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A popular approach to reduce the high dimensionality resulting from genome-

wide association studies is to analyze a whole pathway in a single test for

association with a phenotype. Kernel machine regression (KMR) is a highly

flexible pathway analysis approach. Initially, KMR was developed to analyze a

simple phenotype with just one measurement per individual. Recently,

however, the investigation into the influence of genomic factors in the

development of disease-related phenotypes across time (trajectories) has

gained in importance. Thus, novel statistical approaches for KMR analyzing

longitudinal data, i.e. severalmeasurements at specific time points per individual

are required. For longitudinal pathway analysis, we extend KMR to long-KMR

using the estimation equivalence of KMR and linear mixed models. We include

additional random effects to correct for the dependence structure. Moreover,

within long-KMR we created a topology-based pathway analysis by combining

this approach with a kernel including network information of the pathway. Most

importantly, long-KMR not only allows for the investigation of the main genetic

effect adjusting for time dependencies within an individual, but it also allows to

test for the association of the pathway with the longitudinal course of the

phenotype in the form of testing the genetic time-interaction effect. The

approach is implemented as an R package, kalpra. Our simulation study

demonstrates that the power of long-KMR exceeded that of another KMR

method previously developed to analyze longitudinal data, while maintaining

(slightly conservatively) the type I error. The network kernel improved the

performance of long-KMR compared to the linear kernel. Considering

different pathway densities, the power of the network kernel decreased with

increasing pathway density. We applied long-KMR to cognitive data on
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executive function (Trail Making Test, part B) from the PsyCourse Study and

17 candidate pathways selected from Reactome. We identified seven nominally

significant pathways.

KEYWORDS

pathway analysis, kernel machine regression, longitudinal data, network, PsyCourse
Study

1 Introduction

Pathway analyses or gene-set analyses are association

studies, which test whole gene sets or pathways for

association with a phenotype of interest (Holmans, 2010;

Mooney and Wilmot, 2015). In contrast to a genome-wide

association analysis (GWAS) in which a great number of

individual SNP association tests are performed, a smaller

group of genes or SNPs is tested simultaneously. Thus, the

multiple testing problem of a GWAS is tremendously

mitigated. In the last two decades, many different general

approaches and particular tools have been developed for

pathway analysis (Holmans, 2010; Mooney and Wilmot,

2015; de Leeuw et al., 2016).

In this paper, we focus on kernel machine regression (KMR)

(Liu et al., 2007; Ge et al., 2016), a machine-learning algorithm

(Liu et al., 2007) with great flexibility. KMR is a semi-parametric

regression analysis (Liu et al., 2007) initially designed to analyze

case-control studies (Liu et al., 2008; Wu et al., 2010; Wu et al.,

2011) or quantitative data (Liu et al., 2007; Wu et al., 2011; Ge

et al., 2016). KMR models the environmental (non-genetic)

parameters parametrically and the high-dimensional genetic

data (e.g., genotype information) non-parametrically (Liu

et al., 2007; Freytag et al., 2013). The genetic data are

transformed into a similarity matrix containing for every pair

of individuals quantitative values, which describe the genetic

similarities of the pairs of individuals (Schaid, 2010; Ge et al.,

2016). This matrix is denoted as kernel matrix. The

transformation is performed by a kernel function, which can

have different forms depending on the desired similarity concept

(Freytag et al., 2013). There are many possibilities to model a

pathway as the only requirement of the kernel function is to be

positive semidefinite (Schaid, 2010; Schaid, 2010) For example, a

popular kernel is the linear kernel (Wu et al., 2010; Freytag et al.,

2013). New kernels have been also defined, e.g., a kernel adjusting

for size bias (Freytag et al., 2012) or a kernel integrating the

network information of a pathway (Freytag et al., 2013). The

latter was possible thanks to the development of different

pathway databases, e.g., Reactome (Jassal et al., 2019),

Pathway Commons (Rodchenkov et al., 2019) or KEGG

(Kanehisa et al., 2017). Different versions and extensions of

KMR have been developed to address various research

questions (for a summary see (Larson et al., 2019)). KMR

analyzing more complex phenotype data, e.g., family samples

(Malzahn et al., 2014; Yan et al., 2015) is just one example.

Longitudinal studies assess multiple, thus correlated,

measurements over time for each single individual

(Molenberghs and Verbeke, 2000; Caruana et al., 2015). They

enable researchers to study the time course of the investigated

phenotype. A number of statistical methods have been and are

still being developed especially in this context. An important

aspect of longitudinal studies is the frequently high number of

missing data or unequal measurement points (Caruana et al.,

2015). A popular method to overcome this challenge are linear

mixed models (LMM) (Molenberghs and Verbeke, 2000) in

which so-called random effects are added to correct for the

dependence structure of the different measurements. A

random effect enables the modeling of an individual

development for each subject. LMMs can handle missing

phenotype data under the assumption that the data are at

least missing at random (MAR) (Molenberghs and Verbeke,

2000).

In the genetic context, these LMMs can be applied to perform

longitudinal GWASs (Wendel et al., 2021). Using this, we

previously (Wendel et al., 2021) investigated the genetic

influence of individual SNPs on the course over time of

executive functions, which control and coordinate mental

processes. These GWASs demonstrated the versatility of

LMMs in genetic association studies. Thus, the next step is to

investigate pathways for association with longitudinal

phenotypes, for example, the genomic basis of the

longitudinal course of executive functions. For this, we can

exploit that LMMs share an estimation equivalence with KMR

models (Liu et al., 2007).

The aim of this work is to develop a longitudinal pathway

analysis to test for the association between genetic factors and the

longitudinal phenotype applying KMR and simultaneously

allowing integrating network information. To be able to

analyze longitudinal data, we extended KMR to long-KMR.

Other authors have also studied longitudinal data (Yan et al.,

2015; Ge et al., 2016; Wang et al., 2016) and created a KMR

extension (Yan et al., 2015; Yan et al., 2018). However, in this

extension only single genes can be tested for association (Yan

et al., 2018) and these genes can solely be modeled with a

weighted linear kernel. In our longitudinal pathway analysis,

the whole pathway can be modeled with different kernels

respectively prior to testing. For example, a linear kernel or a

network-based kernel (Freytag et al., 2013), which enables the

integration of network information in KMR can be applied.

Moreover, different genetic effects including main, interaction,
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and joint genetic (main and interaction) effects can be

considered. Thus, in long-KMR, we can model and test not

only a main genetic effect, but most importantly also a genetic

time-interaction effect. The latter translates to an association of

the pathway with the trajectory of the considered phenotype.

In a simulation study, we assessed the properties of long-

KMR regarding several aspects. We considered longitudinal

studies with two and four measurement points. We compared

the performance of long-KMR when applying a linear kernel or a

network kernel. We also studied the influence of the pathway

topology on the performance of the network kernel with a focus

on the density of the pathway.

Finally, as a real-world application, we use long-KMR on the

data from our previous longitudinal GWASs (Wendel et al.,

2021) on executive functions of the PsyCourse Study (Budde

et al., 2018). For this phenotype we chose several candidate

pathways to be investigated with long-KMR.

In summary, in this paper we first present the theoretical

aspects of long-KMR and the network kernel. We then describe

the simulation approach used to evaluate our method, and, lastly,

provide a real-world example of long-KMR.

