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Colorectal cancer (CRC), a commonmalignant tumor, is one of themain causes

of death in cancer patients in the world. Therefore, it is critical to understand the

molecular mechanism of CRC and identify its diagnostic and prognostic

biomarkers. The purpose of this study is to reveal the genes involved in the

development of CRC and to predict drug candidates that may help treat CRC

through bioinformatics analyses. Two independent CRC gene expression

datasets including The Cancer Genome Atlas (TCGA) database and

GSE104836 were used in this study. Differentially expressed genes (DEGs)

were analyzed separately on the two datasets, and intersected for further

analyses. 249 drug candidates for CRC were identified according to the

intersected DEGs and the Crowd Extracted Expression of Differential

Signatures (CREEDS) database. In addition, hub genes were analyzed using

Cytoscape according to the DEGs, and survival analysis results showed that one

of the hub genes, TIMP1was related to the prognosis of CRC patients. Thus, we

further focused on drugs that could reverse the expression level of TIMP1. Eight

potential drugs with documentary evidence and two new drugs that could

reverse the expression of TIMP1 were found among the 249 drugs. In

conclusion, we successfully identified potential biomarkers for CRC and

achieved drug repurposing using bioinformatics methods. Further

exploration is needed to understand the molecular mechanisms of these

identified genes and drugs/small molecules in the occurrence, development

and treatment of CRC.
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Introduction

Colorectal cancer (CRC) is the most common subtype in gastrointestinal cancers, and

its early symptoms are unobvious, which results in a high mortality rate. The continuous

rise of new cases and deaths of CRC will lead to a significant increase in the economic

burden globally (Rogler, 2014; Arnold et al., 2017; Hong et al., 2021; Liu et al., 2021). As
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the second leading cause of cancer death worldwide (Zhao et al.,

2020; Sung et al., 2021), CRC has become a major global public

health concern. Studies have shown that the clinical tumor stage

at diagnosis affects the prognosis of patients. The 5-years relative

survival rate of patients with stage I was 90%, while that of

patients with stage IV was only 10% (Siegel et al., 2012; O’Connell

et al., 2004; Yang et al., 2022). Currently, various diagnostic

strategies for CRC include both invasive and non-invasive

methods. Invasive methods rely on endoscopy and imaging.

Imaging tests such as nuclear magnetic resonance (NMR) and

computed tomography (CT) can be used to diagnose severe focal

lesions, but both tests are expensive (Grassetto et al., 2012;

Swiderska et al., 2014). Hence, there is an urgent need for

alternative, cheap and easy-to-measure screening methods.

Despite recent advances in treatment and multidisciplinary

care, CRC patients continue to suffer from serious adverse

reactions, which can impair prognosis and reduce survival

(McQuade et al., 2017; Kong et al., 2020). The developing

drugs with low toxicity, especially drug repositioning (Liu

et al., 2020; Meng et al., 2022) is of great significance for

improving the clinical treatment and reducing adverse reactions.

The improvement of molecular biology technology

provides opportunities to develop more curative effect and

enhance the outcomes of CRC. With the progress of high-

throughput sequencing technology, gene expression profiling

methods, such as RNA sequencing (RNA-seq), have been

applied to scientific research and become a hot field of gene

expression research (Saito et al., 2018; Deshiere et al., 2019;

Zhang et al., 2021). The molecular mechanism of CRC holds

the key to the prognosis and treatment response of patients,

and is of great potential for the clinical practice (De Sousa

et al., 2013; Sadanandam et al., 2013; Nguyen and Duong,

2018; Cheng et al., 2020; Cheng et al., 2021; Liu et al., 2022).

Therefore, understanding of the molecular mechanism in the

occurrence and development of CRC will help to develop novel

therapies to optimize the treatment response throughout the

disease course. In recent years, a large number of relevant CRC

sequencing data have been generated, archived, and stored in

public databases (Guo et al., 2017). Researches combining

high-throughput sequencing data and bioinformatics analysis

has gradually become a hot spot (Alves Martins et al., 2019;

Zhao et al., 2019). Here, bioinformatics analysis of RNA-seq

data of CRC patients may provide insights for drug

repositioning for the treatment of CRC.

