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Background: Lung adenocarcinoma (LUAD) is a life-threatening malignant

tumor, contributing for the largest cancer burden worldwide. Tumor

microenvironment (TME) is composed of various immune cells, stromal cells

and tumor cells, which is highly associated with the cancer prognosis and the

response to immunotherapy, in which macrophages in TME have been

revealing a potential target for cancer treatment. In this study, we sought to

further explore the role of macrophages in LUAD progression and establish a

risk model related to macrophages for LUAD.

Methods: We explored immune-related pathways that might be affected by

counting positively associated genes in macrophages. Molecular typing was

also constructed by mining macrophage-associated genes with prognostic

value through COX regression and other analyses. RiskScore prognosticmodels

were constructed using lasso regression and stepwise multifactorial regression

analysis. The differences on clinical characteristics among three subtypes (C1,

C2, and C3) and RiskScore subtypes were analyzed in TCGA dataset.

Immunological algorithms such as TIMER, ssGSEA, MCP-Counter, ESTIMATE,

and TIDE were used to calculate the level of difference in immune infiltration

between the different subtypes. The TCGA mutation dataset processed by

mutect2 was used to demonstrate the frequency of mutations between

different molecular subtypes. Finally, nomograms, calibration curves, and

decision curves were created to assess the predictive accuracy and reliability

of the model.

Results: The C1 subtype demonstrated the best prognostic outcome,

accompanied by higher levels of immune infiltration and lower mutation

frequency, while the majority of patients in the C1 subtype were women

under 65 years of age. Myeloid-derived suppressor cell (MDSC) scores were

higher in the C3 subtype, suggesting amore severe immune escape, whichmay

have contributed to the tumor evading the immune system resulting in a poorer
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prognosis for patients. In addition, our RiskScore prognostic model had good

predictive accuracy and reliability.

Conclusion: This paper provides a study of macrophage-related pathways,

immunosuppression, and their mechanisms of action in lung cancer, along with

targets for future treatment to guide the optimal treatment of lung cancer.

KEYWORDS

macrophages, lung adenocarcinoma, tumor microenvironment, prognostic model,
molecular subtypes

Introduction

The incidence of lung cancer is currently on the rise

worldwide, and as demonstrated by the latest epidemiological

surveys, lung cancer is the most prevalent malignancy among

men and its incidence is second only to breast cancer among

women. However, it is still the most prevalent cause of cancer-

related fatalities (Sung et al., 2021) as it accounts for more than

25% of all cancer-related deaths and is one of the most aggressive

tumors (Siegel et al., 2020). Lung cancer is divided into two

groups, distinguished by histological characteristics: small cell

lung cancer, which makes up 15% of cases, and non-small cell

lung cancer, which makes up 85% of all lung cancer cases (Sher

et al., 2008). Non-small cell lung cancer comprises

adenocarcinoma of the lung, squamous lung cancer, and large

cell carcinoma, with adenocarcinoma of the lung being the

predominant type, accounting for approximately 40%

(Samson et al., 2007). Unfortunately, for the majority of

patients with lung adenocarcinoma (LUAD), targeted therapy

has not been successful, therefore, new early biomarkers and

treatment options are urgently required.

Macrophages are specialized, long-lived, phagocytic immune

cells that are derived from monocytes, which are in turn derived

from bone marrow precursor cells. Along with neutrophils, they

are the first line of defense in case of infection that take part in the

identification, phagocytosis, and destruction of pathogens and

cellular debris. Additionally, macrophages aid in antigen

presentation to the T cells and the induction of costimulatory

molecule production by other antigen-presenting cells, initiating

adaptive immune responses (Rogler and Baumgart, 2017). In the

early phases of inflammation, they contribute by releasing

cytokines and chemokines, which in turn attract more

immune cells to the area of inflammation. Based on their

activation and function, macrophages can be broadly

categorized into two subtypes: classically activated

M1 macrophages and alternatively activated M2 macrophages.

Several factors contribute to various phenotypes andmacrophage

activation states, including signaling molecules, epigenetics,

transcription factors, growth factors, and post-transcriptional

mechanisms and modifications, along with niche signals like

cytokines, intercellular interactions, and metabolites (Chen and

Zhang, 2017; T’Jonck et al., 2018; Collins et al., 2021). However,

macrophage activation is important for inflammation, disease

progression, and tissue homeostasis.