2 Material and methods

In this section, we introduce the KMR analysis and its

extension to analyze longitudinal data. We describe our

simulation approach to investigate the type I error rate and

power. Lastly, we present an application of long-KMR as example

and give details on the PsyCourse Study data and the

pathways used.

2.1 Kernel machine regression models

Let us assume yi is a quantitative phenotype for individual

i (i � 1, . . . , n) with one measurement point per individual. We

assume for the entire article that the pathway tested is

represented as genotypes of the SNPs part of the pathway.

The SNPs are coded as 0, 1, or 2, representing the number of

minor alleles of the SNP in individual i. The genetic information

for individual i of all selected SNPs s is stored as genotype vector

gi. We regress gi on our phenotype of interest by applying the

following model:

yi � xiβ + h gi( ) + εi,

where yi is the phenotype of interest for individual i, xi represents

potential covariates, β is the regression coefficient vector, and h is a

non-parametric function. This function h ∈ HK, where HK is a

reproducing kernel Hilbert space with an inner product (Schaid,

2010; Ge et al., 2016). The reproducing kernel Hilbert space is

generated by a positive semidefinite kernel function k (Liu et al.,

2007; Ge et al., 2016). The mathematical characteristics of the

reproducing kernel Hilbert space (e.g., inner product) allows

approximating h as a linear combination of the kernel function k

(Liu et al., 2007; Schaid, 2010; Ge et al., 2016). The “kernel trick” (Ge

et al., 2016) specifies hereby that any positive semidefinite kernel

function can be used as k. We define the corresponding kernel

matrixK asK ≔ k(gi, gj) for any pair of individuals i and j of the
associated kernel function k (Schaid, 2010; Ge et al., 2016). Here, we

transform the high-dimensional n × s genotype matrix into a n × n

similarity matrix. The kernel matrix K describes the similarity

between each pair of individuals. By choosing a kernel, we can

specify how to model the concept of genetic similarity. For example,

we can use the popular linear kernel (LIN), which computes the

similarity for each pair of individuals i and j by multiplying their

genotype vectors gi and gj. The kernel matrix contains the elements

K(gi, gj) � gT
i gj (matrix notation: K � GGT). The linear kernel

assumes that each SNP contributes a random independent value in

an additive manner (Freytag et al., 2013). For the above model, we

assume that the random error εi ~ N (0, σ2ε ) and h ~ N (0, τK)
with K being the kernel matrix and τ a variance component. The

null hypothesis of our association test isH0: h � 0 being equivalent

to H0: τ � 0 (Liu et al., 2007; Wu et al., 2011). To test for

association, we perform a variance component test (Liu et al.,

2007; Wu et al., 2011).

The KMR model can be read as a LMM with h being

interpreted as a random effect (Liu et al., 2007; Ge et al.,

2016). The above model for a quantitative phenotype with

one measurement per individual can also be described as

LMM (in matrix notation) (Liu et al., 2007; Ge et al., 2016):

y � Xβ + h + ε,

where y is the vector of phenotypes for n individuals, X is the

design matrix, β is the regression coefficient vector of the fixed

effects, h ~ N (0, τK) is the random effect vector with K being

the kernel matrix, the random error ε is normally distributed. The

variance component test for this model (Liu et al., 2007; Ge et al.,

2016) is:

Qcross � 1
2σ2ε

y −Xβ̂0( )TK y −Xβ̂0( ),
where β̂0 are the estimates of the fixed effects under H0. For the

longitudinal extension, we adjust for the dependence structure of

the multiple measurements in the longitudinal data by including

additional random effects (Molenberghs and Verbeke, 2000).

Now we assume that yi is a quantitative longitudinal phenotype

for individual i (i � 1, . . . , n) with m measurement points. The

long-KMR model for individual i is:

yi � Xiβ + h gi( ) + Zibi + εi,

where yi is the phenotype vector of individual i, β is the fixed

effect vector, and bi the random effect vector. We assume that

only two random effects are added (random intercept and slope
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for time). Thus, we assume that bi ~ N (0, Di) with Di being a

2 × 2 covariance matrix and εi ~ N (0, Ri)withRi being am × m

covariance matrix, bi and εi are uncorrelated. Xi and Zi are two

designs matrices for the fixed and random effects, respectively.

The genotype vector gi and function h are given as above. To

obtain the test statistic of the extended variance component test,

we followed the steps proposed by (Liu et al., 2007; Yan et al.,

2015). Therefore, we look at the longitudinal model in matrix

notation considering the whole dataset:

y � Xβ + h G( ) + Zb + ε

where y is the phenotype vector, h ~ N (0, τK), b ~ N (0, D)
(D � diag(D1, . . . , Dn)) and ε ~ N (0, R) with

R � diag(R1, . . . , Rn). The design matrices are X �
(X1, . . . , Xn)T for the fixed effects and Z � diag(Z1, . . . , Zn)
for the random effects, with β and b being the fixed and random

effect vectors, respectively. The null hypothesis remains

H0: τ � 0. The altered test statistic is:

Qlong � 1
2

y −Xβ̂0( )TΣ̂−1
0 KΣ̂

−1
0 y −Xβ̂0( ),

where β̂0 are the estimates of the fixed effects under H0 and Σ̂
−1
0

are the inverse of the covariance-variance matrix under H0 with

Σ̂0 � R̂0 + ZD̂0ZT. The test statistic is a quadratic form and

follows a mixture of χ2 distributions with Qlong ~ ∑L
l�1λlχ21,

where λl are the eigenvalues of 12 V0
1
2Σ̂

−1
0 K Σ̂

−1
0 V0

1
2 withV0 � Σ̂0 −

X(XTΣ̂
−1
0 X)−1XT (Yan et al., 2015; Ge et al., 2016). We

computed the p-values with the Davies method (Davies, 1980).

Next, we will apply long-KMR to test a genetic (G)

interaction effect with time (t). Here, we multiply the time

vector of individual i, ti � 0, . . . , m − 1 with the genotype

vector gi of individual i. In addition to the main genetic

kernel (h(G)) this extended model contains a kernel

modelling the genetic time interaction effect (t × G, further

denoted as time-interaction effect). In matrix notation (whole

dataset) the model is:

y � Xβ + h1 G( ) + h2 t × G( ) + Zb + ε,

where ε ~ N (0, R), h1(G) ~ N (0, τ1K1) and

h2(t × G) ~ N (0, τ2K2). The notation follows the previous

long-KMR in matrix notation. When fitting the LMM in this

interaction model, we have to integrate K1 as random effect in

form of a variance-covariance matrix. This is complex and

computationally very extensive. We use two different

approaches to reduce the computation time. For the first

approach, we only include h2(t × G) in our model without

adjusting for the main genetic effect (h1(G)) altering the

LMM independent of any kernel matrix under the null

hypothesis. For the second approach, we adjust for the main

genetic effect by performing a principal component analysis

(PCA) on K1. This so-called kernel principal component

analysis (KPCA, (Schölkopf et al., 1997; Schölkopf et al.,

1998)) has been previously applied in different situations

(Schölkopf et al., 1997; Schölkopf et al., 1998; Gao et al.,

2011). We replace h1(G) by a number of top principal

components, which are added as fixed effects. By only

including additional fixed effects, we avoid complex variance

structures while adjusting for the main genetic effect. In both

approaches, we are interested in testing K2, modeling the time-

interaction effect for association. The null hypothesis is defined

asH0: τ2 � 0. The test statistic of long-KMR is slightly altered, as

K of Qlong is exchanged with K2 modeling the time-interaction

effect.