In this study, bioinformatics analysis was used to identify

biomarkers of CRC and potential drugs that can improve the

outcomes of CRC patients. Specifically, based on the TCGA data

set and GSE104836 data set, we compared the transcriptome data

of tumor samples and normal samples to identify differentially

expressed genes (DEGs) on the two independent datasets. The

DEGs were intersected for further analysis. Then these DEGs

were further explored to detect the enriched GO terms and

KEGG pathways. From those DEGs, latent drugs that can

improve the prognosis of patients from the Crowd Extracted

Expression of Differential Signatures (CREEDS) were also

predicted. In addition, the hub genes in the protein-protein

interaction (PPI) network were discovered according to the

DEGs and survival analysis was carried out on these hub

genes. Finally, drug candidates could reverse hub genes were

also predicted by CREEDS and validated by literatures.

Materials and methods

Data collection

RNA-seq data of CRC patients were downloaded from the

Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.

gov/) and the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104836).

Meanwhile, the associated clinical information of 478 tumor

samples and 41 normal samples from TCGA, and 10 patients

and 10 healthy controls from the GSE104836 dataset was obtained.

Differentially expressed gene analysis

DESeq2 is a R package that can identify DEGs from raw

count data. It uses the contraction estimation of discrete and the

fold change of the gene expression to improve the stability and

interpretability of the estimation, which makes the more

quantitative analysis focus on intensity (Love et al., 2014).

DEGs in CRC tumor samples and normal samples were

detected using DESeq2 package with the criteria of p-value <
0.001 and log2 |fold change| S 2.

Functional and pathway enrichment
analysis of DEGs

After DEG analysis of the TCGA dataset and

GSE104836 dataset, overlapping DEGs were screened, and

then enrichment analysis of KEGG pathway and GO (The

Gene Ontology, 2019) including biological process (BP),

cellular component (CC), and molecular function (MF) were

carried out to reveal the altered biological characteristics of CRC.

The R packages “clusterProfiler” and “ggplot” were used to

visualize the results of the enrichment analysis.

PPI network and hub genes analysis

The online database STRING (http://string-db.org) was used

to develop a PPI network of DEGs, and the minimum required

interaction score was 0.7. The Cytoscape software was used to

visualize the PPI network and to analyze the structural properties
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of the constructed network. The cytoHubba plug-in was used to

identify hub genes in the PPI network.

Potential drug identification

The CREEDS database consists of gene expression

characteristics induced by single drug perturbation, which

can be used to identify the relationship between genes,

diseases, and drugs. To identify potential drugs for the

treatment of CRC, we used the CREEDS database to find

drugs that can reverse the DEGs. Specifically, for each drug

in the CREEDS database, we calculated the p-value of the

overlapping genes between downregulated genes of the drug

and upregulated DEGs in CRC by hypergeometric test, and

similarly, calculate the p-value of the overlapping genes between

upregulated genes of the drug and downregulated DEGs in

CRC. The drugs with any of the two p-value lower than

0.05 could be taken as candidates that could reverse the

DEGs and might treat the CRC.

Survival analysis

We obtained the OS time of all patients in TCGA database, and

estimated the survival probability of CRC patients using Kaplan-

Meier method. Kaplan-Meier survival curve was used to estimate

the 50th percentile (median) of survival time and compare the

survival distribution of two or more groups. Log-rank test was also

used to compare the survival differences between groups.

p-value <0.05 was considered to have significant differences

between groups. The data were analyzed by R software.

Results

A framework of CRC related drugs
repurposing

To find drugs that can be used to treat CRC, we proposed

a bioinformatics pipeline of drug repurposing based on

transcriptome data. The workflow was shown in Figure 1. After

downloading the RNA-seq data from TCGA and GEO databases,

we performed DEG analysis and pathway enrichment analysis.

Then, the hub genes of DEGs were identified and survival

analysis was done on the hub genes. According to the DEGs and

CREEDS, drugs that could reverse the DEGs were identified, and

10 drugs can reverse the survival-related hub gene were further

investigated. Finally, according to some previous studies, the

effectiveness of the newly discovered drugs was verified.

Patient characteristics

The RNA-seq data involved 478 tumor samples and

41 normal samples. There were 247 women and 272 men.

85 cases were at clinical stage I, 209 cases were at stage II,

140 cases were at stage III and 73 cases were at stage IV.

Their average age was ~67 years old. The clinical

features of patients from the TCGA dataset were shown in

Table 1.

FIGURE 1
A brief workflow for drug repurposing.