In addition to its regulatory function in combating diseases,

macrophages also have a harmful role in chronic inflammation,

autoimmune disorders, and cancer. In the conventional immune

response, pro-inflammatory macrophages are suppressed,

resulting in a reduction in their pro-inflammatory signaling.

However, dysregulated macrophages continue to release

inflammatory cytokines and signal in more immune cells

during long-term damage which results in chronic

inflammation and plays a fundamental part in the

development and progression of tumors. After the

development of the tumor, macrophages undergo a phase

transition from an immune-active to an immune-suppressed

state and are referred to as tumor-associated macrophages

(TAMs). According to reports, the TAMs are present in high

concentrations in lung adenocarcinoma and are associated with a

poor patient prognosis (Zilionis et al., 2019; Qiao and Fu, 2022).

Programmed cell death protein 1 (PD-1) has been reported to be

expressed in a tumor-promoting isoform of tumor-associated

macrophages that are formed during tumor progression from

pre-invasive to invasive adenocarcinoma, controlling the

lymphocyte-depleted microenvironment of invasive tumors,

and protecting the tumor cells in the solid histological

components of tumors (Garcia et al., 2022). Macrophages play

a crucial role in the development of lung cancer, and their

polarization status and severity of infiltration are closely

related to patients’ prognosis. This study aimed to explore the

construction of a clinical prediction model through macrophage-

related genes that may help guide immunotherapy for lung

adenocarcinoma patients and thus potentially improve their

prognosis.

Materials and methods

Data acquisition and processing

The bioinformatics analysis in this study was supported by

the Sangerbox platform (http://vip.sangerbox.com/) (Shen et al.,

2022). The LUAD project’s clinical follow-up information and

latest expression data were downloaded from The Cancer
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Genome Atlas (TCGA), which included sequencing data of

expression profiles and SNV mutations identified by

mutect2 processing (Colaprico et al., 2016). The final sample

number of 500 TCGA datasets was achieved after scrutiny of the

available data such as the exclusion of samples with missing

clinical data, conversion of Ensembl to Gene symbols, and

averaged when duplicate Gene symbols were encountered.

The Gene Expression Omnibus (GEO) database was used to

download four lung adenocarcinoma datasets with patient

survival times. The accession numbers of the downloaded

lung adenocarcinoma datasets were: GSE30219, GSE31210,

GSE37745, and GSE50081. In addition to the same

processing as the TCGA data, the removeBatchEffect

function of the limma package was used (Ritchie et al., 2015)

to remove batch effects between different GEO datasets

(Supplementary Figure S1), and a final sample size of

300 GEO datasets was collected.

Calculate macrophage scores and obtain
positively associated genes

The Macrophage Score of LUAD samples and normal

samples was calculated by TIMER. The Pearson correlation

coefficients were calculated between Macrophage Score and

protein-coding genes (PCGs) in tumor samples and then

filtered at a threshold R > 0.4 and p < 0.05 (Li et al., 2017).

Functional enrichment analysis

The functional enrichment analysis is used to enrich the

biological functions involved in a large number of genes as a

means of finding key pathways that influence the development of

a disease. We used the clusterProfiler package and the org.

Hs.eg.db package for the enrichment analysis (Yu et al., 2012).

The species selected was Homo sapiens and the entries analyzed

included all Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) entries, with p-values adjusted by

False Discovery Rate (FDR).

Construction of molecular isoforms

By employing univariate cox analysis using the coxph

function in survival R package, the prognostic genes positively

related to Macrophage Score were obtained.

ConsensusClusterPlus was utilized to cluster the TCGA

samples and cumulative distribution function (CDF) was used

to determine the optimal number of clusters. A more stable

clustering result was achieved by selecting the optimal number of

clusters by assessing the Delta area curve of the CDF (Wilkerson

and Hayes, 2010).

Analysis of gene alterations

The SNVs of LUAD samples downloaded from TCGA were

previously processed by mutect2 tool. The genomic

characteristics including Number of Segments, Fraction

Altered, Homologous Recombination Defects, and tumor

mutation burden were obtained from previous research

(Thorsson et al., 2018).