2.2 Network kernel

In long-KMR, we can also integrate network information on

the studied pathway by applying the network-based kernel

(Freytag et al., 2013) (noted as network kernel in the

following). The network kernel is defined as K � GANATGT,

where G is the genotype matrix with the genotypes for each

individual, A is an annotation matrix and N is an adjacency

matrix of the pathway. The annotation matrix contains elements

aργ ∈ (0, 1) describing whether a SNP ρ (ρ = 1, . . ., s) is mapped

to the gene γ (=1) or not (=0). The assignment of a SNP to a gene

is defined by its genomic location. We can adjust for different

gene sizes (= number of SNPs mapped) by dividing aργ by the

square root of the number of SNPs mapped to gene

γ (Freytag et al., 2013). The size-adjusted annotation matrix

replaces A in the network kernel. We distinguish these

network kernels by denoting the unadjusted kernel as NET

and the size-adjusted network kernel as ANET [similar to

(Freytag et al., 2013)]. The elements of the quadratic

adjacency matrix for a pathway are nγγ′ � 1, if genes γ and γ′
interact with each other, or zero otherwise. By definition (Freytag

et al., 2013), the genes all interact with themselves; thus, the main

diagonal of N contains only ‘1’s. We do not distinguish between

the different types of gene interaction (e.g., activation and

inhibition) owing to the characteristics of the studied

pathways (more details later). We slightly modify the network

(topology) of the pathway to ensure a positive semidefinite

kernel. We do not describe the details of these modifications

here; please refer to (Freytag et al., 2013) for more details.

2.3 Simulation study

We studied type I error rates and power in different scenarios

to assess the performance of long-KMR for different genetic

effects and the network kernel. The type I error rate is defined as

the proportion of simulations that have a p-value < α in the

simulations of the model with no genetic effects (null model).

Here we set α to equal 5%, 1%, 0.5%, and 0.1%, respectively. In

the scenarios in which we simulated genetic effects, we

determined the power as the proportion of simulations with a
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p-value <5% threshold. In total, we compared the power for three

different genetic effect models. We simulated two single-effect

models containing either a main genetic effect or a time-

interaction effect. We also created a more complex model, the

joint model, which comprises a main genetic effect and a time-

interaction effect. The joint model was only studied in a limited

number of scenarios, as portrayed in Table 1. For the single-effect

models, we had the same scenarios to evaluate the type I error

rates and the power. We assessed the influence of the number of

measurement points comparing two-measurement models with

four-measurement models. The type I error rates and respective

power of the linear kernel (LIN) and the network kernel (NET)

were compared. For the latter, we only used the unadjusted

network kernel (NET), as all genes had the same size. For two

measurement points representing a pre/post-analysis, we applied

the ANCOVA model (Table 1) to compare their performances

with long-KMR. For the four-measurement models, we

compared the performance of long-KMR with the previously

TABLE 1 Models of simulation study.

Model names Kernel Statistical model
(without
genetic effect)

Phenotype data Genetic effect model

Main
genetic

Time-
interaction

Joint

Two-measurement models

KMR-LIN-ANCOVA Linear kernel ANCOVA:
y2 � β0Xi + β1y1 + ε

complete data * * —

KMR-LIN-m2 Linear kernel KMR
(LMM): y � Xβ + Zb + ε

complete data * * —

KMR-LIN-m2_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.8-m2 Network kernel (pathway
d = 0.8)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * —

KMR-NET-d0.8-m2_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.5-m2 Network kernel (pathway
d = 0.5)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * —

KMR-NET-d0.5-m2_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.2-m2 Network kernel (pathway
d = 0.2)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * —

KMR-NET-d0.2-m2_25MAR 25% missing
data (MAR)

* * —

Four-measurement models

KMR-LIN-m4 Linear kernel KMR
(LMM): y � Xβ + Zb + ε

complete data * * *

KMR-LIN-m4_25MAR 25% missing
data (MAR)

* * —

KMR-LIN-m4_50MAR 50% missing
data (MAR)

* * —

KMR-NET-d0.8-m4 Network kernel (pathway
d = 0.8)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * *

KMR-NET-d0.8-m4_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.8-m4_50MAR 50% missing
data (MAR)

* * —

KMR-NET-d0.5-m4 Network kernel (pathway
d = 0.5)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * *

KMR-NET-d0.5-m4_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.5-m4_50MAR 50% missing
data (MAR)

* * —

KMR-NET-d0.2-m4 Network kernel (pathway
d = 0.2)

KMR
(LMM): y � Xβ + Zb + ε

complete data * * *

KMR-NET-d0.2-m4_25MAR 25% missing
data (MAR)

* * —

KMR-NET-d0.2-m4_50MAR 50% missing
data (MAR)

* * —

KMgene (comparison model)
(Yan et al., 2018)

Weighted linear kernel KMR
(LMM): y � Xβ + Zb + ε

complete data * — —

For each model, the kernel, the applied statistical models and the used phenotype data sets are displayed. For network kernel the pathway density (d) is given. The phenotype data can be

complete or with 25/50% of values missing at random (MAR). The addressed genetic effects (main genetic, time-interaction and joint effect) are indicated with an asterisk “*”.
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published KMgene package (Yan et al., 2018). Further, we

compared the analysis of complete phenotype data with

incomplete phenotype data with 25% or 50% of the data

missing [assuming missing at random mechanism (MAR)].

To evaluate the performance of the network kernel on

pathways with different characteristics, we focused on the

density (=d) of a pathway. This density is a graph-theoretical

characteristic defined as the ratio of the number of present

connections divided by the maximum number of possible

connections in a pathway (d ∈ [0, 1]). When we consider a

pathway as a graph in which the genes are the nodes and the

connections of the genes are the edges linking the nodes, the

density can be computed straightforwardly. We determined the

density of the original pathway after downloading the pathway

from the Reactome database, applying the igraph package (Csardi

and Nepusz, 2006). We selected the “signaling by ERBB4”

pathway [R-HSA-1236394, (Stern, 2019)] as foundation

pathway for our simulation study. The selection process for

“signaling by ERBB4” is described in detail in the section

Pathway Data. The “signaling by ERBB4” pathway has a

density of 0.46 but we denoted the pathway as d0.5 after

rounding up d = 0.46 (Figure 1A). In addition, we created

two artificial pathway topologies with different density

originating from the original “signaling by ERBB4” pathway.

We generated a high-density pathway with d = 0.81 (denoted as

d0.8, Figure 1B) and a low-density pathway with d = 0.20 (d0.2,

Figure 1C). Table 1 lists all the models studied with an overview

of the different settings.

