sung et al., 2021). Just after lung cancer, GC is the second-largest

malignancy in China in terms of morbidity and mortality (Chen

et al., 2016). Current treatments that have been shown to be

effective in gastric adenocarcinoma include systemic

chemotherapy, radiotherapy, surgery, immunotherapy, and

targeted therapy. However, significant therapeutic strategies

are still needed for the less differentiated histologic subtypes

of gastric adenocarcinoma (Sitarz et al., 2018; Joshi and Badgwell,

2021). In addition, because of genetic heterogeneity and the

absence of novel treatment methods, the prognosis of patients

with GC remains dissatisfactory (Yue et al., 2022). Therefore,

appropriate therapies should be developed to forecast the survival

probability (SP) of GC patients, better detect tumor growth, and

enhance treatment results.

N6-methyladenosine (m6A), the most frequent modification

of mRNA in eukaryotes, regulates practically all RNA cycle

phases, including transcription, maturation, translation,

degradation, and mRNA stability (An and Duan, 2022). The

control of pathological and physiological processes, including

cancer, can be influenced by m6A RNA methylation. Numerous

research conducted in recent years has revealed that m6A plays a

significant role in the regulation of tumors, which further

controls the emergence and growth of tumors through

manipulating tumor metabolism. Chen et al. (2020) reported

that ALKBH5-mediated m6A modification of PVT1 facilitates

osteosarcoma tumorigenesis, indicating that ALKBH5 and

PVT1 could be potential therapeutic targets for osteosarcoma

treatment. In other research, it was discovered that the TME and

expressions of crucial immunological checkpoints in

hepatocellular carcinoma and lung adenocarcinoma had

strong connections with m6A-related long non-coding RNAs

(MRlncRNA) profiles (Li L. et al., 2021b; Xu et al., 2021).

However, further investigation of MRlncRNA signatures in

GC patients is still needed.

LncRNAs refer to a class of endogenous cellular RNAs that

are longer than 200bp and are encoded by the mammalian

genome but are unable to create proteins due to the absence

of an open reading frame (Yu et al., 2018). LncRNAs exhibit a

variety of powerful capabilities in the tumor microenvironment,

including tumorigenesis, tumor metastasis, and the development

of associated immune diseases (Wu et al., 2020). Several

combination therapies, including immunotherapy in

combination with chemotherapy, surgery in combination with

chemotherapy, and even drug combination therapies, have

achieved significant clinical efficacy and progress (Marmarelis

and Aggarwal, 2018). Therefore, it is compelling to consider

combining targeted lncRNA and immunotherapy for cancer

treatment.

The goal of this work was to create a MRlncRNA-based GC

prognostic risk model that can predict the prognosis of the

disease and the effectiveness of immunotherapy. We also

hoped to gain new knowledge about the function of

MRlncRNAs in GC prognosis and immunotherapy efficacy

prediction.

2 Materials and methods

2.1 Data sources

The stomach cancer dataset and the matching clinical

information were downloaded from TCGA (https://tcga-data.

nci.nih.gov/tcga). The expression profiles of mRNAs and

lncRNAs were extracted by adding annotations based on the

Ensembl database (http://asia.ensembl.org). Based on previous

literature and databases, we eventually acquired 23 MRGs

(MRGs) (Supplementary Table S1) (Wu, 2022; Zheng et al.,

2022).

2.2 Acquisition of MRlncRNAs and
construction of risk model

In this part, MRlncRNAs were recognized applying the

Pearson correlation analysis (|Pearson R| >0.4 and p < 0.001).

The entire TCGA set was randomly assigned into a training

set and a testing set (ratio, 0.7: 0.3; sample, 224: 94). The

specific clinical characteristics of the training and testing sets

are shown in Supplementary Table S5. There was no

significant difference between the clinical characteristics of

the two sets (p > 0.05). Next, univariate Cox analysis was

employed to recognize prognostic MRlncRNAs (p < 0.05),

LASSO analysis was applied to distinguish candidate

MRlncRNAs, and a risk model was developed by utilizing

multivariate Cox analysis.