Differences in clinicopathological,
immunological, and chemotherapeutic
characteristics between molecular
subtype

The genomic alteration differences between molecular

subtypes were further explored in the TCGA dataset. The

mutation dataset was downloaded and screened for mutated

genes with a mutation frequency of more than 3, using TCGA’s

mutect2 software. With a selection threshold of p < 0.05, the

Fisher’s exact test was performed in each subtype to screen for

genes with significantly high-frequency mutations. In order to

comprehend the changes in the immune microenvironment of

patients’ subtypes, we assessed the level of immune cell

infiltration in our TCGA cohort using the expression levels of

immune cell gene markers. For the functional analysis of the

scores of 28 immune cells (Charoentong et al., 2017), we

employed single sample gene set enrichment analysis

(ssGSEA) of gene set enrichment analysis (GSEA).

Additionally, by using MCP-Counter, the scores of

10 immune cells were analyzed and the overall immune

microenvironment infiltration score was estimated using

ESTIMATE (Yoshihara et al., 2013). We analyzed the

differences between subtypes of immunotherapy and the

expression differences between immune checkpoints of

subtypes were compared from the HisgAtlas database (Liu

et al., 2017). Simultaneously, the TIDE (http://tide.dfci.

harvard.edu/) software was used to assess the potential clinical

effects of immunotherapy in pre-defined high and low subtypes

(Jiang et al., 2018). For patients with Higher TIDE prediction

scores, immunotherapy is less likely to be effective for them

because of a higher probability of immune escape. We also

analyzed the extent to which subtypes in the TCGA dataset

responded to conventional chemotherapeutic agents, including

Cisplatin, Erlotinib, Sorafenib, Dasatinib, Lapatinib, and AKT

inhibitor VIII.

Construction of prognostic models and
validation

We further divided the GEO dataset into two parts according

to the ratio Train: Test = 7:3 and performed the univariate COX
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regression analysis for Macrophage Score positive correlation

gene to identify those with a greater prognostic impact (p <
0.001). Furthermore, lasso (least absolute shrinkage selection

operator) regression was used in the TCGA dataset to further

compress the risk model by reducing the number of genes. As the

lambda grew, it was also noted that the number of independent

variable coefficients increased and for model construction, 10-

fold cross-validation was employed to investigate the confidence

intervals at every respective lambda. Moreover, based on the

screening genes in lasso analysis, stepwise multi-factor regression

analysis by Akaike information criterion (stepAIC) was used,

which considered the statistical fit degree of the model and the

number of parameters used for fitting. In the MASS package, the

stepAIC method was used which started from the most complex

model and deleted one variable in turn to reduce AIC. A better

model was obtained with a smaller value, which suggested that

sufficient fitting degrees were obtained in the model with fewer

parameters (Zhang, 2016).

Moreover, we calculated the RiskScore for each patient using

the following formula: RiskScore = Σβi × Expi, where “Expi”

refers to the level of gene expression of the prognosis-related gene

signature and β is the Cox regression coefficient of the

corresponding gene. Based on the median threshold, patients

were distributed into two groups: high- and low-RiskScore

groups. Employing the Kaplan-Meier technique, prognostic

survival curves were produced and log-rank tests were

performed to assess the significance of the differences.

Subsequently, a risk-related prognostic RiskScore was

determined for each sample based on the formula defined

by our sample risk score. Furthermore, using the R software

package timeROC (Blanche et al., 2013), the receiver

operating characteristic (ROC) analysis was performed of

the prognostic RiskScore classification, where we studied

the efficiency of prognostic classification of the training

dataset for one, three, and 5 years respectively and the

AUC line could be seen clearly in the area under of the

model. The samples were divided into low- and high-risk

groups by applying the median RiskScore as the cutoff and

plotted KM curves. To confirm the robustness of the risk-

associated genetic signature clinical prognostic model

predictions, we performed validation on the TCGA lung

adenocarcinoma validation dataset as well as the TCGA full

dataset cohort and calculated the RiskScore for patients in the

same way.

RiskScore on different clinicopathological,
immunological and chemotherapeutic
characteristics

We grouped samples with distinctive clinical characteristics

by comparing the distribution of RiskScore between

clinicopathological characteristics subtypes and performed KM

curve analysis. The same methods and data were used to explore

the association between RiskScore and immunotherapy versus

chemotherapy as in the molecular subtypes. Additionally, by

selecting gene expression profiles that correspond to lung

adenocarcinoma samples in the TCGA cohort and utilizing

the R software package GSVA (Hänzelmann et al., 2013) to

perform ssGSEA, the correlation between RiskScore and

biological features was studied in various samples. The

correlation between these features and RiskScore was then

calculated and features that correlated at 0.5 or more were

selected.