We sampled genotypes for 10,000 individuals with

HAPGEN2 (Su et al., 2011) using common (MAF ≥ 0.05)

variants of chromosome one of the CEU sample of the

International HapMap Project (HapMap 3 release 2)

(Altshuler et al. 2010). In analogy to our foundation pathway

“signaling by ERBB4” with 19 genes (Figure 1), we created

19 “pseudo-” genes all with a size of 50 SNPs (in total:

950 SNPs). The 950 SNPs were simulated in the region

between 742 kbp and 112,709 kbp with a separation of

500 kbp between SNPs of the single “pseudo-” genes to

prevent LD. We assign the simulated SNPs to a “pseudo-”

gene. For each simulation setting, we created 100 smaller

genotype matrices each containing 950 SNPs and

1,000 individuals. To achieve this, we randomly drew

genotypes for 1,000 individuals from the previously simulated

10,000 individual sample (elementary matrix). For each of the

100 genotype matrices, we simulated 1,000 quantitative

phenotypes according to the LMM below, resulting in a total

number of 100,000 replications [similar to (Yan et al., 2015)].

For the null model corresponding to the null hypothesis of no

genetic effects, we simulated the quantitative phenotypes

according to the following LMM for an individual

i (i � 1, . . . , 1000):

yi � 0.5*X1i + 0.25*X2i + 0.2*ti + ui,

whereX1i is a binary time-invariant variable with a probability

of 0.5 (e.g., sex of individual i), X2i is normally distributed and

time-invariant with N (50, 5) (e.g., age at first measurement

point) and ti � 0, . . . , m − 1 where m equals the total number

of measurement points (m = 2 or m = 4). Random error and

random effects are modelled by ui, which follow a multivariate

normal distribution with mean zero and Var(yi). Var(yi) is
defined as follows:

Var yi( ) � Zi
σ2intercept σcov
σcov σ2time

( )ZT
i + σ2εIm×m

where Im×m is the identity matrix, σ2intercept � σ2time � σ2ε � 1 and

σcov � −0.5. We selected the parameters similarly to (Yan et al.,

2015). For the missing phenotype simulations, we assumedMAR

FIGURE 1
Graphical illustration of the “signaling by ERBB4” pathway (A) original form without the chemical compound (d0.5), (B) the simulated high-
density pathway (d0.8), (C) the artificially created low-density pathway (d0.2). The red vertices are the three defined causal genes (NRG2, ERBB4 and
DLG4).
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and generated the missing phenotypes with the R package mice

(van Buuren and Groothuis-Oudshoorn, 2011).

For the power simulations, we added genetic effects to our

null model to simulate the phenotypes. All models comprised

three causal “pseudo-” genes each with three causal SNPs (in

total: nine causal SNPs). The effect sizes βk for each SNP had the

same value. The effect size for the joint model was 0.04. For the

single-effect models, we studied three different scenarios with

three different effect sizes β � 0.04, 0.06, and 0.08. To compare

the different network topologies, we defined the genes NRG2,

ERBB4, and DLG4 of the “signaling by ERBB4” pathway as the

causal genes (red nodes, Figure 1) based on their central position

in the pathway. The main genetic effect model adds a sum

consisting of the additive effect of the causal SNPs to the

phenotype (∑9
k�1βk*SNPik) for each individual i. The time-

interaction effect includes only the sum of the product of the

causal SNPs and the time (∑9
k�1βk*(SNPik*tij)) at each time

point j for individual i. The joint model comprised both sums

(∑9
k�1βk*SNPik +∑9

k�1βk*(SNPik*tij)). In the first model, the

main genetic kernel (h(G)) is tested. The latter models test

the time-interaction kernel (h(t × G)) for association. In the

joint model, the main genetic kernel was computed with the

linear kernel. Here, we performed a principal component analysis

on the main genetic kernel to adjust for the main genetic effect to

simplify computational complexity and gain speed.We added the

top two principal components as fixed effects to our model.

To compare the type I error rate and power of long-KMR

with KMgene (Yan et al., 2015; Yan et al., 2018) we performed a

simulation with KMgene for 1,000 individuals and four

measurement points. Here, only the main genetic effect model

was simulated because of the characteristics of KMgene (Yan

et al., 2018). For every simulated gene (in total: 19, each with

50 SNPs), we obtained a gene-level p-value, which we combined

with the Fisher’s method (Fisher, 1925; Larson et al., 2017) to

receive a pathway p-value. This p-value combination was

performed with the R package metap (Dewey, 2022).

2.4 Application to real data

2.4.1 The PsyCourse Study
The PsyCourse Study is a longitudinal, multi-center study

comprising patients with diagnoses from the affective-to-

psychotic spectrum and neurotypical individuals. A large

battery of different phenotypes, including demographics,

cognition, self- and observer rating scales, are assessed at up

to four measurement points each 6 months apart (Budde et al.,

2018). For our application, we analyzed 1,594 genotyped

individuals including patients from the affective-to-psychotic

spectrum (411 bipolar I disorder, 113 bipolar II disorder,

466 schizophrenia, 90 schizoaffective disorder,

10 schizophreniform disorder, 6 brief psychotic disorder and

94 with recurrent depression) and 404 control individuals. The

diagnoses were determined according to the criteria in the

Diagnostic and Statistical Manual of Mental Disorders, Fourth

Edition (DSM-IV); a subset of individuals suffering from

schizophrenia (45 individuals) was diagnosed according to

ICD-10 criteria. Different centers in Germany and Austria

conducted the recruitment of the study participants. All

individuals provided written informed consent, and the study

protocol was approved by the respective ethics committees at

each study center [see ref. (Budde et al., 2018)]. Based on their

symptoms, the individuals were broadly distinguished into an

“affective” group (618, predominantly affective symptoms

including bipolar disorder I and II and recurrent depression)

or a “psychotic” group (572, predominantly psychotic symptoms

encompassing schizophrenia, schizoaffective, schizophreniform,

and brief psychotic disorder).

As phenotype of interest, we chose the Trail Making Test,

part B (TMT-B) (Bowie and Harvey, 2006). TMT-B is applied to

assess set-shifting, one of the three latent core skills of executive

functions (Diamond, 2013; Friedman et al., 2016), a specific

group of cognitive abilities. During the test, an individual is

required to connect numbers (numbers: 1–26) and letters of the

alphabet in ascending alternating order, for which the time (in

seconds) to finish this task is measured to represent the test score.

Study participants with a time >300 s were set to 300 s according
to the recommendation by (Strauss et al., 2006). The higher the

TMT-B score of an individual is, the greater the cognitive

impairment.

Genotyping was performed with the Illumina Infinium

Global Screening Array-24 Kit (version 3.0 or version 1.0) and

the imputation took place on the Michigan imputation server

(Das et al., 2016) with the haplotype reference consortium as

reference panel. Quality control (QC) steps were performed

according to standard procedures described elsewhere

(Smigielski et al., 2021). In the analysis, we included

approximately 3.5 million imputed SNPs with a MAF >0.05.
We used PLINK v1.9 (Chang et al., 2015) (https://www.cog-

genomics.org/plink/) to compute the ancestry principal

components.

