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Kirsten rat sarcoma viral oncogene homolog (KRAS) gene encodes a GTPase

that acts as a molecular switch for intracellular signal transduction,

promoting cell growth and proliferation. Mutations in the KRAS gene

represent important biomarkers for NSCLC targeted therapy. However,

detection of KRAS mutations in tissues has shown some limitations.

During the last years, analyses of circulating free DNA (cfDNA) has

emerged as an alternative and minimally invasive, approach to investigate

tumor molecular changes. Here, we assessed the diagnostic performance of

cfDNA analysis, compared to tissues through a meta-analysis and systematic

review of existing literature. From 561 candidate papers, we finally identified

40 studies, including 2,805 NSCLC patients. We extracted values relating to

the number of true-positive, false-positive, false-negative, and true-

negative. Pooled sensitivity, specificity, positive likelihood ratio, negative

likelihood ratio, and diagnostic odds ratio, each with 95% CI, were

calculated. A summary receiver operating characteristic curve and the

area under curve (AUC) were used to evaluate the overall diagnostic

performance. The pooled sensitivity was 0.71 (95% CI 0.68–0.74) and the

specificity was 0.93 (95% CI 0.92–0.94). The diagnostic odds ratio was 35.24

(95% CI 24.88–49.91) and the area under the curve was 0.92 (SE = 0.094).

These results provide evidence that detection of KRASmutation using cfDNA

testing is of adequate diagnostic accuracy thus offering to the clinicians a

new promising screening test for NSCLC patients.
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Introduction

Lung cancer (LC) is the leading cause of cancer-related

mortality worldwide representing 18% of the total cancer

deaths in 2020 (Sun et al., 2021). Non-small cell lung cancer

(NSCLC), the largest group of LC, accounts for approximately

80% of new cases. These patients are often unsuitable for curative

surgery duo to the advanced stage at the time of diagnosis (Ganti

et al., 2021).

In the last decade, one of the most exciting advances in

medical oncology is the application of personalized treatment

tailored to the patient’s genetic background, primarily based on

mutations in the epidermal growth factor receptor (EGFR) and in

the Kirsten rat sarcoma viral oncogene homolog (KRAS) genes

(Qiu et al., 2015; Hames et al., 2016). KRAS gene encodes a small

GTPase that functions as an intracellular signaling protein

promoting cell growth and proliferation (King et al., 2013).

Approximately 30% of adenocarcinomas, the most common

histological subtype of NSCLC, harbor mutations of the KRAS

gene. Mutations in KRAS gene lead to oncogenic conversion

ensuing in constitutive activation of downstream signal

transduction cascades and thus cancer development and

progression as well as specific drug sensitivity. KRAS

mutations in NSCLC predominantly occur at codon 12 or

codon 13 (Ghimessy et al., 2029) and represent an important

biomarker for NSCLC therapy. Moreover, recently, new

therapeutic agents (i.e., adagrasib and sotorasib) that target

specifically the KRAS G12C variant have been developed and

shown promising results in both preclinical and clinical trials

(Skoulidis et al., 2021).

The gold standard for detecting cancer mutations has been

based on molecular testing of tumor biopsies. However,

obtaining a tumor biopsy requires invasive techniques, and is

not suitable for real-time monitoring of cancer mutations.

FIGURE 1
Flow diagram of literature screening and study selection.
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TABLE 1 Characteristics of eligible studies included in the meta- and pooled-analyses.

References No.
of
cases

Country Study
design

Males/
Females

Median
age
(range)

%
Smoker
(former
or
current)

NSCLC
stage
(I-IV)

Specimen
type
for ctDNA

Detection
assay
in ctDNA

Gautschi et al.
(2007)

15 Switzerland Pro 125/55 61 (36–81) 69 I-IV Plasma RFLP-PCR and
Sequencing

Wang et al. (2010) 120 China Pro 158/115 NA 41.4 IIIB, IV Plasma RFLP-PCR

Narayan A et al.
(2012)

21 United States Retro NA NA NA I-IV Plasma Targeted NGS

Punnoose EA et al.
(2012)

25 United States,
Australia

Retro 21/16 NA 83.8 IV Plasma In house TaqMan
Assay

Nygaard et al.
(2013)