RiskScore combined with
clinicopathological features to further
improve prognostic models

The most significant prognostic factors were analyzed

based on univariate and multivariate Cox regression of

RiskScore and clinicopathological characteristics in the

TCGA cohort. For quantification of the risk assessment and

probability of survival in patients with lung adenocarcinoma,

we combined the RiskScore and other clinicopathological

characteristics to create nomograms that identified the

factors with the most significant impact on survival

prediction from the model results. We further assessed the

predictive accuracy of the model using calibration curves, and

the reliability of the model was assessed using decision curve

analysis (DCA).

Results

Characterization of lung adenocarcinoma
macrophages and identification of related
genes

We used TIMER software to assess the Macrophage Score

in lung adenocarcinoma samples in the TCGA dataset and

compared the difference between the tumor samples and the

normal samples. The Macrophage Score was found to be

substantially higher in the normal samples than in the

tumor samples (Figure 1A). The Pearson’s correlation

coefficients were also calculated between Macrophage Score

and PCGs in the tumor samples and filtered for a threshold of

R > 0.4 and p < 0.05 to obtain 1,044 genes positively correlated

with the Macrophage Score. We performed GO/KEGG

enrichment analysis on these 1,044 genes, and the GO

function analysis annotated 679 BP (biological process)

terms (FDR < 0.05), 80 MF (molecular function) terms

(FDR < 0.05), and 100 CC (cellular component) terms

(FDR < 0.05). GO enrichment was used to obtain some

immune-related pathways. The KEGG pathway of different
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genes was enriched to 52 significant items (FDR < 0.05).

Immune pathways such as Th1, Th2, and Th17 cell

differentiation, and B cell receptor signaling pathways were

also significantly enriched (Supplementary Figure S2).

Molecular typing based on macrophage
score positively related genes

We extracted 1,044 Macrophage Score for positively

correlated genes from the TCGA expression profile matrix,

and then performed univariate Cox analysis to obtain

65 genes associated with LUAD prognosis (p < 0.01), of

which 1 gene was Risk gene (hazard ratio, HR > 1) and

64 were Protect genes (HR < 1) (Supplementary Figure S3A).

The expressions of these 65 genes showed a significant positive

correlation (Supplementary Figure S3B). We then clustered the

TCGA samples by consistent clustering based on the

65 Macrophage Score for positively correlated genes and

determined the optimal number of clusters based on the CDF.

The analysis of the CDF Delta area curve revealed that stable

clustering results were observed when the cluster is selected as 3.

Finally, two molecular subtypes were obtained when we selected

K = 3 (Figures 1B–D). The distribution of the macrophage scores

of these three molecular subtypes was further analyzed and it was

found that the C1 and C3 subtypes had the highest score and the

lowest score respectively (Figure 1E). The prognostic

characteristics of these three subtypes were also analyzed and

significant differences in prognosis were observed, with

C1 showing a better prognosis than the other two subtypes,

whereas C3 had the worst prognosis (Figure 1F). In addition, we

plotted the expression clustering heat map of 65 genes in

different subtypes (Supplementary Figure S4). The C1 subtype

exhibited significantly higher expression of these 65 genes and

the C3 subtype displayed a low level of expression.

Clinicopathological features between
molecular subtypes

The differences in clinicopathological features were

further explored between the different molecular subtypes

in the TCGA-LUAD cohort. Different clinical features were

compared across the three molecular subtypes and observed

that the distribution of all features differed across the three

subtypes, except for the M Stage. The largest proportion of the

FIGURE 1
Construction of molecular subtypes using macrophage-associated prognostic genes (A) Comparison of Macrophage Score for normal and
tumor samples; (B, C) TCGA cohort sample CDF curves and CDF Delta area curves and Delta area curve of consensus clustering, indicating the
relative change in area under the cumulative distribution function (CDF) curve for each category number k compared with k- 1. The category number
k is represented on the horizontal axis, and the relative change in the area under the CDF curve is shown on the vertical axis; (D) Sample
clustering heat map at consensus k = 3; (E) Distribution of Macrophage Score among subtypes; (F) KM curves of the relationship between the
prognosis of the three subtypes. ****p < 0.0001.
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C3 subtypes was found in male patients aged >65
(Supplementary Figure S5).