2.4.2 Pathway data
We focused on pathways on the Reactome database (Jassal

et al., 2019) downloaded from Pathway Commons database

Version 12 (Rodchenkov et al., 2019) (Reactome version 69,

date: 01|14|22). First, we selected pathways based on different

keywords connected to executive functions including dopamine,

serotonin, GABA, glutamate, NDMA, synaptic, voltage-gated

potassium channels, plasticity, and prefrontal cortex. The

keywords resulted in 130 pathways, which we reduced to the

17 pathways finally studied (Table 2). We selected the

17 pathways according to different criteria. First, we only used

pathways that we were able to download. The pathway had to be

between 15 and 100 genes in size, and the number of chemical

compounds (CHEBI) in the pathway had to be at most five. For
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each pathway, we specified the density (d) by applying the igraph

package (Csardi and Nepusz, 2006) and included only pathways

with d ≤ 0.95. The 17 selected pathways with specific

characteristics e.g., number of genes, density, and average

degree are displayed in Table 2. The average degree of a

pathway is the average number of connections of a gene

(=node). Originating from the list of 17 pathways, we chose

“signaling by ERBB4” (Stern, 2019) (https://reactome.org/

content/detail/R-HSA-1236394) as foundation pathway for our

simulation study. This pathway was selected for its moderate size

of 19 genes and because it only contains one CHEBI. The

network consists of only one graph component, also denoted

as connected (i.e., any gene can be reached from any other gene

via a path). Most importantly, the pathway has an intermediate

density of 0.46, which was a good basis for further artificial

pathways we generated with high and low densities. “Signaling by

ERBB4” is connected to schizophrenia (Banerjee et al., 2010) and

schizophrenia endophenotypes, e.g. cognitive functions

(Banerjee et al., 2010; Tian et al., 2017; Shi and Bergson,

2020) and thus is biologically very interesting. We deleted the

CHEBI, as SNPs are the genomic basis in our analysis and a

CHEBI cannot be assigned.

2.4.3 Statistical analysis
Each of the 17 pathways was tested for association with

TMT-B. To fulfil the normality assumption, the TMT-B was log-

transformed (lgTMT-B). We included the following fixed effects

in the model: sex, age at first measurement point, diagnostic

TABLE 2 Selected pathways investigated in the real-data example.

Pathway name Reactome
identifier
(R-HSA-xxx)

URL Pathway Characteristics

No.
Genes

Average
degree

Density
(d)

NCAM1 interactions 419037 https://reactome.org/content/detail/
R-HSA-419037

37 3.40 0.093

Receptor-type tyrosine-protein phosphatases 388844 https://reactome.org/content/detail/
R-HSA-388844

20 3.10 0.163

MECP2 regulates neuronal receptors and channels 9022699 https://reactome.org/content/detail/
R-HSA-9022699

18 3.00 0.177

EPHB-mediated forward signaling 3928662 https://reactome.org/content/detail/
R-HSA-3928662

33 7.45 0.233

Synaptic adhesion-like molecules* 8849932 https://reactome.org/content/detail/
R-HSA-8849932

22 4.67 0.233

Transcriptional Regulation by MECP2 8986944 https://reactome.org/content/detail/
R-HSA-8986944

17 4.00 0.250

Neurexins and neuroligins 6794361 https://reactome.org/content/detail/
R-HSA-6794361

57 14.39 0.257

EPH-Ephrin signaling 2682334 https://reactome.org/content/detail/
R-HSA-2682334

22 5.45 0.260

Regulation of MECP2 expression and activity 9022692 https://reactome.org/content/detail/
R-HSA-9022692

31 8.00 0.267

Signaling by ERBB4* 1236394 https://reactome.org/content/detail/
R-HSA-1236394

19 8.32 0.462

Trafficking of AMPA receptors 399719 https://reactome.org/content/detail/
R-HSA-399719

17 7.88 0.493

NCAM signaling for neurite out-growth* 375165 https://reactome.org/content/detail/
R-HSA-375165

21 11.00 0.524

Assembly and cell surface presentation of NMDA
receptors

9609736 https://reactome.org/content/detail/
R-HSA-9609736

24 12.08 0.525

Interaction between L1 and Ankyrins 445095 https://reactome.org/content/detail/
R-HSA-445095

29 20.28 0.724

Negative regulation of NMDA receptor-mediated
neuronal transmission

9617324 https://reactome.org/content/detail/
R-HSA-9617324

21 16.86 0.843

Long-term potentiation* 9620244 https://reactome.org/content/detail/
R-HSA-9620244

23 19.22 0.874

Ion channel transport* 983712 https://reactome.org/content/detail/
R-HSA-983712

24 21.83 0.949

The pathways are listed according to ascending density and with links to their Reactome entry. The foundation pathway in our simulation study is printed in bold, the pathways with a

p-value <0.1 in our application are further discussed and are labelled with an asterisk “*“.
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group (affective, psychotic, and control), time, and the top five

ancestry principal components. A random intercept and a

random slope for the time effect were also added. We tested

each pathway for a potential main genetic and a time-interaction

effect. The linear kernel (LIN), the unadjusted network (NET),

and the size-adjusted network kernel (ANET) were applied. We

assigned a SNP to a gene of a pathway based on its genomic

location with a mapping window of ± 500 kbp on each side of the

gene. For the multiple testing correction, we considered the

overlap of the tested pathways and computed the number of

effective pathways (Peff) according to (Hendricks et al., 2013;

Larson et al., 2017). We computed a 17 × 325 matrix W for the

17 tested pathways and the 325 genes comprised in the

17 pathways with

wrγ �
1			
Pr| |√ , if gene γ ∈ pathway r

0, otherwise

⎧⎪⎪⎨⎪⎪⎩ ,

where |Pr| is the number of genes contained in pathway r. From

the product of this matrix with its transpose, we computed the

eigenvalues to obtain Peff according to the Gao approach

(Hendricks et al., 2013). We determined the number of

eigenvalues required to fulfil ∑Peff
r�1 |λr |∑P

r�1 |λr |
≥ c, setting c to

0.95 leading to Peff � 15. We set c to 0.95, as it was sufficient

for us that the effective number of pathways explains 95% of the

total variance. The adjusted significance level was computed as

αGao � 0.05
15 � 0.0033.

2.5 Code availability

We performed all analyses with R (R Core Team, 2021),

which we also used to implement the KMR for quantitative

longitudinal data and cross-sectional binary and quantitative

data as an R package kalpra (kernel approach for longitudinal

pathway regression analysis) available at https://gitlab.gwdg.de/

bernadette.wendel/kalpra. In addition to the linear and network

kernels, a quadratic kernel is also available. The pathway

information can be directly downloaded and transformed into

an annotation and adjacency matrix. The computational aspects

for some example analyses are provided in Supplementary

Table S1.

3 Results

3.1 Simulation studies

The type I error rate in our simulation study is defined, as

mentioned above, as the proportion of simulations for which we

obtained a p-value < α (α = 5%, 1%, 0.5%, and 0.1%) in the null

simulations without genetic effects. The type I error rates were

maintained overall at the different α thresholds for the models in

our simulation scenarios. We did detect individual type I error

rates only slightly exceeding the respective significance levels,

e.g., 5% and 1%, for three models (KMR-NET-d0.5-m2, KMR-

NET-d0.8-m2, and KMR-NET-d0.8-m4). However, all the values

lie in the range of expected random variations (confidence

intervals of the null model simulations carried out, data not

shown). KMR-NET-d0.8-m2 presented the largest increase in

type I error of 5.09% at the significance level of 5%. Table 3

displays the type I error rates. The error rates of the different

network kernels (all densities) were overall higher compared to

the linear kernel and were closer to the nominal level. The

combined pathway p-values of the KMgene analysis revealed

an inflation of the error rates. The error rates for the analyses of

the missing aspect for the different network kernel were also

maintained (Supplementary Table S2). Figure 2 displays a QQ-

plot of the distribution of the multiple error rates for all models

analyzing complete data distinguished between the two-

measurement and four-measurement models including KMgene.