2.3 Verification of prognostic risk model

To verify the prognostic capability of the constructed model,

we calculated the risk score for each GC patient using a formula:

∑k
i�1βiSi , and the samples were categorized as high-or low-risk
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cohorts based on the median risk score. The Kaplan-Meier

technique was utilized to evaluate the ability of this prognostic

model to discriminate the survival differences between low-and

high-risk groups. The prediction accuracy of the signature for

survival in comparison to the conventional clinical

characteristics and the known models was estimated by using

the time-dependent receiver operating characteristic (ROC)

curves and the area under the curve (AUC). On the basis of

subgroups divided by clinicopathological traits, we also examined

the survival disparities between various groups. Then, univariate

and multivariate Cox analyses were conducted in order to verify

the model as an independent predictor of prognosis. To evaluate

the precision of the signature in comparison to the traditional

clinical features, we also adapt decision curve analysis (DCA) and

the consistency index (C-index). A nomogram combining the

model and clinical features was developed to predict the 1-, 3-,

and 5-year SP of patients.

2.4 Evaluation of the tumor immune
microenvironment landscape

We further investigated the landscape of the tumor

immune microenvironment and enrichment level in GC.

FIGURE 1
Process of MRlncRNAs identification. (A) Sankey relational diagram for all MRlncRNAs and the 23 MRGs. (B) The correlations between 23 MRGs
and the 11 prognostic MRlncRNAs.
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FIGURE 2
Development of risk model. (A) The LASSO coefficient profile. (B) Coefficient profile plot. (C) Multivariate Cox regression analysis showed
12 prognostic lncRNAs. (D) Kaplan-Meier curves of the SP in different risk groups. (E) ROC curves to predict the sensitivity of 1-, 3-, and 5-year
survival. (F) ROC curves to predict the sensitivity of the risk grade and other clinicopathological characteristics.
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FIGURE 3
Kaplan-Meier curves of SP and PCA between two groups. (A) Kaplan-Meier curves of SP differences stratified by age, gender, clinical stage, or T
stage between different risk groups. (B,C) Univariate and multifactorial Cox analyses showed that risk score is a risk factor for individual prognosis.
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Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses were carried out

to evaluate the potential molecular mechanisms of the risk

model. For immune infiltration calculations, we implemented

the TIMER, XCELL, QUANTISEQ, MCP-COUNTER, EPIC,

CIBERSORT-ABS, and CIBERSORT algorithms. This allowed

us to compare immune cell subpopulations across patients

with low-and high-risk. Then, investigating differences in

immune function between various groups was performed

by using single-sample Gene Set Enrichment Analysis

FIGURE 4
Construction of a nomogram. (A,B) The results of the C-index and DCA indicated that the model better predicted the prognosis of GC than
other traditional clinical characteristics. (C) The nomogram was constructed according to the risk assessment model and clinical features.
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(ssGSEA). Using the Wilcoxon signed rank test, the

expression of immune checkpoint inhibitors (ICIs)-

associated molecules in different groups was explored. The

amount and quality of gene mutations among various

populations were determined using a gene mutation

analysis. To predict variations in immunotherapeutic

responses among different groups, the tumor mutational

burden (TMB) and tumor immune dysfunction and

exclusion (TIDE) were calculated as well.

2.5 Identification of potential compounds

To evaluate therapy response and explore common anti-

tumor drugs for GC treatment in the clinic, we used the R

package pRRophetic to calculate the half inhibitory

concentration (IC50) of drugs and make comparisons in the

IC50 between different groups.

2.6 Cell culture

Human gastric mucosal epithelial cells GES-1 was

purchased from the Beijing Institute of Cancer Research

(Beijing, China) and cultured in RPMI 1640 medium

containing 10% fetal bovine serum (FBS, Clark Bioscience,

Claymont, United States). Human gastric adenocarcinomic

AGS cell line was purchased from the National Collection of

Authenticated Cell Cultures (Beijing, China) and cultured in

Ham’s F-12K (Kaighn’s, Thermo Fisher Scientific, Waltham,

MA, United States) medium containing 10% FBS. Human

gastric cancer MKN45 cells were purchased from the

Beyotime Biotechnology (Nangtong, China) and cultured in

RPMI 1640 with 10% FBS. All the cells were cultured at 37°C in

a 5% CO2 humidified incubator.