Mutational features between molecular
subtypes

In the TCGA cohort, we further investigated the variations

in genomic alterations between molecular subtypes. The

mutation dataset was downloaded and processed by

TCGA’s mutect2 software, and screened genes with a

mutation frequency greater than 3. Within a total of 9,904

genes, 762 genes were identified to be significantly mutated in

three subtypes (p < 0.05). The top 20 mutated genes were listed

(Figure 2A). In addition, we compared the distribution of the

Number of Segments, Fraction Altered, Homologous

Recombination Defects, and tumor mutation burden

between subtypes. These characteristics also differed among

subtypes, suggesting a higher frequency of mutations in

C3 and a worse prognosis for patients with more severe

mutations (Figure 2B).

Immunological characteristics between
subtypes

By measuring the degree of immune cell infiltration in the

TCGA cohort using the expression levels of immune cell gene

markers, the variations in the immune microenvironment of

patients in the subtype were further elucidated. We further

assessed the immune microenvironment infiltration scores

using MCP-Counter, GSEA, and ESTIMATE. The results

found the same trend of higher immune scores for

C1 among the 28 immune cell types analyzed by GSEA

(Figure 3A). In the MCP-Counter analysis, the immune

score was higher for the C1 subtype among the 10 immune

cell types (Figure 3B). Three scores for the ESTIMATE are

consistent with MCP-counter and ssGSEA (Figures 3C–E).

FIGURE 2
TCGA cohort data on the frequency of gene mutations and genomic changes in various subtypes. (A) Somatic mutation analysis (Fisher’s exact
test) for different molecular subtypes; (B) Differences between different molecular subgroups in terms of homologous fraction altered, number of
segments, recombination defects, and tumor mutation load. **p < 0.01, ****p < 0.0001.
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These results suggested that Immunosuppression was prevalent

in patients with the worse prognosis in the C3 subtype, which

was consistent with our previous macrophage immune score. It

also suggested that the occurrence of immunosuppression may

be an important factor in the development of immune escape in

lung adenocarcinoma.

Differences in immunotherapy/
chemotherapy between subtype subtypes

The differences in immunotherapy were analyzed and

compared the differences in the expression of immune

checkpoints between the subtypes. Most of the immune

checkpoint genes were observed to be differentially expressed

in each subtype (Figure 4A). The differences in immunotherapy

between subtypes were studied by using the TIDE software,

which evaluated the potential clinical effects of immunotherapy

in the high and low subtypes. The highest TIDE scores in the

TCGA-LUAD cohort were observed in the C2 and C3 groups,

suggesting that these two subtypes are more likely to escape

from immunotherapy. This is in line with our previous scenario

of immunosuppression occurring in C2 and C3. Additionally,

T cell exclusion scored highest in C3, suggesting that immune

escape mechanisms were more active in the presence of low

T cell infiltration. MDSC (myeloid-derived suppressor cell) and

TAM. M2 were significantly enriched in the C3 subtype,

indicating a high degree of tumor malignancy in C3

(Figure 4B). In addition, we also studied the subtypes’

response to conventional chemotherapeutic drugs in the

TCGA dataset and observed that the C3 subtype was more

sensitive to six drugs, Cisplatin, Erlotinib, Sorafenib, Dasatinib,

Lapatinib, and AKT inhibitor VIII (Figure 4C).

Construction of a prognostic model for
lung adenocarcinoma

We further divided the datasets from GEO into two parts

according to the ratio Train: Test = 7:3. No significant

difference on survival information was observed between

two groups (Supplementary Table S1). Then the univariate

Cox regression analysis was performed for the genes

associated with macrophage score, a total of 22 genes with

a high prognostic impact were identified (p < 0.001),

including 10 “Risk” and 12 “Protective” genes

FIGURE 3
Differences of immune microenvironment in different subtypes. (A) Subtype comparison of 28 immune cell scores assessed by ssGSEA; (B)
Subtype comparison of 10 immune cell scores assessed by MCP-Counter; (C–E) Subtype comparison of StromalScore, ImmuneScore, and
ESTIMATEScore assessed by ESTIMATE. **p < 0.01, ****p < 0.0001.
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(Supplementary Figure S6A). Using lasso regression in the

GEO dataset, the 22 genes were further compressed to reduce

the number of genes in the risk model. The 10-fold cross-

validation was used for model construction and the

confidence intervals analysis at each lambda. The model

was optimized at lambda = 0.0193, therefore, we selected

16 genes at lambda = 0.0342 as the next target genes

(Supplementary Figures S6A–C). Based on the 16 genes

from the lasso analysis, we further used stepwise

multivariate regression analysis. Ultimately, eight genes

were identified as relevant genes affecting prognosis,

namely CTTNBP2NL, CYP2U1, FAM13C, CDH23,

EXOC5, CD300A, MRO, ARHGEF6 (Supplementary

Figure S6E).