For the two single-genetic-effect models (main genetic and

time-interaction model), the power comparison of the two-

measurement models revealed that the LMM had the highest

power independent of effect size and for either kernel. ANCOVA

had the lowest power for the two-measurement models in

comparison. Table 4 displays the results for the effect size β =

0.04. Increasing the number of measurement points resulted in

an improvement of the power for long-KMR, in particular for the

time-interaction effect (an increase from 21% to 52% (time-

interaction effect) compared to 33%–36% (main genetic effect)).

Overall, the time-interaction effect yielded a higher power for the

four-measurement models, especially for the smaller effect sizes

0.04 (Table 4) and 0.06 (Supplementary Table S3). An additional

power benefit compared to the linear kernel was achieved when

applying the network kernel. For the main genetic effect with

effect size 0.04, the network kernel in the two-measurement

models demonstrate a higher power than KMR-LIN-m4.

However, the power gain for the network kernel depends on

the pathway density. The power increases with decreasing

density (d0.2 > d0.5 > d0.8). A direct comparison of the

power for the linear and network kernels for the four-

measurement models is displayed in Figures 3A,B for the

main genetic effect and the time-interaction effect,

respectively. The power differences between KMR-LIN-

m4 and KMR-NET-d0.8-m4, the pathway with the highest

density, fluctuated in the different settings (Table 4;

Supplementary Tables S3,S4). In the joint modeling of main

genetic and time-interaction effects, the network kernel with the

lowest density displayed the highest power. Table 5 illustrates the

results for a genetic effect size of 0.04. Here, at the significance

level of 5% the linear kernel had the second highest power

followed by KMR-NET-d0.5-m4 and KMR-NET-d0.8-m4

(Table 5). As displayed in Figure 3C, the power of LIN-m4
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and KMR-NET-d0.5-m4 are very similar at different significance

levels.

The analyses performed with different percentages of missing

data revealed similar features for the single-effect models, with a

general decrease of power compared to the analysis of a complete

phenotype data set (Table 4). In general, the power increased

with increasing effect sizes (β = 0.04, 0.06, and 0.08). For

example, for KMR-LIN-m4 testing the main genetic effect, the

power increased from 36% (β = 0.04) to 78% (β = 0.06,

Supplementary Table S3), and then to 98% (β = 0.08,

TABLE 3 Type I error rates of the simulation studies.

Models Estimated type I error rate (%)

α = 5% α = 1% α = 0.5% α = 0.1%

KMR-LIN-ANCOVA 4.33 0.79 0.37 0.07

KMR-LIN-m2 4.37 0.78 0.38 0.07

KMR-NET-d0.8-m2 5.09 1.00 0.50 0.09

KMR-NET-d0.5-m2 5.02 1.01 0.48 0.07

KMR-NET-d0.2-m2 4.96 0.96 0.50 0.09

KMR-LIN-m4_25MAR 4.47 0.84 0.40 0.08

KMR-LIN-m4_50MAR 4.38 0.82 0.41 0.09

KMR-LIN-m4 4.32 0.78 0.38 0.07

KMR-NET-d0.8-m4 4.93 0.92 0.44 0.11

KMR-NET-d0.5-m4 4.83 0.92 0.45 0.07

KMR-NET-d0.2-m4 4.48 0.94 0.45 0.08

KMgene* Yan et al. (2018) 5.31 1.13 0.57 0.11

Simulated type I error for tests at significance levels of α = 5%, 1%, 0.5% and 0.1% are displayed. The simulations are based on 100,000 runs each with 1,000 individuals. *For comparability,

the single gene-level p-values of KMgene are combined to a pathway p-value using Fisher’s method.

FIGURE 2
QQ-plots for the type I error rate for our simulation studies divided for the (A) two-measurement and (B) four-measurement models and the
comparison model KMgene.
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Supplementary Table S4). In the pathway analysis, the

comparison model KMgene yielded a significantly lower

power compared to KMR-LIN-m4 for the same simulation

scenario (N = 1,000, m = 4). This effect increased with

increasing effect size β.

3.2 Application to the PsyCourse Study

In our real-world data sample, we analyzed 1,518 individuals

with at least one TMT-B measurement including 591 “affective,”

533 “psychotic,” and 394 mentally healthy individuals. The mean

TABLE 4 Power results of the simulation study.

Genetic effect

Main genetic effect Time-interaction effect

Models Complete 25MAR 50MAR Complete 25MAR 50MAR

KMR-LIN-ANCOVA 12.48% [12.28; 12.69] — — 5.16% [05.02; 05.30] — —

KMR-LIN-m2 33.09% [32.79; 33.38] 25.26% [24.99;
25.53]

— 21.28% [21.02; 21.53] 07.12% [06.96;
07.28]

—

KMR-NET-d0.8-m2 39.46% [39.15; 39.76] 31.66% [31.37;
31.95]

— 27.14% [26.85; 27.43] 18.92% [18.68;
19.17]

—

KMR-NET-d0.5-m2 42.10% [41.78; 42.41] 33.70% [33.41;
33.99]

— 28.68% [28.38; 28.97] 19.87% [19.62;
20.12]

—

KMR-NET-d0.2-m2 43.68% [43.36; 43.99] 35.18% [34.88;
35.48]

— 29.81% [29.49; 30.12] 20.68% [20.43;
20.94]

—

KMR-LIN-m4 35.68% [35.38; 35.96] 31.00% [30.72;
31.29]

23.10% [22.83;
23.36]

51.72% [51.41; 52.03] 44.61% [44.30;
44.91]

31.36% [31.07;
31.65]

KMR-NET-d0.8-m4 42.24% [41.93; 42.56] 37.66% [37.36;
37.96]

29.42% [29.14;
29.70]

57.62% [57.32; 57.93] 50.66% [50.35;
50.97]

38.57% [38.27;
38.87]

KMR-NET-d0.5-m4 44.83% [44.51; 45.15] 39.86% [39.56;
40.16]

31.21% [30.93;
31.50]

61.05% [60.75; 61.35] 54.10% [53.79;
54.41]

40.77% [40.47;
41.08]

KMR-NET-d0.2-m4 46.86% [46.54; 47.18] 41.76% [41.46;
42.06]

32.87% [32.58;
33.16]

63.28% [62.98; 63.59] 56.12% [55.81;
56.43]

42.43% [42.13;
42.74]

KMgene* (Yan et al., 2018) 31.02% [30.74; 31.31] — — — — —

Simulated power to detect an effect of size 0.04 with a test at significance levels of α = 5% is displayed. The simulations are based on 100,000 runs each with 1,000 individuals. Power

estimates together with 95% confidence interval are presented for genetic main and time-interaction effects. Phenotype data were either complete or with 25/50% of values missing at

random (MAR). Model names correspond with Table 1.