10 Denmark Pro 151/95 66 (40–80) NA II-IV Plasma ARMS-qPCR

Oxnard GR et al.
(2014)

31 United States Retro NA NA NA NA Plasma ddPCR

Couraud S et al.
(2014)

68 France Pro 13/93 NA 0 I-IV Plasma Targeted NGS

Freidin MB et al.
(2015)

82 United Kingdom Pro 52/41 NA NA I-IV Plasma Cold PCR-HMR

Guibert N et al.
(2016)

32 France Pro 21/11 NA NA IV Plasma ddPCR

Guo N et al. (2016) 41 China Pro 22/19 52 (38–73) NA I-IV Plasma Targeted NGS

Paweletz C et al.
(2016)

48 United States Pro 19/29 57 NA IV Plasma Targeted NGS

Thompson JC et al.
(2016)

50 United States Pro 33/69 64 (34–85) 50 II-IV Plasma Paired-end sequencing

Chen KZ et al.
(2016)

58 China Retro 33/25 64 (40–84) 37.9 I-II Plasma Targeted NGS

Sacher AG et al.
(2016)

87 United States Pro 68/112 62 NA IIIB, IV Plasma ddPCR

Pécuchet N et al.
(2016)

109 France Pro 49/60 NA 67 III-IV Plasma Ultradeep-
targeted NGS

Han JY et al. (2016) 135 South Korea Pro 136/72 58 (29–82) 63 III-IV Plasma PNA champ-assisted
melting curve

Del Re M et al.
(2017)

8 Italy Retro 13/20 62 (41–75) 33.3 III-IV Plasma ddPCR

Yao T et al. (2017) 39 China Retro 19/20 62 (28–78) 25.6 IIIa-IV Plasma Targeted NGS

Mellert et a. (2017) 42 United States Pro/
Retro

NA NA NA NA Plasma ddPCR

Wang Z et al. (2017) 103 China Pro 48/55 64 (21–87) 32 III-IV Plasma cSMART

Wang X et al.
(2017)

200 China Pro 138/62 57 (NA) NA NA Urine ddPCR

Garcia J et al. (2018) 20 France Retro NA NA NA IV Plasma Targeted NGS

Liu L et al. (2018) 72 China Pro 44/28 59 (40–83) 40.3 IIIa-IV Plasma Targeted NGS

Papadopoulou E
et al. (2019)

36 Greece Pro 82/39 NA NA NA Plasma Targeted NGS

Tran LS et al. (2019) 40 Vietnam Pro 33/25 62 (37–90) 43 IIIB, IV Plasma ddPCR and Ultradeep-
targeted NGS

Leighl NB et al.
(2019)

89 United States Pro 129/153 69 (26–100) 76.2 IIIB, IV Plasma Targeted NGS

Remon J et al.
(2019)

104 France Pro 126/88 NA 83.3 IIIB, IV Plasma Targeted NGS

Li BT et al. (2019) 110 United States Pro 47/80 66 (23–85) NA IIIB, IV Plasma Targeted NGS

Pritchett MA et al.
(2019)

147 United States Pro 84/94 NA 86.6 IIIB, IV Plasma Targeted NGS

(Continued on following page)
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Furthermore, it is often difficult to obtain sufficient tissues for

molecular testing through biopsy (Overman et al., 2013). During

the last years, in order to answer the need of a more accessible

and sequentially repeatable approach for tumor genetic analysis,

“liquid biopsy” has emerged. The most successful use of liquid

biopsy is the analysis of tumor DNA fragments that are released

into the bloodstream through apoptosis, necrosis, and/or active

secretion processes of cancer cells in the form of circulating free

DNA (cfDNA) (Diehl et al., 2008). This approach turned out to

be a minimally invasive and efficient method to investigate

cancer cells which enables taking multiple blood samples over

time (serial sampling) and thus informing about what kind of

molecular changes are taking place in the tumor (Castro-Giner

et al., 2018).