Development and validation of clinical
prognostic models

For each sample, a risk-related prognostic risk score

(RiskScore) was calculated on the basis of the formula

defined by our sample risk score. The R software package

timeROC was used to carry out the ROC analysis of the

prognostic classification of the RiskScore. The prognostic

classification efficiency of the training dataset was analyzed

for one, three, and 5 years respectively, which revealed that the

model had a high area under the AUC line. The samples were

divided into two groups: high and low-risk groups using the

median RiskScore as the cutoff and plotted KM curves, from

which a significant difference was observed between the high-

FIGURE 4
Differences in immunotherapy and chemotherapy scores between subtypes. (A) Immune checkpoints differentially expressed between
subtypes in the TCGA cohort; (B) Differences in TIDE analysis results between subtypes in the TCGA cohort; (C) The box plots of the estimated IC50
for Cisplatin, Erlotinib, Sorafenib, Dasatinib, Lapatinib, and AKT inhibitor VIII in TCGA cohort. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Frontiers in Genetics frontiersin.org08

Wen et al. 10.3389/fgene.2022.1012164

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1012164


and low- RiskScore groups, with 190 samples classified as high-

RiskScore and 189 samples as low-RiskScore groups. A low

overall survival rate was observed in the patients with higher

RiskScore in the training cohort (Figure 5A). The robustness of

the risk-related gene signature clinical prognostic model was

confirmed by performing validation on the GEO lung

adenocarcinoma validation dataset as well as the GEO full

dataset cohort, where we calculated the RiskScore scores of

patients in the same way. We observed similar results as the

training set in the validation cohort, with an unfavorable

prognosis for high RiskScore and a better prognosis for low

RiskScore (Figures 5B,C). We also performed validation on the

independent dataset TCGA and observed similar results as the

training set in the validation cohort, demonstrating the

reliability of our results (Figure 5D).

Performance of RiskScore scores on
different clinicopathological features

The distribution comparison of RiskScores across

clinicopathological characteristics revealed significant

differences in the TCGA dataset for all clinical characteristics

except M Stage, where RiskScores were not significantly different.

In order to prove that our RiskScore grouping has a good survival

effect in different clinical characteristics, we divided the samples

with different clinical characteristics into groups and performed a

KM curve analysis. The RiskScore was higher in males

aged >65 and was positively correlated with TN and

pathological stage, suggesting that the RiskScore has a

meaningful effect on the extent of disease in patients with

lung adenocarcinoma (Supplementary Figure S7).

Furthermore, in the different subtype plots, the subtypes with

higher RiskScore had a worse prognosis (Supplementary

Figure S8).

Relationship between RiskScore and
immunity and pathway characteristics

The analysis of a difference in immunotherapy between the

RiskScore groups was performed as well. 28 different immune

cell types were studied by ssGSEA, and the results revealed that

the low groups had a higher score than the high groups.

(Figure 6A). The MCP-Counter was employed to examine

10 immune cell scores and observed higher scores in the low

group (Figure 6B). The three scores assessed by ESTIMATE were

consistent with ssGSEA andMCP-Counter, which suggested that

immunosuppression also occurred in the high RiskScore group

(Figures 6C–E). We calculated the correlation between RiskScore

and 28 kinds of immune cell scores to note the correlation

between RiskScore and immune function in different samples,

FIGURE 5
Stability of the RiskScore prognostic model for different datasets. (A) ROC and KM survival curves for RiskScore in the GEO training data cohort;
(B) ROC and KM survival curves for RiskScore in the GEO validation data cohort; (C) ROC and KM survival curves for RiskScore in the GEO cohort and
KM survival curves in the GEO cohort; (D) ROC and KM survival curves for RiskScore in the TCGA cohort.
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and it was revealed that the RiskScore showed a negative

correlation with 28 kinds of immune cell scores

(Supplementary Figure S9A). In order to establish our

understanding of the relationship between RiskScore and

biological functions in various types of samples, the

correlation between biological pathways and RiskScore was

calculated. The functions with a correlation greater than

0.5 were chosen and found that RiskScore showed a

significant positive correlation with KEGG_CELL_CYCLE,

KEGG_DNA_REPLICATION, and other pathways

(Supplementary Figure S9B).

