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The role of costimulatory
molecules in glioma biology and
Immune microenvironment

Ji Wang®, Zi Wang?!, Wenxue Jia®, Wei Gong®, Bokai Dong?,
Zhuangzhuang Wang?, Meng Zhou' and Chunlei Tian*

'Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical
Science, Institute of Neurology, China Three Gorges University, Yichang, China, ?Department of
Emergency, The First People's Hospital of Yichang, The People’s Hospital of China Three Gorges
University, Yichang, China

Background: Extensive research showed costimulatory molecules regulate
tumor progression. Nevertheless, a small amount of literature has
concentrated on the potential prognostic and therapeutic effects of
costimulatory molecules in patients with glioma.

Methods: The data were downloaded from The Cancer Genome Atlas (TCGA)
database, Chinese Glioma Genome Atlas (CGGA) database, and Gene
Expression Omnibus (GEO) database for bioinformatics analysis. R software
was applied for statistical analysis. Using the FigureYa and Xiantao online tools
(https://www.xiantao.love/) for mapping.

Results: The Least absolute shrinkage and selection operator (LASSO) and Cox
regression analysis were utilized to identify the signature consisting of five
costimulatory molecules. Multivariate regression analysis revealed that the
prognosis of glioma could be independently predicted by the riskscore.
Furthermore, we explored clinical and genomic feature differences between
the two groups. The level of tumor mutational burden (TMB) was higher in the
high-risk group, while more mutation of IDH1 was observed in the low-risk
group. Results of Tumor Immune Dysfunction and Exclusion (TIDE) analysis
showed that high-risk patients were more prone to be responded to
immunotherapy. In addition, subclass mapping analysis was performed to
validate our findings and the results revealed that a significantly higher
percentage of immunotherapy response rate was observed in the high-risk

group.

Conclusion: A novel signature with a good independent predictive capacity of
prognosis was successfully identified. And our findings reveal that patients with
high-risk scores were more likely to be responded to immunotherapy.

Abbreviations: TCGA, The Cancer Genome Atlas database; CGGA, Chinese Glioma Genome Atlas;
TMB, Tumor mutational burden; TIDE, Tumor Immune Dysfunction and Exclusion; WHO, World Health
Organization; HGGs, High-grade gliomas; GBM, Glioblastoma; BBB, Blood-brain barrier; TNF, Tumor
necrosis factor; ICls, Immune checkpoint inhibitors; PD-1, Programmed cell death protein 1; PD-L1,
Programmed cell death 1 ligand 1; GTEx, Genotype-Tissue Expression; ssGSEA, Single-sample GSEA
analysis; KM, Kaplan-Meier; ROC, Receiver operating characteristics; AUC, Area u Gene set enrichment
analysis; LASSO, Least absolute shrinkage and selection operator.
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Introduction

Gliomas are the most common and aggressive primary
with
worldwide (Sung et al, 2021). Generally, according to the
World Health Organization (WHO) standards, grades I-II are
low-grade gliomas (LGGs) and grades III-IV are high-grade
gliomas (HGGs) (Figarella-Branger et al,, 2021). It is worth
noting that glioblastoma (GBM) with WHO grade IV, well
known for their aggressiveness and high propensity to

tumors of brain, approximately 200,000 deaths

metastasize, have only a 5% five-year survival rate (Shergalis
et al,, 2018). Despite major advances in cancer treatment and
many emerging therapies that have been proposed for glioma
patients, the overall survival rate (OS) has not significantly
increased in recent years (Xu et al, 2020). Under most
circumstances, patients with glioma have advanced into the
intermediate and advanced stages at the time of diagnosis,
missing out on the optimal treatment time (Wang et al,
2020a). Currently, WHO grade is most commonly used as a
reference to judge the clinical prognosis of glioma patients, which
is valuable but insufficient for prognostic prediction and
evaluation of subgroups of patients (Ali et al., 2021). Thus, it
is important to find additional more effective targets and more
susceptible therapeutic options for glioma patients to improve
the prognosis.