To date, many meta-analyses have investigated the

performance of cfDNA in detecting EGFR mutation status in

patients with NSCLC and only two meta-analyses evaluated also

KRAS (Fan et al., 2017; Chen et al., 2020). However, the

diagnostic accuracy of cfDNA testing for the detection of

KRAS mutations remains controversial and not conclusive

since the results vary among these two meta-analyses

justifying further investigation.

Herein, we conducted a comprehensive systematic review

and meta-analysis of available studies that compare the

concordance between results on cfDNA within liquid

biopsy and genomic DNA within tumor tissue to obtain

an all-inclusive evaluation of the diagnostic accuracy of

cfDNA testing for detection of KRAS mutations in NSCLC

patients.

Materials and methods

Search strategy, inclusion and exclusion
criteria and data extraction

We systematically searched the PubMed, Medline, Embase

and Web of Science databases up to 7 July 2022 for studies

reporting the diagnostic performance of cfDNA comparing

sensitivity and specificity between tissue and blood in

detecting KRAS mutations in NSCLC patients, using

different combinations of the keywords: ‘‘lung neoplasms’’

or ‘‘lung cancer’’ or “NSCLC”, “KRAS,” “re-biopsy” or “repeat

biopsy” or “liquid biopsy,” ‘‘serum’’ or ‘‘plasma’’ or

‘‘circulating,’’ and ‘‘mutations,’’ without any restriction.

Abbreviations and alternative spellings and were also

considered. Eligible publications were evaluated by

checking titles and abstracts.

TABLE 1 (Continued) Characteristics of eligible studies included in the meta- and pooled-analyses.

References No.
of
cases

Country Study
design

Males/
Females

Median
age
(range)

%
Smoker
(former
or
current)

NSCLC
stage
(I-IV)

Specimen
type
for ctDNA

Detection
assay
in ctDNA

Cho MS et al.
(2020)

36 South Korea Pro 25/11 66 (33–81) NA I-IV Plasma PANAmutyper™

Jiang J et al. (2020) 47 Germany Retro 45/26 62 (NA) 85 IIIa-IV Plasma Targeted NGS

Zulato E et al.
(2020)

58 Italy Pro 31/27 68 (61–73) 86.2 NA Plasma ddPCR

Michaelidou K et al.
(2020)

96 Greece Pro 99/22 NA 88.6 III-IV Plasma ddPCR

Mehta A et al.
(2021)

21 India Retro 14/7 54 (28–79) 47.62 IIIB, IV Plasma Targeted NGS

Qvick A et al.
(2021)

24 Sweden Pro 32/28 72 (39–85) 80 I-IV Plasma Targeted NGS

Wahl SGF et al.
(2021)

60 Norway Retro 23/37 69 (47–83) 100 I-IV Plasma ddPCR

Lam VK et al.
(2021)

76 United States Retro 66/78 64 (28–96) NA I-IV Plasma Targeted NGS

Jiao XD et al. (2021) 185 China Pro 110/75 64 (24–84) NA IIIB, IV Plasma Targeted NGS

Xie X et al. (2022) 71 China Pro 54/16 60 (20–79) 46.5 I-IV Sputum Targeted NGS

Bauml JM et al.
(2022)

189 United States Pro 63/63 63.5 (56–70) 92.9 I-IV Plasma Targeted NGS

Total of cases 2,805

NA, not available; Pro, prospective study; Retro, retrospective study; RFLP, Restriction Fragment Length Polymorphism; PCR, Polymerase Chain Reaction; NGS, Next Generation

Sequencing; ddPCR, Droplet Digital PCR; ARMS-PCR, Amplification Refractory Mutation System PCR; PCR-HMR, High-resolution Melting PCR; PNA, Peptide Nucleic Acid; cSMART,

circulating single-molecule amplification and re-sequencing technology; PANAmutyperTM, PNA Clamping-assisted Fluorescence Melting Curve Analysis.
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The references of all computer-identified publications were

also checked for identifying additional studies that might have

been missed in the initial search. Relevant reviews were also

manually searched. Publications were checked for overlapping

patient populations and, in the case of multiple publications from

the same research group on overlapping cohorts, only the largest

or most recent study was selected.