TABLE 1 General clinical information of CRC patients included in this
study.

Characteristics No

Type

Tumor 478

Normal 41

Average age 67.04

Gender Female 247

Male 272

Tumor stage Ⅰ 85

Ⅱ 209

Ⅲ 140

Ⅳ 73

Unknown 12
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DEGs identification

In total, 2664 DEGs (1537 upregulated genes and

1127 downregulated genes) and 959 DEGs (563 upregulated

genes and 396 downregulated genes) were extracted from

TCGA (Figure 2A) and GSE104836 (Figure 2B) datasets

respectively using p-value < 0.001 and llog2 |fold change| S

2 as the cut-off criteria. A total of 540 DEGs (276 upregulated

genes and 264 downregulated genes) were identified in both

datasets (Figure 2C).

Enrichment Analysis

To understand the possible biological mechanisms that cause

the identified changes in the transcriptome data, we conducted

FIGURE 2
Identification of DEGs between tumor tissues and normal tissues in CRC patients. (A–B). Differential expression volcanic map of (A)TCGA and
(B) GEO dataset. Red dots indicate significant up-regulation, blue dots indicate significant down-regulation, and gray dots indicate genes with no
significant changes. (C). Venn plot for DEGs detected in two datasets.

FIGURE 3
KEGG enrichment analysis of DEGs. (A). Upregulated DEGs. (B) Downregulated DEGs.
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the enrichment analysis on the overlapped DEGs using KEGG

and GO databases. KEGG pathway enrichment results showed

that upregulated DEGs were enriched in “Rheumatoid arthritis”,

“IL−17 signaling pathway”, “Cytokine−cytokine receptor

interaction”, “Wnt signaling pathway”, “Neuroactive

ligand−receptor interaction”, and “TNF signaling pathway”

(Figure 3A), while downregulated DEGs were enriched in

“Bile secretion”, “Neuroactive ligand−receptor interaction”,

“Drug metabolism − cytochrome P450”, “Mineral absorption”,

“Ascorbate and aldarate metabolism”, “Retinol metabolism”,

“Chemical carcinogenesis − DNA adducts”, and “Pentose and

glucuronate interconversions” (Figure 3B).

GO terms cover biological process (BP), cellular

component (CC), and molecular function (MF). For

upregulated DEGs, the enriched BP terms included

“epidermis development”, “extracellular matrix

organization”, “extracellular structure organization”, “skin

development”, “connective tissue development”, “cartilage

development”, “collagen metabolic process”, “cornification”,

“collagen catabolic process” (Figure 4A). In the CC group,

upregulated DEGs were primarily enriched in “extracellular

matrix”, “collagen−containing extracellular matrix”,

“endoplasmic reticulum lumen”, “apical part of cell”,

“cell−cell junction”, “apical plasma membrane”, “basement

membrane”, “extracellular matrix component” and “complex

of collagen trimers” (Figure 4B). And enriched MF-related

terms of upregulated DEGs were “receptor regulator activity”,

“receptor ligand activity”, “endopeptidase activity”,

“serine−type endopeptidase activity”, “serine−type peptidase

activity”, “serine hydrolase activity”, “growth factor activity”,

“cytokine activity” and “extracellular matrix structural

constituent” (Figure 4C). For downregulated DEGs, the

enriched BP terms were “cellular metal ion homeostasis”,

“monovalent inorganic cation transport”, “organic anion

transport”, “muscle system process”, “cellular calcium ion

homeostasis”, “regulation of cytosolic calcium ion

FIGURE 4
GO enrichment analysis of DEGs. (A–C) Upregulated DEGs. (A). Biological process. (B) Cellular component. (C) Molecular function. (D–F).
Downregulated DEGs. (D). Biological process. (E) Cellular component. (F) Molecular function.
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concentration”, “sodium ion transport”, “bicarbonate

transport”, “flavonoid metabolic process” and “cellular

glucuronidation” (Figure 4D). In the CC group, the

downregulated DEGs were enriched in “apical part of cell”,

“apical plasma membrane”, “membrane raft”, “membrane

microdomain”, “sarcolemma”, “contractile fiber part”,

“intrinsic component of synaptic membrane”, “plasma

membrane raft”, “perikaryon” and “costamere” (Figure 4E).