Differences in immunotherapy/
chemotherapy between RiskScore
subtypes

The differences between subtypes for immunotherapy

were analyzed by comparing the expression of immune

checkpoints which differed between subtypes (Figure 7A).

Earlier, we found a negative correlation between RiskScore

and the degree of T cell infiltration, while the Exclusion score

demonstrates a higher Exclusion score in the group with a

high RiskScore and at the same time a lower degree of T cell

infiltration, indicating a more active occurrence of immune

escape (Figure 7B). Moreover, the response of subtypes was

analyzed in the TCGA dataset to conventional

chemotherapeutic agents and observed that the high

subtype was more sensitive to six drugs, Cisplatin,

Erlotinib, Sorafenib, Dasatinib, Lapatinib, and AKT

inhibitor VIII (Figure 7C).

RiskScore combined with
clinicopathological features to further
improve prognostic models

Univariate and multifactorial Cox regression analysis based

on RiskScore and clinicopathological characteristics in the TCGA

cohort showed RiskScore to be the most significant prognostic

FIGURE 6
Differences of immune infiltration in different RiskScore groups (A) Subtype comparison of ssGSEA assessment of 28 immune cell scores; (B)
Subtype comparison of MCP-Counter assessment of 10 immune cell scores; (C) Subtype comparison of ESTIMATE assessment of StromalScore; (D)
Subtype comparison of ESTIMATE assessment of ImmuneScore; (E) Subtype comparison of ESTIMATE assessment of ESTIMATEScore. ns, not
significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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factor (Figures 8A,B). To quantify the risk assessment and

probability of survival in patients with lung adenocarcinoma,

we combined RiskScore and other clinicopathological

characteristics to create a nomogram, and from the model

results, we observed that RiskScore was the most impactful in

survival prediction (Figure 8C). We further assessed the

predictive accuracy of the model using calibration curves and

observed that the predictive calibration curves at the 1, 3, and 5-

year calibration points nearly overlapped with the standard

curves, suggesting the good predictive performance of the

nomogram (Figure 8D). Using DCA, the model’s reliability

was also evaluated, and it was observed that the advantages of

RiskScore and nomogram were considerably more than the

extreme curves, with the nomogram showing the strongest

predictive power for survival compared to other

clinicopathological features (Figure 8E).

Discussion

The relationship between cancer cells and the tumor

microenvironment is complex and further studies are needed

to predict the prognosis and improve clinical outcomes more

accurately in patients with LUAD (Charoentong et al., 2017). We

first explored the differences in the levels of macrophage

infiltration between LUAD samples and normal samples in

this study and found that macrophage infiltration scores were

significantly reduced in diseased tissues. Concurrently, we

FIGURE 7
Differences in immunotherapy and chemotherapy scores between RiskScore groups. (A) Immune checkpoints differentially expressed between
two risk groups in the TCGA cohort; (B) Differences in TIDE analysis results between two risk groups in the TCGA cohort; (C) The box plots of the
estimated IC50 for cisplatin, Erlotinib, Sunitinib, Paclitaxel, Sorafenib, Crizotinib in TCGA cohort. ns, not significant. **p < 0.01, ***p < 0.001, ****p <
0.0001.
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explored a large number of genes positively correlated with

macrophage infiltration scores and performed GO/KEGG

enrichment analysis, finding that a large number of immune-

related pathways were enriched, such as immune response,

leukocyte differentiation, and B cell receptor signaling

pathway. The expression of 1,044 genes positively associated

with Macrophage Score was extracted and a univariate Cox

analysis was performed for the identification of macrophage-

related genes associated with lung adenocarcinoma prognosis.