With the development of molecular biology, immunotherapy
has been recognized as a promising treatment for overcoming
glioma despite the presence of the blood-brain barrier (BBB) (Ye
et al,, 2019; Marcucci et al., 2021). Costimulatory molecules and
signals consisting of the tumor necrosis factor (TNF) families and
B7/CD28 family are promising candidates for immunotherapy
(Croft et al., 2013). On the one hand, molecules belonging to B7/
CD28 family are essential for triggering immune responses
including the most common immune checkpoint inhibitors
(ICIs) target PD-1 and PD-L1 (Keir et al, 2008). In another
hand, molecules belonging to TNF/TNEFR family are essential for
the promotion of anti-tumor immunity (Driessens et al., 2009).
In recent years, many literatures show that costimulatory
molecules are linked to the tumorigenesis and promotion of
various cancers. CD40LG (CD40L, TNFSF5, CD154), one of the
most well-studied TNFSF, has been a therapy target in cancer
treatment and is typically associated with the prognosis of lung
cancer (Mu et al., 2015). Overexpression of TNFSF14 can stop or
delay the development of human papillomavirus 16-induced
tumors via enhancing the functional responses of T cells
(Kanodia et al, 2010). Moreover, EDAR is an important
effector of typical Wnt signaling in the development of skin
attachment, which can adjust Wnt/p-catenin signaling pathway
to promote the proliferation of colorectal cancer cells (Wang
et al,, 2020b). Given the prominent values of costimulatory
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molecules, it is essential to screen the costimulatory molecules

associated with the prognosis for improving prognosis
evaluations of glioma patients.

To investigate the significant role of costimulatory molecules
in glioma, RNA sequencing data was used to systematically
analyze the costimulatory molecules expression with distinct
clinicopathological features of gliomas in four independent
cohorts according to the TCGA and CGGA datasets. A
prognostic signature was then developed that could effectively
predict the glioma prognosis. Moreover, we investigated
discrepancies in clinical and genomic profiles in two risk

groups and explored potential targets for therapies.

Materials and methods
Data acquisition and processing

The relevant clinical data and RNA-sequencing data of
TCGA-LGG patients and TCGA-GBM patients were acquired
from the TCGA database (https://portal.gdc.cancer.gov/) as the
training cohort. In addition, four datasets including data of
glioma were retrieved from the CGGA and GEO databases
(https://cgga.org.cn/ and https://www.ncbi.nlm.nih.gov/geo/) as
the validation cohorts. The Genotype-Tissue Expression (GTEx)
database (https://gtexportal.org/) RNA-Seq data was also
downloaded for further analysis. Then, data was merged,
converted to TPM values (Zhao et al., 2020), annotated with
probes, and removed samples with incomplete information and
duplicates. The data were then batch normalized using the
“ComBat” algorithm to decrease the possibility of batch effects
in disparate datasets. The expression profile of patients who
responded to immunotherapies was collected from the known
literature and was applied for predicting the immunotherapy
response of glioma patients (Roh et al, 2017). Single-sample
GSEA analysis (ssGSEA) was conducted via the “GSVA” R
package (version 4.0.2).

Differential expression analysis

All costimulatory molecules were gotten from the
published literature (Aye et al., 2021). RNA sequencing
expression data of 56 costimulatory molecules in our
research including normal samples and tumor samples were
obtained via UCSC XENA data hubs (https://tcga.xenahubs.
net). Then differential expression analysis of all these
costimulatory molecules was conducted via the “EdgeR” R
package (version 4.0.2), and we visualized the results via the
“ggplot2” R package (version 4.0.2).
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Establishment and evaluation of the
prognostic feature in a combined glioma
cohort

After eliminating patients with survival time less than 30 days
and deficient clinic information, 622 patients in the TCGA
database were used to establish a prognostic signature, and
929 patients in the CGGA database were utilized to estimate
the predictive ability and reliability of the signature. First,
univariate Cox regression was conducted to obtain the
costimulatory molecules related to OS of glioma patients (p <
0.01). The LASSO regression analysis was then conducted via the
“glmnet” R package (version 4.0.2) to confirm the selected hub
genes further. Finally, the prognostic signature was defined via a
multivariate Cox regression analysis and the riskscore was
obtained for each patient using the following formula:
molecule +

Riskscore = coefl*costimulatory

coef2*costimulatory ~ molecule2  +  coef3*costimulatory

molecule3 + + coefN*costimulatory molecules. Then,
patients with glioma were divided into two groups according
to the riskscore.