2.7 Quantitative real-time PCR analysis

Total RNAwas extracted fromGES-1, AGS andMKN45 cells

using a total RNA extraction kit. Next, 1 μg of total RNA was

reverse transcribed into cDNA with the iScript cDNA synthesis

kit. A Bio-Rad CFX96 system was used to perform quantitative

real-time PCR (qPCR) analysis, and the relative mRNA levels

were calculated using the 2−ΔΔCt method using GAPDH for

normalization. The primer sequences to amplify the genes

encoding LASTR, AC008808.1, AC027601.5, AC025766.1,

LINC00454 and AL139147.1, and GAPDH are listed in

Supplementary Table S10.

3 Results

3.1 Identification of NRlncRNAs

According to co-expression analysis, 979 MRlncRNAs

were recognized (cor > 0.4 and p < 0.001) (Supplementary

Table S2). Finally, the m6A-lncRNA co-expression network

was visualized by using the Sankey diagram in Figure 1A.

11 lncRNAs were selected for the prognostic risk model and,

the correlation between MRGs and MRlncRNAs is presented

in Figure 1B.

FIGURE 5
Potential functional and pathways in the model. (A) GO enrichment analysis. (B) KEGG enrichment analysis.
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3.2 Construction and verification of the
risk model

We screened 25 prognostic MRlncRNAs from

979 MRlncRNAs through univariate Cox regression analysis

(Supplementary Figure S1A and Supplementary Table S3).

Out of 25 prognostic MRlncRNAs, 17 potential MRlncRNAs

were chosen by applying the LASSO analysis (Figures 2A,B).

Finally, the multivariate Cox analysis was used to create a

prognostic risk model that included 11 MRlncRNAs

(Figure 2C and Supplementary Table S4). Based on median

risk scores, GC patients were categorized into low-risk and

FIGURE 6
Assessment of the immune landscape. (A) Changes in immune cell infiltration that are identified by the MRlncRNA-based risk model are linked
to an increased chance of developing GC. (B) Several immune functions were statistically different between the two groups.
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FIGURE 7
Evaluation of cancer immunotherapy response. (A,B) More genes were mutated in the high-risk group. (C,D) Comparation of the
immunotherapy response of the different-risk group to predict TIDE and TMB. (E,F) The SP of patients in different subgroups.
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FIGURE 8
Identification of commonly used anti-tumor drugs targeting the model.
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high-risk groups. The survival analysis of these two groups

suggested that the SP of the low-risk group was higher (p <
0.001) (Figure 2D). The 1-year, 3-year, and 5-year survival rates

of GC patients are predicted by adopting this risk model, and the

prediction accuracy rates are displayed in Figure 2E. The model

also demonstrated a higher AUC than other clinicopathological

characteristics such as age, gender, grade, and stage, indicating

that it was comparably reliable (Figure 2F).

3.3 Assessment of the risk assessment
model and clinical characteristics

The survival prediction and ROC curves of the testing and

entire sets were shown in Supplementary Figures S1B–E,

indicating the prediction accuracy of this risk model is

satisfactory. In the subgroups separated by age (≤65 or >65),
gender (female or male), clinical stage (G1-2 or G3, stage Ⅰ-Ⅱ or

stage Ⅲ-Ⅳ), or TNM stage (T1-2 or T3-4, N0 or N1-3, M0 or

M1), the SP was higher in the low-risk group, which indicated

that the constructed model was appropriate for various

circumstances (Figure 3A). Univariate and multivariate Cox

analyses were implemented to evaluate whether this

11 MRlncRNAs risk model had independent prognostic

features for GC patients. The hazard ratio of the risk score

and the 95% confidence interval were 1.140 and 1.102–1.179

(p < 0.001) in univariate Cox regression analysis, respectively

(Figure 3B). According to multivariate Cox regression analysis,

the hazard ratio was 1.143 and the 95% confidence interval was

1.104–1.183 (p < 0.001) (Figure 3C), indicating that the risk

model of the 11 MRlncRNAs was independent and had nothing

to do with clinicopathological features including age, gender,

clinical stage, T stage, and risk scores (Supplementary Table S6).

To evaluate the precision of the signature in comparison to

the traditional clinical features, we also adopted the C-index and

DCA, demonstrating that the signature has a greater ability to

forecast the prognosis of GC than other clinical features (Figures

4A,B). We combined this risk model with clinicopathologic

characteristics and evaluated patients’ total risk scores

according to them to build a nomogram to predict 1-year, 3-

year, and 5-year survival rates of GC patients (Figure 4C).