*For comparability, the single gene-level p-values of KMgene are combined to a pathway p-value using Fisher’s method.

FIGURE 3
Comparison of the power for the four-measurement models (KMR-LIN, KMR-NET-d0.2, KMR-NET-d0.5, KMR-NET-d0.8) with complete
phenotype data and effect size β = 0.04 for the different genetic effect models with (A) the main genetic (B) the time-interaction and (C) the joint
effect in our simulation study.
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age at the first measurement point was 41 years [sd: 13.8] 48% of

the samples were female (for more details see Supplementary

Table S5). At all four measurement points, the psychotic group

attained the highest TMT-B score; only at measurement points

1 and 3 were the differences for the psychotic and affective groups

significant (see CI of Supplementary Figure S1). The control

TABLE 5 Power comparison for main, time-interaction and joint effects.

Models Genetic effect

Main genetic effect Time-interaction effect Joint effect

KMR-LIN-m4 35.68% [35.38; 35.96] 51.72% [51.41; 52.03] 71.55% [71.27; 71.83]

KMR-NET-d0.8-m4 42.24% [41.93; 42.56] 57.62% [57.32; 57.93] 64.47% [64.16; 64.78]

KMR-NET-d0.5-m4 44.83% [44.51; 45.15] 61.05% [60.75; 61.35] 69.44% [69.14; 69.74]

KMR-NET-d0.2-m4 46.86% [46.54; 47.18] 63.28% [62.98; 63.59] 73.23% [72.95; 73.50]

Simulated power to detect an effect of size 0.04 with a test at significance levels of α = 5% is displayed. The simulations are based on 100,000 runs each with 1,000 individuals. Power

estimates together with 95% confidence interval are presented for genetic main, time-interaction and joint effects. Model names correspond with Table 1. The adjustment for the main

genetic effect in the joint genetic effect was performed by adding the top two principal components of a PCA on a main linear kernel.

TABLE 6 Results of the real-data analyses without outlier.

Kernel type Genetic effect tested Pathway p-value

Linear kernel (LIN) Main genetic effect Synaptic adhesion-like molecules 0.0389

NCAM signaling for neurite out-growth 0.0739

Ion channel transport 0.1029

Regulation of MECP2 expression activity 0.2101

MECP2 regulates neuronal receptors and channels 0.2237

Linear kernel (LIN) Time-interaction effect Ion channel transport 0.0089

MECP2 regulates neuronal receptors and channels 0.2738

Synaptic adhesion-like molecules 0.3202

Long-term potentiation 0.3391

Receptor-type tyrosine-protein phosphatases 0.3579

Network kernel (NET) Main genetic effect Synaptic adhesion-like molecules 0.0171

NCAM signaling for neurite-growth 0.0472

Signaling by ERBB4 0.0496

Long-term potentiation 0.0910

MECP2 regulates neuronal receptors and channels 0.1038

Network kernel (NET) Time-interaction effect Synaptic adhesion-like molecules 0.2282

NCAM1 interactions 0.2551

Long-term potentiation 0.2943

Neurexins and neuroligins 0.3341

Trafficking of AMPA receptors 0.4404

Size-adjusted network kernel (ANET) Main genetic effect Synaptic adhesion-like molecules 0.0174

Signaling by ERBB4 0.0419

NCAM signaling for neurite out-growth 0.0548

Long-term potentiation 0.0886

MECP2 regulates neuronal receptors and channels 0.1059

Size-adjusted network kernel (ANET) Time-interaction effect Synaptic adhesion-like molecules 0.2429

NCAM1 interactions 0.2498

Long-term potentiation 0.2998

Neurexins and neuroligins 0.3629

Trafficking of AMPA receptors 0.4866

The five top ranked pathways (according to p-value) are listed for each kernel and genetic effect (main genetic and time-interaction effect). Nominal significant (p-value <0.05) pathways are
printed in bold.
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group demonstrated at each measurement point a significant

difference and attained the lowest TMT-B score (Supplementary

Figure S1). Previously, we identified a phenotypic outlier, an

individual with the highest possible score at each measurement

point assessed. Here we focused on the results without the outlier.

The results did not change qualitatively when removing the

outlier (data not shown).

Thirteen of the 17 tested pathways overlapped at least with

one other pathway in at least one gene. The four independent

(i.e., pathways not overlapping) were “ion channel transport,”

“EPH-ephrin signaling,” “receptor-type tyrosine-protein

phosphatases,” and “regulation of MECP2 expression and

activity” (Table 2). We did not find any pathways significantly

associated with the phenotype TMT-B after multiple testing

correction (p-value <0.0033 = αGao) for either applied kernel

(LIN, NET, and ANET). However, we identified seven pathways

in total as achieving a p-value <0.05, which are represented in

bold in Table 6 with the respective kernel used. For example, the

“synaptic adhesion-like molecules” pathway is nominally

significant for the main genetic effect for ANET, NET, and

LIN. The “signaling by ERBB4” pathway, which poses as the

foundation of our simulation, was nominally significant with all

three kernels when testing the main genetic effect. For the time-

interaction effect, we identified only one pathway, “ion channel

transport,” as nominally significant. This pathway has the

smallest p-value of all pathways (0.0089). To compare the

different kernels, we ranked all pathways according to their

p-values. Table 6 lists the top five pathways for each kernel

stratified by the main genetic and time-interaction effects. For

both network kernels, we noted a very similar ranking of the top

five pathways in the respective genetic effects, whereas for the

linear kernel the detected pathways varied between the genetic

effect models. Considering the p-value ranking, the “synaptic

adhesion-like molecules” pathway stood out as the one with

smallest p-value (rank 1) in all analyses.

4 Discussion

Here we present long-KMR, a topology-based pathway

analysis method for longitudinal data, which applies kernel

machine regression. The methodological basis of long-KMR is

presented. To create long-KMR the connection of KMR and

LMM are exploited. In addition, we use the network kernel

(Freytag et al., 2013) integrating network information into the

model. A simulation study is conducted to assess the

performance of long-KMR. The models applied in the

simulation study are displayed in Table 1. Different aspects

are studied, including the influence of the number of

measurement points and varying pathway densities. We

modeled and tested a main genetic effect and a time-

interaction effect for association, the latter testing the

association of a pathway with the trajectory of the phenotype

TMT-B. Furthermore, we considered an approach to analyze a

joint model containing the main genetic effect and the time-

interaction effect in a computationally effective way. Lastly, we

applied long-KMR to a cognitive phenotype from the PsyCourse

Study (Budde et al., 2018).

4.1 Simulation studies

4.1.1 Number of measurements per individual
As expected, the power of long-KMR increases with growing

number of measurement points, in particular for the time-

interaction effect. This can be traced back to the information

that is added to the model at each measurement point, increasing

the probability of detecting an effect. Thus, we also identified a

larger power loss when analyzing the time-interaction effect with

incomplete phenotype data (missing measurements).

4.1.2 Network kernel
The performance of long-KMR improves further when we

apply the network kernel instead of the linear kernel, in particular

in the single-effect models. We observe that the network kernel

has at least the same power as the linear kernel. The power benefit

of the network kernel is more pronounced when testing in the

presence of smaller genetic effect sizes. For larger genetic effect

sizes the power is already extremely high (approx. 98%–99%,

Supplementary Table S4), thus the power increase is less

noticeable. This power gain is due to the integration of

additional pathway information on gene interactions and

network topology (Freytag et al., 2013). Here, the topology

characteristics of the pathway network play an important role.

