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Tetrasomy 9p is a rare syndrome characterized by fetal growth restriction,

Dandy-Walker malformation, cardiac anomalies, and facial abnormalities

and is discovered by ultrasound during the prenatal examination. Herein, we

report a fetus of tetrasomy 9p without obvious phenotypic manifestations

during the first trimester that was identified by non-invasive prenatal testing

(NIPT). NIPT revealed that the gain of 9p24.3–9p11 that was approximately

46.36 Mb in size. Karyotyping of amniocytes indicated an additional marker

in all metaphase. Chromosome microarray and fluorescence in situ

hybridization on uncultured amniocytes revealed tetrasomic of

9p24.3q13, and that the supernumerary chromosome is a dicentric

isochromosome consisted of two copies of the 9p arm. Taken together,

it was indicated that the fetal karyotype was 47,XY,+idic (9) (q13), and that

multiple techniques are crucial to the prenatal diagnosis.
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Introduction

Tetrasomy 9p (T9p), which was first defined in 1973 (Ghymers et al., 1973), is a rare

abnormality typically resulting from a supernumerary isochromosome and mostly

documented after birth. The phenotype of T9p varies from fetuses with multiple

abnormalities to phenotypically normal adults (Bellil et al., 2020; Shu et al., 2021).

Fetuses with T9p usually exhibit abnormal ultrasound findings including facial clefts, fetal

growth retardation (FGR), and Dandy-Walker variant (Chen et al., 2007). So far, few cases

have been diagnosed prenatally.

Non-invasive prenatal testing (NIPT) is emerging as a robust technique to screen for

trisomies in 13, 18, 21, and sex chromosome (Lo et al., 1997; Lo et al., 1998; Song et al.,

2013; Yin et al., 2015; Gross et al., 2016). Furthermore, its ability in screening for

subchromosomal abnormalities such as Cri-du-chat deletions, 1p36 deletion syndrome,
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Wolf-Hirschhorn syndrome, Prader-Willi deletions, or

Angelman deletions, has been proven as shown by high

predictive positive value (Liu et al., 2016; Liang et al., 2019).

In the current investigation, we present a case of non-mosaic

T9p that was identified through NIPT and validated by the

combination of karyotyping, chromosome microarray (CMA),

and fluorescence in situ hybridization (FISH).

Patients and methods

Case presentation

A healthy 37-years-old pregnant woman, who claimed no

family history of genetic abnormalities and previously delivered

two healthy boys, was referred to Women’s Hospital, School of

medicine, Zhejiang University. She had unremarkable ultrasound

screening at 12th week of gestation that revealed a normal nuchal

translucency (NT) and the presence of nasal bone, while she

received NIPT at the 15th week of gestation because of advanced

maternal age. NIPT showed a duplication at 9p24.3p11.2.

Amniocentesis was performed at the 18th week of gestation,

and the fetal sample was analyzed by karyotyping, CMA,

and FISH.

After genetic counseling, the woman and her husband

decided to terminate the pregnancy; however, they declined to

undergo a fetal MRI and fetal autopsy.

Non-invasive prenatal testing screening

NIPT procedures, including cell-free DNA extraction,

library construction, and next-generation sequencing (NGS)

were performed as described previously (Chen et al., 2019).

Bioinformatic methods combined with a locally weighted

polynomial regression were used to eliminate GC-bias, and

a binary hypothesis was performed to obtain a higher accuracy

for NIPT detection. Low coverage whole genome sequencing

of plasma DNA was carried out on each sample, resulting in

10.19 million unique reads that corresponds to 0.1 × human

genome depth. A fetal copy-number analysis (CNV) was

performed to detect subchromosomal deletion and

duplication, as previously described (Chen et al., 2019).

DNA extraction

DNA extraction was performed as described previously

(Qian et al., 2019). Briefly, 10 ml maternal blood sample was

centrifuged at 1,600 g for 10 min. The supernatant was re-

centrifuged at 14,000 g for another 10 min. The plasma

fraction was aliquoted and stored at −80°C for subsequent

NIPT. The amniotic fluid was centrifuged at 1,600 g for

10 min. Fetal DNA from the centrifuged amniotic fluid

cells were then extracted with QIAamp DNA Blood Mini

Kit (Qiagen, Hilden, Germany).