The OS time and the AUC corresponding to 1-, 3-, and 5-
years were compared between two risk groups based on the
Kaplan-Meier (KM) survival analysis. Furthermore, univariate
and multivariate Cox regression analyses were conducted to
explore the independence of the riskscore as a predictor by

comparing the riskscore and different clinical factors.

GSEA and mutation analysis

The “ClusterProfiler” R package (version 4.0.2) was utilized
for performing GSEA. Curated gene sets, oncogenic signature
gene sets, ontology gene sets and hallmark gene set (https://www.
gsea-msigdb.org/gsea/downloads.jsp) was recognized as the
reference sets to investigate the discrepancy in the tumor
genetic pathways. Immunotherapy-related positive signatures
from the known literature were obtained to conduct the
correlation analysis with riskscore (Hu et al., 2021). Moreover,
somatic mutation data used to calculate tumor mutational
burden (TMB) were available from the cBioPortal website
(https://www.cbioportal.org/datasets). ~Differentially mutated
genes with p-value < 0.05 in two risk groups were screened
and maftools were applied for analyzing the interaction between
gene mutations.

Investigation of immune signatures and
immunotherapeutic response prediction

The scores of ESTIMATE, immune, and stromal were

counted by “estimate” R package (version 4.0.2). The ssGSEA
algorithm was applied for quantifying the enrichment scores of
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39 immune signatures. The 48 immune-checkpoint-relevant
genes expression were selected for disparate expression
analysis in two risk groups. TIDE analysis could precisely
model immune escape and predict cancer response to
immunotherapy (Jiang et al, 2018). Patients with TIDE
score >0 were considered to have no immunotherapy
response, and patients with TIDE score <0 were considered to
have the immunotherapy response. Moreover, a subclass
mapping algorithm (https://cloud.genepattern.org/gp), was
utilized for determining which group was more likely to
benefit from immunotherapy (Hoshida et al, 2007). In
addition, defined by

differential expression analysis of drug sensitivity.

appropriate targeted drugs were

Statistical analysis

According to the R software (version 4.0.2), all analyses were
conducted. All statistical tests were two-sided, and the difference
was statistically significant when p-value <0.05. Continuous
variables with normal distribution were contrasted via an
independent t-test. Wilcoxon rank-sum test was applied for
comparing continuous variables.

Results

Data combination and correction for
batch effect

After comprehensively retrieving the TCGA and CGGA
databases, four glioma cohorts conformed to our standard,
including TCGA-GBM, TCGA-LGG, CGGA_325, and
CGGA_693 databases. Meanwhile, we found an evident batch
effect in the four datasets (Figure 1A). The “sva” R package was
applied for eliminating the potential batch effect, and inter-assay
differences were found significantly decreased in the conjunct
glioma cohort (Figure 1B). Moreover, the expression of
costimulatory molecules in each patient was quantified via the
ssGSEA algorithm for further analysis (Figure 1C).

Costimulatory molecules-based
prognosis signature

After a comprehensive search performed on public databases,
1,152 normal samples from the GTEx database, 689 tumor
samples, and five adjacent samples from the TCGA database
of all
costimulatory molecules were performed between normal
samples from TCGA and GTEx databases, and tumor samples
the TCGA database.
costimulatory molecules with p < 0.001 were identified,

were screened. Differential expression analyses

from 57 differentially ~expressed
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FIGURE 1
Integration of glioma cohorts and the expression of costimulatory molecules. (A) Used in our analysis of the four glioma cohorts had significant
batch differences (Comp 1: 29.9% variance, Comp 2: 11.9% variance). (B) The “sva” R package for glioma cohort combinations significantly decreased
the batch difference (Comp 1: 18.1% variance, Comp 2: 9.6% variance). (C) Costimulatory molecules expression profile of all patients.

among which the expression of six costimulatory molecules
including HHLA2, TNFRSF14, TNFRSF18, TNFRSE25,
TNFRSF6B, and TNESF9 were decreased in tumor samples
(Figure 2A), whereas other costimulatory molecules were
increased in tumor samples (Figures 2B-E). Patients with
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intact survival information were screened for further analysis
(Supplementary Table S1). The training cohort was the TCGA
cohort and the verification cohort was the CGGA cohort.
Univariate Cox regression analysis was performed on the
costimulatory  molecules  and

differentially  expressed
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FIGURE 2

Differential expression analysis of costimulatory molecules. (A) Six costimulatory molecules HHLA2, TNFRSF14, TNFRSF18, TNFRSF25,
TNFRSF6B, and TNFSF9 were underexpressed in tumor samples. (B—E) The other 48 costimulatory molecules were highly expressed in tumor

samples.