3.4 Estimation of the immune landscape

To explore the potential functional and pathway differences

in different risk groups, we identified 347 differentially expressed

genes in high-and low-risk groups for GO and KEGG

enrichment analysis. The results of GO and KEGG

enrichment analysis are presented in Figures 5A,B, and their

details are shown in the Supplementary Tables S7, S8. By

examining potential connections between immune cell sub-

FIGURE 9
The mRNA levels of LASTR, LINC00454, and AL139147.1 were increased in AGS and MKN45 cells, whereas the mRNA levels of AC008808.1,
AC027601.5, and AC025766.1 were decreased in AGS and MKN45 cells.
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populations and GC risk, we explored whether the prognostic

MRlncRNA pairings included in the risk model were connected

to activities in the tumor immune milieu. We found a statistically

significant association between changes in the immune cell

landscape and elevated GC risk (Figure 6A and

Supplementary Table S9). Statistical differences were found in

some immune functions, including parainflammation, response

to type II interferon, CCR, and APC stimulation (Figure 6B).

3.5 Evaluation of cancer immunotherapy
response and drug sensitivity

As is shown in Figures 7A,B, ZFHX4, HMCN1, LAMA1,

RNF43, AHNAK2, RELN, COL11A1, PLXNA4, TENM3, and

NRXN3 were the top 10 most mutated genes for differentially

expressed genes between high-and low-risk groups. ZFHX4,

LAMA1, and RNF43 mutations were much more high in

patients in the low-risk group than in those in the high-risk

group, but the exact reverse was seen for the HMCN1 mutation

levels. The relationship between the MRlncRNAs model and

immunotherapeutic biomarkers was then examined. As expected,

we observed a significantly greater response to immunotherapy in

the high-risk group than in the low-risk group, indicating that our

m6A-based classifier score can be applied for TIDE and TMB

prediction (Figures 7C,D). Next, based on TMB, we categorized

all samples in the high-and low-risk groups into two subgroups:

high-TMB and low-TMB, respectively. The patients with low TMB

after immunotherapy had a higher SP (Figure 7E). Then, we

predicted the SP of patients with different TMB subgroups in the

two risk groups separately and found that patients with low TMB in

the low-risk group had the highest probability of survival

(Figure 7F). This implies that we can select appropriate

immunotherapeutic agents for GC patients according to their

risk patterns. In drug susceptibility analysis, statistical differences

were found in the IC50 among the 24 chemical or targeted drugs

used for GC treatment in the different groups (Figure 8).

3.6 Quantitative real-time PCR analysis

The qPCR results showed that the mRNA levels of LASTR,

LINC00454 and AL139147.1 were increased in AGS and

MKN45 cells, whereas the mRNA levels of AC008808.1,

AC027601.5 and AC025766.1 were decreased in AGS and

MKN45 cells, which further validates the prognostic risk

model we have constructed (Figure 9).

4 Discussion

GC is the third most common cause of cancer-related death

and the fifth most deadly malignancy, and the prognosis of GC

patients remains unsatisfactory (Sexton et al., 2020). It is crucial

to create innovative methods to raise the survival rate of this

illness due to the dismal prognosis of patients with late-stage GC

(Johnston and Beckman, 2019). Immunotherapy is currently

regarded as a cutting-edge treatment option for diseases like

breast, stomach, and lung cancer. In addition, lncRNAs have

been demonstrated to have a significant role in the regulation of

gene expression in various malignancies, including GC (Denaro

et al., 2019). Therefore, we created a prognostic model based on

MRlncRNAs in GC to predict the prognosis of GC patients,

explore TME and cancer immunotherapy responses, and add

fresh ideas to the clinical treatment of GC.