FIGURE 1
Non-invasive prenatal testing (NIPT) results of fetal chromosome 9. The horizontal axis represents genomic location (Mb), and the vertical axis
represents t-score. NIPT revealed an increase in the signal of the p arm of chromosome 9.
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Amniocentesis and cytogenetic analysis

Transabdominal amniocentesis was performed under the

real-time sonographic guidance. A total of 20 ml of amniotic

fluid was withdrawn after discarding the first 2 ml of

amniotic fluid (Jindal et al., 2022). Fetal amniocytes were

cultured, and GTG-banding was performed according to

standard cytogenetic procedures, yielding a 320–400 band

level with a resolution of around 10 Mb. Generally,

30 metaphases were counted, and 5 metaphases were

analyzed (Jin et al., 2021).

Chromosome microarray

Genomic DNA was extracted with the GentraPuregene Kit

(Qiagen, Germany) from fetal amniotic cells. CytoScanTM HD

array (Affymetrix, United States) was used in copy number

analysis according to the manufacture’s instructions. The array

is characterized by > 2,600,000 CNV markers, including

750,000 SNP probes and >1,900,000 non–polymorphism

probes for comprehensive whole genome coverage.

Chromosome Analysis Suite (ChAS) software (Affymetrix,

United States) was used to visualize and analyze the results.

The reporting threshold of the copy number result was set at

500 kb with marker count ≥50 for gains and 200 kb with a

marker count of ≥50 for losses. The analysis was based on the

GRCh37/hg19 assembly.

Fluorescence in situ hybridization analysis

Amniocytes were quadruple stained with the chromosome

9 subtelomeric p, q, and centromeric probe (Vysis, Downers

Grove, IL) and DAPI (Vysis, Downers Grove, IL). The slides

were hybridized according to the manufacture’s instruction

and counterstained with DAPI, then analyzed by Zeiss Imager

A2 microscope (Zeiss, France). Image acquisition was

subsequently performed using a CCD camera with Isis

(FISH Imaging System, MetaSystems, Germany).

FIGURE 2
GTG-banding from the amniotic fluid sample. The supernumerary chromosome is shown by black arrow.
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Results

Non-invasive prenatal testing results

NIPT showed negative for other chromosomes expect for the

chromosome 9 with a fetal fraction DNA concentration of

10.72%. Additionally, an elevated amount of DNA from the

p-arm of chromosome 9 was observed with a mean t-score of

11.528, suggesting a gain of approximately 46.36 Mb that

encompassed chromosome bands 9p24.3–9p11 (Figure 1).

Karyotyping, chromosome microarray,
and fluorescence in situ hybridization
results

Fetal karyotyping of the cultured aminocytes showed a male

karyotype with the presence of supernumerary marker

chromosome (SMC) (30/30) (Figure 2). CMA of the fetal

DNA extracted from the uncultured aminocytes revealed a

gain of approximately 68.126 Mb spanning from 9pter to

9q13 with a four-fold dose as indicated by five lines in both

allele difference and BAF graphics (Figure 3). The array

karyotype was: arr [GRCh37] 9p24.3q13 (203862_68330127)x4

(Figure 3).

These findings suggest that the SMC was a tetrasomy of

9p. The gain of the short arm of chromosome 9 was confirmed

by FISH, which was carried out using the chromosome

9 specific subtelomeric p, q, and centromeric probe

(Figure 4). FISH showed that the SMC was an

isochromosome consisting of two copies of the entire short

arm and the heterochromatic region of the long arm of a

chromosome 9 with two centromeres. Based on karyotyping,

CMA and FISH, the fetal karyotype was 47,XY,+idic (9)

(q13).ish idic (9) (q13) (305J7-T7+,D9Z1+,D9Z1+,305J7-

T7+).arr [GRCh37] 9p24.3q13 (203862_68330127)x4.