All studies evaluating sensitivity and specificity between

tissue biopsy and liquid biopsy in KRAS-mutated NSCLC were

considered eligible for the meta-analysis. The inclusion

criteria were: 1) all NSCLC patients involved should be

diagnosed cytologically or histopathologically; 2) tissue and

blood biopsies should be paired in the same patient; 3) KRAS

mutation status should be detected by circulating cell free

DNA and verified in tumor tissues; 4) enough reported data to

construct the diagnostic 2 × 2 table. In the process of assessing

the eligibility of the studies, only articles written in English

were included. We subsequently excluded studies that

involved cell lines or artificial samples or where cfDNA was

not detected. Finally, articles were excluded if they presented

data in a way that did not allow it to be extracted properly (e.g.,

studies with mixed data from different types of cancers other

than NSCLC).

Information collected from all eligible articles included the

study characteristics (authors’ names, publication date and

journal, country of study, number of patients); the clinical

data (histological analysis, clinical stage); the results (method

for tissue and blood biopsy; number of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN)

between tissue and blood, and concordance between the two

methods).

The original data from the eligible studies reporting partial

information on TP, TN, FP, and FN, in comparison to

sensitivity and specificity between tissue and cfDNA

analysis were obtained by contacting the corresponding

authors. Data on individual patients were collected by

requesting the completion of a standardized form. The

sensitivity equals [TP / (TP + FN)], while specificity equals

[TN / (TN + FP)]. If not present, we computed the

concordance rate as [(TP + TN)/n]. All records were

reviewed and checked by two authors independently (MP

and EF) and reached consensus at each eligible study.

FIGURE 2
Paired Forest Plot of sensitivity and specificity of cfDNA testing in detecting KRAS mutation in NSCLC for 39 studies in the meta-analysis.
Random-effects (RE) model used. The square and horizontal bars represented study-specific sensitivity and specificity and 95% confidence interval
(CI). Squares in different colors represent a different diagnostic method (red = Targeted NSG; blue = ddPCR; yellow = both; black = other method).
Diamonds represented the overall results. The pooled sensitivity was 0.71 (95% CI 0.68–0.74) and the specificity was 0.93 (95% CI 0.92–0.94).
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Statistical analyses

Meta-analysis was carried out using the Rev-Man v.5.4

(provided by The Cochrane Collaboration, Oxford, England),

Meta-DiSc and R packages (version 4.2.1). The combined

sensitivity, specificity, positive likelihood ratio (PLR = sensitivity/

(1-specificity)), negative likelihood ratio (NLR = (1-sensitivity)/

specificity), positive predicted value, negative predicted value,

diagnostic odds ratio (DOR = PLR/NLR) and corresponding

95% confidence intervals (95% CI) were calculated by the

accuracy data (TP, TN, FP, and FN) collected from each studies.

Based on these data, the summary receiver operating characteristic

(SROC) was created and the area under the curve (AUC) was

calculated.

A random-effects model, fitted via the general linear

(mixed-effects) model, was used for all analyses,

recognizing that its use can reduce the effect of larger

studies and minimize the possible presence of heterogeneity

among the studies accounting for the variation both within a

study or between the many different studies included in the

meta-analysis. Homogeneity of study results in different

groupings was assessed using the Q and I2 statistic.

Publication bias was estimated by visual inspection of

funnel plots, and a p value <0.05 indicated the occurrence

of publication bias. Spearman correlation coefficient and p

value were calculated to assess the threshold effect.

Results

Study selection

A total of 561 potential studies were initially evaluated for the

meta-analysis on the results of the bibliographic search. After

primary screening checking titles and abstracts, 136 full-text

articles were selected for further evaluation of eligibility and

scanned rigorously in full text. The main reasons for exclusion

were reviews, not human studies and incorrect or mixed tumor

type. After exclusion of studies, a total of 40 eligible studies were

identified and finally included in our meta-analysis, comprising

2,805 NSCLC cases. A flowchart of the literature selection is

shown in Figure 1.