The enriched MF-related terms of the downregulated DEGs

were “inorganic cation transmembrane transporter activity”,

“cation transmembrane transporter activity”, “metal ion

transmembrane transporter activity”, “monovalent

inorganic cation transmembrane transporter activity”,

“active transmembrane transporter activity”,

“monocarboxylic acid binding”, “sodium ion

transmembrane transporter activity”, “solute:sodium

symporter activity”, “glucuronosyltransferase activity” and

“retinoic acid binding” (Figure 4F).

Hub genes in the PPI network of DEGs

Based on the STRING online database (http://string-db.

org) and Cytoscape software, a PPI network of 164 DEGs

and 241 edges was constructed. The minimum required

interaction score of each edge were bigger than 0.7

(Figure 5A) which excludes 376 DEGs. The top 10 hub

genes according to the node degree were MMP1, MMP3,

TIMP1, OSM, IL1A, CXCL1, CXCL2, CSF2, GRIN2A, and

GRIN2B (Figure 5B).

Correlation between hub genes
expression and overall survival

To examine the potential relationship between DEGs

and overall survival (OS), a weighted Kaplan Meier

survival curves were generated from TCGA data. The

survival curves of the top four hub genes were shown in

Figure 6, which shown that only TIMP1 is associated with

OS (p-value<0.05), and its high expression led to poor

prognosis (Figure 6A). Other hub genes are not

significantly associated with OS (Figures 6B–D) and

Supplementary Figure S1.

Identification of potential drugs

249 potential drugs were predicted according to the DEGs.

For example, we plotted five drugs for upregulated DEGs and

FIGURE 5
PPI network of DEGs and hub genes in the network. (A). PPI network of DEGs with the interaction score>0.7. The pink nodes indicate
significantly upregulated genes and the blue nodes indicate significantly downregulated genes. The edge thickness is proportional to the combined
score of the connected genes. The size of the node is proportional to the value of log2|FC|. (B) Top 10 hub geneswith a higher degree of connectivity.
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five drugs for downregulated DEGs in Figure 7. Figure 7

indicated that formaldehyde, glucocorticoid|dexamethasone,

paclitaxel|eribulin, messenger RNA|inhibitor, and eribulin|

paclitaxel could reverse upregulated DEGs. fluoxetine|

sucrose|antidepressant|imipramine, nevirapine, sucrose|

antidepressant|imipramine|L-proline residue|, imipramine|

sucrose|antidepressant|, and histone|N-methyl-D-aspartic

acid could reverse the downregulated DEGs.

Since TIMP1 is significantly related to the OS of CRC

patients, and the high expression of TIMP1 is correlated to a

poor prognosis, we next looked for drugs/small molecules that

can reverse the expression of TIMP1, which might improve the

prognosis of CRC patients. We provided details of the top

10 drugs that can reverse the hub gene TIMP1 in Table 2,

including formaldehyde, paclitaxel|eribulin, erlotinib|dimethyl

sulfoxide, glucocorticoid|dexamethasone, antagonist,

trichostatin A, rosiglitazone, inhibitor, retinoic acid, and

cisplatin. Among them, eight drugs/small molecules were

confirmed to be related to TIMP1 or CRC. It is reported that

exposure to formaldehyde can reduce TIMP1 expression (Kang

et al., 2022).

Discussion

In recent decades, CRC, including colon and rectal cancer,

has become one of the main causes of cancer-related death

around the world (Fuccio et al., 2018; Røed Skårderud et al.,

2018; He et al., 2020a; He et al., 2020b). Therefore, it is urgent to

find more effective prevention and treatment to reverse this

problem (Teer et al., 2017). With the recent progress in the

field of medicine and biotechnology, many preclinical and

clinical studies have been carried out to reveal the potential

mechanism of CRC liver metastasis. Identifying cancer-related

marker genes through gene-targeted therapy is a new and

effective potentially powerful treatment for CRC (Okugawa

FIGURE 6
Kaplan-Meier survival curves of CRC patients for the top four hub genes including (A) TIMP1, (B) MMP1, (C) MMP3, and (D) OSM. According to
the median value, gene expression was divided into two groups (red: high; blue: low), and the p-value<0.05 was considered statistically significant.
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et al., 2015; Guo et al., 2017). High throughput sequencing

technology provides a new perspective on the genome,

transcriptome, and epigenome characteristics of cancer. In this

study, we aim to reveal the hub gene of CRC through

bioinformatics methods and identify potential drugs or small

molecules, to improve the predictive power of CRC and provide a

valuable theoretical basis for the clinical treatment of CRC

patients.