As the network kernel was developed to exploit the connection of

a pathway (Freytag et al., 2013) we studied the influence of the

pathway density, identifying a power increase with decreasing

pathway density. The higher the density, the more the respective

power of network and linear kernel converged. Mathematically, a

pathway with many connections (high density) leads to a denser

adjacency matrixN, i.e.,N contains mainly ‘1’s. Thus, we do not

add a lot of specific information when multiplying GA with N

(see definition of network kernel). We integrate more noise into

the kernel (whenN is highly dense) as we sum up the same effects

(sum of rows) and only inflate the similarity values artificially

(higher range). Thus, we exclude variations and cover potential

effects with noise. Consequently, a candidate pathway should

preferentially be studied with respect to its characteristics before

applying the network kernel when performing long-KMR.

In the joint model including both main and time-interaction

effect, the network kernel demonstrated a slightly different

performance for different pathway densities. We consider four

measurement points only. The network kernel with density 0.2

(lowest density) still has the highest power but only slightly

higher when compared to the linear kernel (approx. 72%–73%).

The network kernels with densities 0.5 and 0.8 have surprisingly
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low power compared to the linear kernel. This phenomenon is

perhaps due to the simulation of the genetic effect as purely linear

effect and enhanced by the application of two different kernel

functions in onemodel. We simulate the genetic effects in a linear

fashion and thus we observe the performance of the network

kernel in worst-case scenarios. Nevertheless, the network kernel

improved long-KMR slightly when the pathway density is not too

high. In general, long-KMR is preferable except when testing a

very dense pathway. The latter should be acknowledged and

considered when interpreting the results of long-KMR under a

specific kernel.

It should also be taken into account that a possible

misspecification of a pathway, for example, in the form of

wrongly described gene connections leads to an inaccurate

pathway topology and pathway characteristics, e.g., density. This

can lead to power changes in the analysis. Thus, one of the greatest

challenges to topology-based pathway analyses remains the possible

inaccuracy and perhaps incompleteness of the studied pathways.

Here, future work is required to minimize possible

misclassifications. In the future, it would be also worthwhile

analyzing other pathway characteristics, e.g., the betweenness

centrality or diameter of the pathway, and their influence on

power of the long-KMR with the network kernel. However, these

aspects should also be considered beforehand in one-measurement

settings in order to determine any indication of the performance

being affected and thus keep the computational costs associated with

the analysis of an extensive longitudinal scenario down to an

acceptable level. Additionally, more complex simulation models

could be considered, including e.g., genetic effect models in

which causal SNP effects interact with each other and the causal

SNPs vary between main and interaction effects. Here it is expected

that these scenarios are even more advantageous for the network

kernel. However, this exceeds the scope of this communication.

4.1.3 Comparison of long-KMR with ANCOVA
and KMgene

When comparing the different two-measurement models

either for the main effect or for the time-interaction effect,

long-KMR has the higher power and is the preferred option,

in spite of its longer computation time, in particular when using

the network kernel. As expected ANCOVA has lower power.

Note that the ANCOVA model only uses the second

measurement point as dependent variable (Table 1) and loses

information regarding the time effect. For the main genetic effect,

we even observed that by applying the network kernel compared

to the linear kernel, the power loss resulting from the smaller

number of measurement points is reduced.

For the four-measurement models the comparison with

KMgene (Yan et al., 2015; Yan et al., 2018) on pathway level

reveals that our long-KMR has higher power. In addition, the

KMgene type I error rates were slightly inflated (Table 3) for the

Fisher method. Thus, we used a second p-value combination

approach according to Stouffer (Larson et al., 2017), yielding

even slightly more inflated p-values (data not illustrated). Thus,

our approach represents the suitable choice when analyzing a

whole pathway. KMgene remains a solid approach when

analyzing single genes.

4.2 Application to the PsyCourse Study

In our application, a total of seven pathways were nominally

significant (Table 6). Six of the seven pathways were associated with

TMT-B when testing for the main effect. We looked more closely at

the pathways with a p-value <0.1, i.e., “synaptic adhesion-like

molecules,” “signaling by ERBB4,” “long-term potentiation,” and

“NCAM signaling for neurite growth.” The first three pathways

contain the gene DLG4. This synaptic gene encodes for the density

protein 95 (PSD95) and plays a critical role in the activity regulation

of NMDA (N-methyl-D-aspartate) receptors in schizophrenic

patients (Cheng et al., 2010; Tian et al., 2017). It is important for

learning and memory (Tian et al., 2017) and as a predictor of

cognitive deficits (Fan et al., 2018). DLG4 is also part of the complex

DLG4-NMDA-DLGAP1, which was associated with influencing

executive functions, in particular the set-shifting abilities (cognitive

flexibility) in attention deficit hyperactivity disorder individuals (Fan

et al., 2018). NMDA receptors, which are highly influenced by

DLG4, are important inmany neuropsychiatric disorders that have a

cognitive flexibility impairment (Fan et al., 2018), e.g., schizophrenia

(Cheng et al., 2010). Two other schizophrenia susceptibility genes

are NRG1 and ERBB4 (Banerjee et al., 2010; Tian et al., 2017), which

are part of the “signaling by ERBB4” and “long-term potentiation”

pathway together with DLG4. The signaling pathway of NRG1 and

ERBB4 has been identified as influencing the transmission of

glutamate and GABA (Banerjee et al., 2010), which are

implicated in playing a role in executive functions (Hatoum

et al., 2020). NRG1-ERBB4 signaling has also been discussed as a

target of gene therapy in adults with neurodevelopmental disorders

to reduce cognitive impairment, e.g., in executive functions (Shi and

Bergson, 2020). They modulate different synaptic processes, such as

long-term potentiation, and are essential for the development of the

nervous system (Ledonne andMercuri, 2019), proper brain function

and cognitive processes (Ledonne and Mercuri, 2019). The “long-

term potentiation” pathway is also strongly influenced by the above-

mentioned NMDA glutamate receptors and is strongly involved

with learning and memory processes (Lisman et al., 2012; Lüscher

and Malenka, 2012). For the fourth pathway, “NCAM signaling for

neurite outgrowth,” the neural cell adhesion molecule (NCAM) also

plays an important role in the nervous system (Li et al., 2013).

Of the seven pathways nominally significant, “ion channel

transport”was the only pathway to prove significant for the time-

interaction effect and when modelled with the linear kernel. This

pathway had the lowest p-value (0.0089). Ion channels are

implicated in influencing the susceptibility to or the

pathogenesis of psychiatric diseases (Imbrici et al., 2013), and

are integral to synaptic functioning.
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Conclusion

Overall, we demonstrated that our longitudinal topology-

based pathway analysis displays a power gain and a great

flexibility to model pathways and genetic effects. Our

approach enables the choice between the popular linear kernel

and a network kernel that integrates pathway topology

information. The latter demonstrated superiority depending

on the density of the pathway of interest. The approach is

implemented as the R package kalpra, which is available at

https://gitlab.gwdg.de/bernadette.wendel/kalpra.
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