Characteristics of eligible studies

The forty-one eligible studies for meta-analysis were

published between 2007 and 2022 and included

FIGURE 3
Paired Forest plot of PLR and NLR of cfDNA testing in detecting KRAS mutation in NSCLC for 39 studies in the meta-analysis. Random-effects
(RE)model used. The square and horizontal bars represented study-specific PLR andNLR and 95% confidence interval (CI). Squares in different colors
represent a different diagnostic method (red = Targeted NSG; blue = ddPCR; yellow = both; black = other method). Diamonds represented the
overall results. The pooled PLR and NLR were 8.32 (95% CI 6.93–9.99) and 0.29 (95% CI 0.26–0.33), respectively.
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2,805 NSCLC patients from 13 countries. The mean number

of patients for each study was 70 (range 8–200). Notably, the

majority of studies were prospective (28/40) and only 12 out

of 40 were retrospective. Various types of methods have been

applied for the detection of KRAS mutation in cfDNA, and

the targeted NGS sequencing was the most common method

(21/40). The median age was 62.8 years (range 20–100),

54.4% of patients were male and 69.7% had a history of

smoking (former or current). Most of the patients were at

advanced stage (TNM III–IV). The main characteristics of the

40 included studies are shown in Table 1.

Diagnostic accuracy

Out of 40 eligible papers, 1 was excluded from our meta-

analysis (Xie et al., 2022) since only TP and FN were reported

in published data. The diagnostic accuracy of cfDNA analysis

for the detection of KRAS mutations in NSCLC, compared

with tumor tissue was shown in the Forest Plot for 39 studies,

including 2,666 NSCLC patients. The combined sensitivity

and specificity in the meta-analysis were 0.71 (95% CI

0.68–0.74) and 0.93 (95% CI 0.92–0.94), respectively

(Figure 2).

The PLR and NLR of cfDNA were 8.32 (95% CI 6.93–9.99)

and 0.29 (95% CI 0.26–0.33), respectively in the meta-analysis

(Figure 3). The DOR was 35.24 (95% CI 24.88–49.91). Figure 4

shows the SROC plot with AUC of 0.92 (SE = 0.0094), indicating

a high diagnostic accuracy of cfDNA test.

Heterogeneity and publication bias

The threshold effect is a major source of heterogeneity

among studies. Visual assessment of the ROC plane did not

reveal significant threshold effect (Figure 5). Spearman

correlation coefficient was 0.332 and the p value was 0.06,

confirming no significant evidence of threshold effect.

As revealed by the Forest Plots of accuracy data, significant

heterogeneity was detected according to the I2 values. Therefore, we

performed a meta-regression to detect the source of heterogeneity

analyzing the impact of country, study design, sample size, clinical

stage, and detectionmethods. However, none of the above covariates

contributed to heterogeneity (Table 2).

FIGURE 4
The summary receiver operating characteristic (SROC) curve. Points represent the pair of sensitivity and specificity at a given threshold for each
study. The area under the curve was 0.92 (SE = 0.094).
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Publication bias was estimated by funnel plot (Figure 6). The

visual inspection revealed a partial symmetry with p value =

0.5288, showing no evidence of publication bias.

Discussion

The need to identify a minimally invasive, efficient and

repeatable over time approach to detect tumor mutations in

NSCLC patients has always been the greatest challenge in the

medical clinic. Serial sampling of traditional biopsies is in fact not

feasible. Serial sampling may provide information on 1) relapse

or progression of disease, 2) treatment response, 3) survival and

4) temporal and spatial tumor heterogeneity. These elements are

of pivotal importance for the application of personalized

therapies tailored to the patient’s genetic background.

Recently, cfDNA analysis, namely “liquid biopsy”, has

emerged as a non-invasive, feasible and reliable approach to

investigate cancer DNA. However, its diagnostic accuracy for the

detection of KRASmutations remained controversial as different

studies report varying degrees of sensitivity and specificity. As

over one-third of lung adenocarcinomas harbour KRAS

FIGURE 5
The receiver operative curve (ROC) plane plot. Points represent the pair of sensitivity and specificity at a given threshold for each study.

TABLE 2 Resuts of meta-regression analysis.