In our study, we identified 979 MRlncRNAs from the TCGA

to discuss the prognostic function of MRlncRNAs. We identified

000 prognostic MRlncRNAs and a risk model to predict SP in GC

patients was built based on 11 MRlncRNAs: AC099343.2,

REPIN1. AS1, LASTR, AC008808.1, AC027601.5, AC025766.1,

AP001271.1, LINC00454, AL139147.1, AC015813.1, and

LINC00412. Of these, AC099343.2 was identified as an

autophagy-related lncRNA signature for potential prognostic

biomarkers of patients with cervical cancer (Feng et al., 2021);

REPIN1. AS1 and LASTR were developed to improve the

prognosis prediction of stomach adenocarcinoma patients

(Luo et al., 2022). In another study, AP001271.1 and three

other lncRNAs were selected to construct a risk model for

predicting prognosis for GC patients (Wei et al., 2021).

Furthermore, other lncRNAs were found for the first time in

this study.

Then, patients were grouped into low- and high-risk groups

according to median risk score, and some analyses were made,

including Kaplan-Meier analysis, univariate and multivariate

Cox analyses. We found that the MRlncRNAs risk model was

an independent risk factor of SP. Through ROC analysis, we also

discovered that the model was more accurate than conventional

clinical features in predicting GC survival. Finally, according to a

nomogram developed to make predictions in SP of GC patients,

we found that the predicted and measured values for the SPs are

highly consistent. On the basis of the above analysis, this risk

model based on 11 MRlncRNAs that were independently related

to SP was pretty accurate.

TMB, which stands for total number of somatic coding

mutations, has gained much attention as a new predictive

biomarker that is closely related to the development of

neoantigens that trigger anti-tumor response (Allgäuer

et al., 2018; Addeo et al., 2021). The context of TMB

identified at diagnosis represents the immune response and

chemotherapy benefit, and variations in the numbers of CD8+

T cells, CD4+ T cells, macrophages, and cancer-associated

fibroblasts infiltrating in the TME correlate with clinical

outcomes in a variety of malignancies, including GC,

melanoma, urothelial cancer, lung cancer, and breast cancer

(Zeng et al., 2019; DeBerardinis, 2020). In our study, we

discovered that the TMB of the low-risk group was higher
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than that of the high-risk group. Furthermore, the TIDE

prediction score has also been deployed in numerous

investigations, and its ability to predict prognosis has been

successfully established (Jiang P. et al., 2018a; Chen et al.,

2022). In our study, the TIDE algorithm predicted a more

favourable response to immunotherapy in individuals with

high-risk subtypes. Based on the aforementioned results, we

draw the conclusion that our prediction model could deliver

precise immunological biomarkers for oncology. What’s

more, the conclusions of our study provide information on

the molecular biology of lncRNAs that are connected to m6A

in GC. In this study, the TIDE algorithm predicted that

immunotherapy is more effective for patients with the

high-risk subtype. We come to the conclusion that our

prediction model could provide accurate immunological

indicators for oncotherapy based on the aforementioned

findings. Additionally, the molecular biological mechanisms

of MRlncRNAs in GC are also newly revealed by this work.

In general, TNM stage is the most important determinant of

GC prognosis in clinical practice (Jiang Y. et al., 2018b).

However, due to tumor heterogeneity, even patients with

similar TNM staging exhibit widely varying prognoses (Li K.

et al., 2021a). It suggests that extant periodization algorithms are

deficient in capturing GC heterogeneity and accurately

predicting prognosis in GC patients. Therefore, more research

remains to be carried out in investigating potential predictive and

therapeutic biomarkers. The study suggests that MRlncRNA

models may provide a new tool for GC prognosis prediction.

This study used several analytical methods to validate this new

model so that we could select the optimal model and apply it in a

rational way. We hypothesized that the predictive model would

still be feasible without external data validation. However, we are

aware that there are flaws and limitations in this study. As the

molecular mechanism of MRlncRNAs is not fully understood, it

would be sensible to validate this with more convincing basic

experiments. And the sample size needs to be expanded in future

studies to increase the confidence. Furthermore, we will

investigate the role of MRlncRNAs and their interactions with

MRGs through in vitro experiments, seeking to assess the

accuracy of the model in future studies and provide new ideas

for clinical treatment.

5 Conclusion

In summary, this study reveals that the processes and

mechanisms of MRlncRNAs are based on a novel prognostic

model that provides new insights into GC prognosis prediction

and clinical treatment. Furthermore, the model we developed was

accurate and effective in predicting GC prognosis and showed

sensitivity in identifying GC patients who responded well to

immunotherapy.
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