The 65 macrophage-associated genes with prognostic relevance

to lung adenocarcinoma were clustered into three different

subtypes of TCGA samples, with survival analysis revealing

that subtype C1 had the best prognosis while C3 had the

worst prognosis. In order to explore the factors affecting

prognosis between the different subtypes, we explored the

clinicopathological features, mutational features, and

immunotherapy/chemotherapy features between different

molecular subtypes. It was found that the subtype with a

worse prognosis was predominantly male and older than

65 years and the frequency of mutations was significantly

higher in the C3 subtype, which was likely to contribute to

the poor prognosis of patients in the C3 subtype. The

differences in the immune microenvironment of patients in

the different subtypes were also discussed, and by using

different algorithms we demonstrated that the subtypes with

a worse prognosis were accompanied by more pronounced

FIGURE 8
Validation of the predictive accuracy and reliability of the RiskScore prognostic model. (A, B) Univariate and multifactorial Cox analyses of
RiskScore and clinicopathological features; (C) Nomogram model; (D) Calibration curves for 1, 3, and 5 years for the nomogram; (E) Decision curve
(DCA) for the nomogram. *p < 0.05, **p < 0.01, ***p < 0.001.
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immunosuppression. The Exclusion score indicated the degree

of activity of the immune escape mechanism in the presence of

low T cell infiltration. Simultaneously, MDSC inhibited the

body’s immune cells from performing normal innate and

adaptive immune functions, and the score was significantly

higher in the C3 subtype.

The GEO dataset was divided into two parts according to the

ratio Train: Test = 7:3, and univariate Cox regression analysis and

Lasso regression were performed to identify eight genes

(CTTNBP2NL, CYP2U1, FAM13C, CDH23, EXOC5,

CD300A, MRO, ARHGEF6) that had a strong prognostic

impact. According to previous reports, CDH23, as a cell

migration inhibitor, relaxed the adhesion ability of lung

cancer cells through competitive binding and was negatively

correlated with cancer metastasis (Sannigrahi et al., 2019). The

RiskScore was calculated by the RiskScore scoring formula and

patients were categorized into high- and low-RiskScore groups.

Moreover, our RiskScore model indicated that a higher RiskScore

was associated with a worse prognostic outcome. The RiskScore

was also negatively correlated with the level of immune

infiltration, with the individual immune infiltration algorithms

showing that the group with a lower RiskScore exhibited

significant immunosuppression, in line with our findings in

the molecular subtypes.

Depending on their origin, lung macrophages are divided

into tissue-resident macrophages (TRMs) and monocyte-

derived macrophages (MDMs). TRMs exist before birth,

independently of the adult hematopoietic system, and are

locally self-renewing, coordinating tissue remodeling, and

maintaining tissue integrity (Perdiguero and Geissmann,

2016). These two classes of TAMs have also been studied in

tumor microenvironments, but their functions are different.

MDMs inhibit tumor growth in the tumor microenvironment,

while TRMs play an important role in tissue homeostasis and

host defense. Studies have shown that M1-type macrophages

are predominant in the early stages of lung cancer, while M2-

type macrophages predominate in the mid to late-stage stages,

with a gradual conversion from M1 to M2 phenotype as the

tumor progresses (Qian and Pollard, 2010). Epithelial-

mesenchymal transition (EMT) refers to the loss of polarity

of epithelial cells, which take on the characteristics of

mesenchymal cells. TAMs release cytokines i.e., IL-6, IL-10,

and TGF- β, all of which regulate EMT. In addition, IL-6 and IL-

10 can also induce M2 macrophage differentiation in an IL-4-

dependent manner through activation of JAK/STAT3 (Dehai

et al., 2014; Fu et al., 2017).

In summary, macrophages play a critical role in the

development of lung adenocarcinoma, as well as in the

prognostic outcome of patients. Therefore, it is important to

further explore the impact of macrophage expression and related

signaling pathways in lung adenocarcinoma. The RiskScore

model in this study may provide new ideas for

immunotherapy of lung adenocarcinoma and provide an

important theoretical basis for tumor immune

microenvironment therapy.

Conclusion

Firstly, we identified significant macrophage suppression in

lung adenocarcinoma, mined and enriched for macrophage-

positive genes, constructed molecular subtypes based on

prognostically relevant macrophage score positive genes, and

analyzed the immunological and immunotherapeutic potential of

the subtypes. In addition, we constructed the RiskScore clinical

prognostic model, which is robust and independent of

clinicopathological features and has stable predictive

performance in independent datasets. Finally, we further

improved the prognostic model by combining RiskScore with

clinicopathological features, which had high predictive accuracy

and survival prediction.
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