Discussion

Herein, we reported a prenatal case of tetrasomy 9p that

presented without obvious ultrasound anomalies during the first

trimester. To the best of our knowledge, our case is the first

prenatal case of non-mosaic tetrasomy 9p identified

through NIPT.

NIPT may detect CNVs with a size greater 10 Mb with high

sensitivity and specificity (Lo et al., 1997; Lo et al., 1998; Song

et al., 2013; Yin et al., 2015; Gross et al., 2016). Additionally, it has

good performance in detecting known microduplication/

microdeletion syndromes (MMS), which are smaller than

FIGURE 3
Chromosome microarray on DNA prepared from uncultured amniocytes. Results for chromosome 9 showing gain of the entire p arm and a
portion of the q arm.
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10 Mb, such as DiGeorge (93%) and 22q11.22 microduplication

(68%) (Liang et al., 2019). Our data showed that NIPT provided

quite precise duplication localization which was validated by

amniocyte CMA results, suggesting the reliability of NIPT in

detecting rare chromosome anomalies such as tetrasomy 9p.

Besides, NIPT can screen MMS before visible abnormalities

are revealed on routine prenatal ultrasound examination. Most

T9p fetuses were identified through ultrasound findings.

Among the 60% of cases reviewed by Vinksel et al. (2019)

fetuses with T9p were identified through ultrasound performed

during the second and third trimesters. Among the cases

reported in the first trimester, increased NT was the most

common features, which can be present as an isolated

phenotype or accompanied by other anomalies (cleft lip and/

or palate, facial dysmorphism and skeletal abnormalities)

(Vinksel et al., 2019; Kok Kilic et al., 2022). In our case, only

the first trimester ultrasound scan was performed; therefore,

other common abnormalities associated with T9p might not

have displayed. In another case of mosaic T9p identified

through NIPT, the pregnant women presented with a normal

NT and nasal bone in the first trimester, while showed isolated

persistent left superior vena cava until 25th week gestation

ultrasound examination (Wang et al., 2015). Both this case

and our case indicate that NIPT is superior to echography in

screening for early prenatal abnormalities.

It was suggested that the degree of the mosaicism is

associated with the severity of the phenotype of

T9p. However, the severity of the phenotype of T9p is not

linearly correlated with the mosaic level of the supernumerary

chromosome in lymphocyte samples. A case with full tetrasomy

9p in the blood, 65% mosaic in the buccal mucosa, was a health

woman who was accidentally identified due to her previous

pregnancy with an inv (7) baby (Papoulidis et al., 2012).

Among the 8 cases reported with a clinically normal

phenotype, the tetrasomic clone ranged from 6% to 100% in

peripheral blood lymphocytes, except in five cases that had

fertility related issues (5/8) (Papoulidis et al., 2012; Bellil et al.,

2020; Shu et al., 2021).

One might speculate that the tissue-limited mosaicism is

related to severity of the phenotype of T9p. Supporting this,

patients with i (9p) in fibroblasts tend to have more severe

manifestations than those whose i (9p) is limited to

lymphocytes, especially in terms of cardiac defects and

viability (El Khattabi et al., 2015). Numerous data suggest that

isochromosome 9p is predominantly present in peripheral blood

but with a lower frequency in cell lines derived from the skin,

amniotic fluid, or chorionic villus sampling. Hence, even a

normal karyotype from amniocytes does not necessarily rule

out the possibility of tetrasomy 9p (Cuoco et al., 1982;

Papenhausen et al., 1990; Schaefer et al., 1991; Grass et al.,

1993; Lloveras et al., 2004; McAuliffe et al., 2005).

Additionally, the tissue-limited mosaicism mechanism at some

extent unveiled that the prenatal cases of T9p showed numerous

ultrasound abnormalities even with low-level mosaic status as the

amniocytes are a mixture of cells derived from different germ

layers (Chen et al., 2007). Based on published reports, non-

mosaic fetuses have poorer prognosis, which explains the higher

incidence of early death, FGR, Dandy-Walker malformation, and

other congenital anomalies (Tang et al., 2004; Tan et al., 2007; El

Khattabi et al., 2015). As such, the patient in the present study

decided to terminate the pregnancy after genetic consultation.