FIGURE 7
The predicted top five drugs and their gene networks. The color and thickness of the edges are inversely proportional to the p-value of drugs
and DEGs. (A) Five drugs (green triangles) and 50 upregulated DEGs (orange circles). (B) Five drugs (purple triangles) and 59 downregulated DEGs
(blue circles).

TABLE 2 Top 10 drugs for TIMP1 that were significantly associated with survival rate of CRC patients.

Gene
name

Drug/Small
molecule

p-value Possible effect Evidence

TIMP1 formaldehyde 1.04403630163397E-06 Formaldehyde is a colorless, irritant, highly active and toxic environmental
pollutant, which is used in various industries and products. Inhaled
formaldehyde is a human and animal carcinogen that can cause genotoxicity,
such as the formation of reactive oxygen species and DNA damage

PMID:35379891

paclitaxel|eribulin 8.64715E-06 A well-known anticancer agent with a unique mechanism of action. It is
considered to be one of the most successful natural anticancer drugs

Unconfirmed

erlotinib|dimethyl
sulfoxide

1.74273E-05 It can interfere with a variety of cellular processes, such as cell proliferation,
differentiation, apoptosis and cycle

PMID: 32911099

glucocorticoid|
dexamethasone

3.5055E-05 It has pharmacological effects of anti-inflammatory, anti-endotoxin,
inhibiting immunity, anti-shock and enhancing stress response

PMID: 21789017

antagonist 3.66683E-05 It can bind to receptors and has strong affinity without intrinsic activity
(α = 0) drugs

Unconfirmed

trichostatin A 0.0000703775443677834 trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor PMID: 21520296

rosiglitazone 0.000141022683961323 Rosiglitazone is a thiazolidinedione insulin sensitizer. Its mechanism of
action is similar to that of specific peroxisome proliferator activator γ Type a
receptor

PMID: 29743857

Inhibitor 0.000282045 Inhibitors of proteinases or antibodies against certain proteolytic enzymes
can prevent tumor invasion and metastasis in experimental conditions

PMID: 23202950

retinoic acid 0.000564894 Retinoic acid (RA) signal transduction is an important and conservative way
to regulate cell proliferation and differentiation. In addition, disturbed RA
signaling is associated with the occurrence and progression of cancer

PMID: 34877501

cisplatin 0.000758387 Cisplatin is an inorganic platinum complex, which can be inhibited by the
formation of DNA adducts in tumor cells

PMID: 32329836; PMID:
20607860
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First, RNA-seq data and clinical information of 478 CRC tumor

samples and 41 healthy control samples were downloaded from

TCGA. In addition, RNA-seq data of 10 tumor samples and

10 normal samples were obtained from the GSE104836 dataset.

Using DESeq2 to detect the DEGs from TCGA and GEO

respectively, 2664 DEGs were identified from TCGA, 959 DEGs

were identified from the GSE104836 data set, and 540 DEGs

appeared in both datasets, including 276 upregulated genes and

264 downregulated genes. KEGG pathway enrichment results

showed that upregulated DEGs are enriched in “Rheumatoid

arthritis”, “IL−17 signaling pathway”, “Cytokine−cytokine

receptor interaction”, “Wnt signaling pathway”, “Neuroactive

ligand−receptor interaction”, and “TNF signaling pathway”

(Figure 3A). It has been reported that IL − 17 is able to regulate

colorectal tumor cells and inhibits their production of cxcl9/

10 chemokines, thus prevents the infiltration of CD8 + CTLs

and Tregs into CRC tumor, thereby promoting the development

of CRC (Chen et al., 2019). Wnt signaling pathway is the key

medium of tissue homeostasis and repair. Almost all CRC tumors

show overactivation of Wnt pathway (Schatoff et al., 2017; Bian

et al., 2020). GO enrichment analysis shows that epidermis

development, extracellular matrix, and receptor regulator activity

are the most significantly abundant upregulated DEGs in biological

processes, cellular components, and molecular function categories.