Variable Coefficient Standard error p valuea RDOR 95% CI

Country −0.077 0.0857 0.3742 0.93 0.78–1.10

Sample Size 0.000 0.0060 0.9404 1.00 0.99–1.01

Clinical Stage −0.349 0.1732 0.0537 0.71 0.49–1.01

Detection Method 0.097 0.1444 0.5074 1.10 0.82–1.48

aTau-squared estimate.
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mutations, KRAS is therefore an important biomarker that might

be used in monitoring treatment, as a biomarker for relapse/

progression (disease monitoring), and as a prognostic biomarker.

We performed a large-scale meta-analysis of 40 papers and

2,805 NSCLC patients, reviewing controversial evidence for

the diagnostic role of cfDNA testing for the detection of KRAS

mutations in NSCLC. In our study, the pooled sensitivity for

cfDNA was 0.71 (95% CI 0.68–0.74) and the specificity was

0.93 (95% CI 0.92–0.94) (Figure 2). None of the properties

analyzed in the patient cohort appear to be specifically related

to sensitivity. We are aware that the resulting sensitivity is not

high enough as a diagnostic method. However, as a cancer

screening test, if the test guarantees non-invasiveness, a high

specificity is required instead of sensitivity. In this case, our

meta-analysis identified high specificity, and AUC more than

0.9, indicating an overall high diagnostic efficiency in

detection of KRAS mutations by cfDNA analysis (Figure 4).

Also the values of the Likelihood ratios (PLR, and NLR)

confirmed the informativeness of the test on cfDNA

(Figure 3).

Conducting our meta-analysis, however, we ran into some

noteworthy issues. First of all, there is high variability among

clinical stages and consequently in the treatment among the

40 studies (Table 1). Second, different methods with different

diagnostic performances were used to assess KRAS mutations

in cfDNA in different studies highlighting the importance of

method standardization. However, different studies using the

same method have obtained diametrically opposite results

from the point of view of diagnostic performance (see for

example Leighl et al., 2019 and Jiao et al., 2021 both using

Targeted NGS). This is due to the fact that numerous variables

beyond the method affect the accuracy of mutation detection.

Another issue is represented by the small size of some studies

that might lead to bias. Last but not least, in most of the

eligible studies, the analyzed tissues were formalin-fixed,

paraffin-embedded (FFPE) which determine DNA

degradation. All these factors represent important

limitations that potentially increase the detection bias.

Furthermore, it is not possible to overlook the difficulty in

defining true negative (TN) or false positive (FP) when

comparing detection rates of cfDNA analyses across

different studies. A result can turn out to be “negative” in

cfDNA if there really is no tumor DNA present or if tumor

DNA is present but not detectable due to low amounts and the

method is not sensitive enough to detect it. Similarly,

mismatch between mutations found in cfDNA and

mutations not found in tissue DNA does not necessarily

imply FP in cfDNA. A false positive result in cfDNA could

be due to DNA degradation of the tumor tissue; to a sampling

problem in tissue; or to setting a limit of detection (LOD)

threshold too low. Data on FP rates for each method and how

the limit of detection (LOD) was determined should be

FIGURE 6
Funnel plot. The graphical representation showed no significant publication bias (p = 0.53).
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available for each study so that they can be taken into account

for cross-study comparison.

Significant heterogeneity was detected as revealed by the

Forest Plots of accuracy data. However, Spearman Correlation

and ROC plane plot (Figure 5) suggested that this heterogeneity

was not caused by the threshold effect. The results of meta-

regression showed that none of the analyzed variables was the

source of heterogeneity (Table 2).

In conclusion, in the present meta-analysis of 40 studies

including more than 2,800 NSCLC patients, on the basis of

accumulated data, the detection of KRAS mutation in cfDNA

proves to be of adequate diagnostic accuracy. This is a novel

finding regarding KRAS since the previous published meta-

analyses focused on the diagnostic role of EGFR detection.

Targeted treatment against KRAS G12C is soon a reality, not

only for NSCLC. For this reason, we need to search and find

cancer patients with this mutation and we need sensitive and

accurate methods for detecting KRAS in cfDNA. The present

meta-analysis reveals that cfDNA analysis might be a valid

alternative for molecular analysis when tumor biopsy or

cytological specimens are not available. Given its non-invasive

nature and the resulted high specificity, cfDNA testing represents

a promising screening assay for detecting KRAS mutations in

cancer patients.
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