Another factor that may affect the severity of the

phenotype is breakpoint position; however, this remains

controversial (Grass et al., 1993; Stumm et al., 1999; El

Khattabi et al., 2015; Pinto et al., 2018; Vinksel et al.,

2019). Some suggested that the phenotype will be more

severe in patients that harbor the large portion of 9q

extending to 9q21, which encompasses a large duplicated

region with several OMIM morbid genes compared with

those containing exclusively the entire 9p (El Khattabi

et al., 2015; Pinto et al., 2018; Vinksel et al., 2019). A total

of 21 prenatal cases with ultrasound anomalies have been

reviewed and showed that involvement of the 9q region

appears to have similar phenotypes to the p10 region in

terms of facial anomalies, FGR, central nervous system

dysfunction and cardiac anomalies (Table 1). Surprisingly,

cardiac malformation seems to be much frequent when the

region q12-q13 is involved.

FIGURE 4
FISH from the uncultured amniocytes. Green signals indicate
the subtelomeric part of chromosome 9p; red signals indicate the
subtelomeric part of chromosome 9q; aqua signals indicate the
centromeic of chromosome 9. Two normal chromosome
9 contain both green and red signals as showed with white arrow.
The isodicentric chromosome 9p (bold white arrow) with two
green signals and two aqua signals.
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Due to the poor resolution of conventional cytogenetic

techniques, CMA with high throughput has been widely

complemented into prenatal examinations for fetuses with

ultrasound anomalies as it offers several advantages, such as

fast reporting (without further cell culture) and high

resolution in detecting copy number changes. Furthermore,

it can provide a more precise location of the breakpoint of the

tetrasomy 9p, thus improving the understanding of the

genotype-phenotype correlation. However, the breakpoints

of 9p10, q12, and q13 are located in the heterochromatin

region, wherein a few markers have been set in CMA, making

it hazardous to define the precise localization. With the release

of the T2T-CHM13 reference genome, long-reads based whole

genome sequencing may overcome the remaining gaps and

provide convincing breakpoints for the complex chromosome

rearrangement, including in T9p (Aganezov et al., 2022; Nurk

et al., 2022).

T9p usually occurs de novo, and recurrence has been

observed in only one report, indicating gonadal mosaicism (El

Khattabi et al., 2015). Most supernumerary chromosomes are of

maternal origin, including T9p (Kotzot et al., 1996; Dutly et al.,

1998). The supernumerary chromosome can be separated into

two forms according to the number of centromeres: i (9) with a

single centromeric region or two centromeres forming idic (9).

Several models have been proposed to explain the formation of

an isochromosome. One mechanism relies on homologous

recombination (HR) when intra-chromosomal U-type

recombination occurs during meiosis I followed by non-

disjunction in meiosis II (Floridia et al., 1996; Kotzot et al.,

1996; Dutly et al., 1998; Knijnenburg et al., 2007). This U-type

exchange is more likely to result in a dicentric than in a

monocentric isochromosome. Another mechanism refers to

the formation of monocentric isochromosomes and relies on

centromere misdivision during the premeiotic stage followed by

non-disjuntion at meiosis I (Rivera et al., 1986); alternatively, a

non-disjuntion at meiosis II is followed by post-zygotic

centromere misdivision (de Ravel et al., 2004). However,

Kotzot et al. (1996) oppose to the former hypothesis in the

formation of isochromosome 18p as this would require two

abnormal cell divisions.

In conclusion, tetrasomy 9p is a rare chromosome

rearrangement that often occurs de novo. A prenatal case of

tetrasomy 9p without any ultrasound abnormality during the

first trimester was revealed by NIPT and confirmed by

invasive diagnosis. NIPT can screen not only for canonical

trisomy 13, 18, and 21 but also large fragment copy number

changes, such as tetrasomy 9p before it manifests with a

significant phenotype. Furthermore, multiple techniques,

such as karyotyping, FISH and CMA, are critical for a

precise prenatal diagnostic.
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