Downregulated DEGs are enriched in “Bile secretion”, “Neuroactive

ligand−receptor interaction”, “Drug metabolism−cytochrome

P450”, “Mineral absorption”, “Ascorbate and aldarate

metabolism”, “Retinol metabolism”, “Chemical

carcinogenesis−DNA adducts”, and “Pentose and glucuronate

interconversions” (Figure 3B). Previous studies have shown that

a high-fat diet promotes the secretion of bile acids, thereby inducing

the formation of precancerous lesions and/or aggravating the

occurrence of colon tumors (Ocvirk and O’Keefe, 2021).

Neuroactive ligand-receptor interactions were associated with

other gastrointestinal cancers (Yu et al., 2021). The lack and

deficiency of minerals may be related to cancer and increase the

risk of cancer; For example, effective absorption of vitamin D can

prevent colorectal cancer (Takada and Makishima, 2017).

To identify the key regulating genes in CRC development, a

PPI network was constructed based on overlapping DEGs. In this

network, edges with association scores <0.7 were filtered out. The
PPI network obtained based STRING online database has

164 nodes, and the top 10 hub genes, including MMP1,

MMP3, TIMP1, OSM, IL1A, CXCL1, CXCL2, CSF2, GRIN2A,

and GRIN2B, were identified using Cytoscape. Among them,

TIMP1 is a soluble protein that can be released from endometrial

cells, fibroblasts, and cancer cells, which are correlated with the

prognosis of various cancers (Peng et al., 2011;Wang et al., 2013).

The Kaplan–Meier survival analysis of Zheng et al. showed that

TIMP1 expression was upregulated in CRC tissues and was also

connected with poor prognosis in GEPIA datasets (p-value =

0.02) (Zheng et al., 2020). Song et al. (2016) reported that TIMP1

depletion can inhibit the proliferation, migration, and invasion of

colon cancer cells, and inhibit the tumorigenesis and metastasis

of CRC. Consistent with these studies, our results show that

TIMP1 was up-regulated in CRC samples compared with

matched normal tissue samples, and its high expression was

associated with poor OS in CRC patients.

Based on DEGs and CREEDS, we made drug predictions for

all DEGs (Yang et al., 2020). Previous studies have shown the

anti-migration and anti-invasion effects of imipramine, an FDA-

approved antidepressant oral drug, on CRC cells (Liu et al., 2016;

Alburquerque-González et al., 2020). Fluoxetine has been shown

to induce antitumor activity. It was found that fluoxetine could

selectively induce concentration-dependent apoptosis in human

CRC cells by changing mitochondrial membrane potential and

inducing phosphatidylserine translocation to the outer

membrane (Marcinkute et al., 2019). In addition, 10 potential

drugs were identified to reverse the expression of TIMP1. It has

been shown that after glucocorticoid treatment, the expression

level of TIMP1 in patients with idiopathic pulmonary fibrosis

(IPF) were significantly lower than those before glucocorticoid

treatment (p < 0.05) (Zhang et al., 2015). Dexamethasone is a

synthetic steroid with anti-inflammatory, anti-allergic, and

immunosuppressive properties (Sinner, 2019). Trichostatin A

is a histone deacetylase (HDAC) inhibitor, which inhibits the

growth of CRC cells and induces G1 cell cycle arrest and

apoptosis by regulating the downstream target of the JAK2/

STAT3 signal (Xiong et al., 2012). A study on the effect of

cisplatin on the invasion of ovarian cancer cells showed that the

use of cisplatin could reduce the expression of TIMP1 by

5.0 times (p < 0.05) (Karam et al., 2010). It is worth noting

that there is no relevant evidence that paclitaxel|eribulin, and

Antiagonist are related to the expression of TIMP1 or the

outcome of CRC. Further experiments are needed to verify

their effectiveness of action, which may provide a basis for

guiding the treatment of CRC patients.

Overall, this study revealed the altered gene expressions and

enriched pathways in CRC based on bioinformatics analyses and

provides insights for further screening of effective biomolecules

for CRC treatment intervention, which is of clinical significance.

However, the current research has some limitations. First,

because the candidate prognosis-related central DEGs were

detected using the data from two independent databases, more

datasets were needed to confirm our discoveries. Secondly,

experimental methods such as PCR were also needed to verify

the DEGs. Third, clinical trials were needed to identify effects of

the predicted drugs.

Conclusion

Our study effectively identified several candidate drug targets

through differentially gene expression analysis, hub gene analysis

and survival analysis for CRC treatment. We revealed

compounds that have the potential to reverse the expressions
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of the identified DEGs. These findings provide new directions for

the diagnosis and treatment of CRC.
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