31 costimulatory molecules were screened (Figure 3A). Next,
11 OS-related costimulatory molecules were identified by LASSO
Cox regression analysis (Figures 3B,C). According to five
Cox
regression analysis, a prognosis signature was constructed and
the riskscore was calculated by the formula: riskscore = CD274 *
0.198666431 + TNFRSF11B * 0.207922941 + TNFRSF14 *
0.18558208 + TNFRSF19 * 0.130431237404669 + TNFRSF21

—0.1078322 (Figure 3D). Then, KM survival analysis of these

costimulatory molecules defined by multivariate
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five costimulatory molecules was conducted to contrast the OS
time between two groups (Figure 3E).

Validation of the prognostic feature

The optimal truncation value of riskscore 1.07792 in the
training cohort and 0.159026 in the validation cohort were
counted via the

“maxstat” R package. Depended on the
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The construction of the model based on costimulatory molecules. (A) 31 costimulatory molecules, including 1 protective factor and 30 risk
factors, were identified by univariate regression analysis. (B,C) LASSO regression analysis was performed on costimulatory molecules identified by
univariate Cox regression analysis. (D) Multivariate Cox regression analysis identified five costimulatory molecules for model construction. (E) KM
survival curves analysis was performed on five model costimulatory molecules.

optimal truncation value, patients were classified into high- and
low-risk groups. Clinical information analysis indicated that
high-risk patients may have adverse events (Figure 4A). KM
survival analysis suggested that in the training cohort (Figure 4B)
and validation cohort (Figure 4C), the OS time was markedly
shorter in the high-risk group, showing that riskscore could
predict the prognosis. As the riskscore increased, there was also a
prominent increase in mortality in both the training cohort
(Figure 4D) and validation cohort (Figure 4E). Consistently,
the AUC value of 1-, 3-, and 5 years were respectively 0.70,
0.76, and 0.75 in the training cohort (Figure 4F) and 0.73, 0.77,
and 0.79 in the validation cohort (Figure 4G). Moreover, to verify
results in microarray datasets, GSE4290 and GSE108474 series
were selected to perform the differential expression analysis and
the clinical analysis, from which we found the expression of the
signature costimulatory molecules was significantly different
between tumor and normal tissues (Supplementary Figures
S1A,B), and patients with advanced gliomas have a higher

Frontiers in Genetics

06

riskscore (Supplementary Figures S1C,D). Furthermore, given
that the difference between two risk groups may just cause by
natural difference between HGG and LGG, we conducted KM
and ROC analysis in GBM and LGG patients independently,
which were matching our results (Supplementary Figures
S2A-F). Univariate and multivariate Cox regression analyses
were conducted to demonstrate the possibility of the riskscore
being a prognostic element distinct from common clinical
factors. With the lowest p-value both in univariate and
multivariate Cox regression analyses, the riskscore was linked
to the prognosis (Figures 4H,I).

Enrichment analysis and tumor mutation
burden

The enrichment scores of known immunotherapy-related
positive signatures were calculated for each patient and we found
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for the RiskScore.

that riskscore positively correlated with all these signatures
(Figure 5A), indicating that high-risk patients could be more
suitable for anti-tumor immunotherapy. Furthermore, we also
analyzed the correlations between riskscore and the scores of the
hallmark gene set (Figure 5A). To better understand the
biological processes and pathways of riskscore on the patient
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prognosis in two risk groups, oncogenic signature gene sets,
ontology gene sets and curated gene sets were selected to perform
GSEA analysis both in high- and low-risk groups patients
(Figures 5B-G). Figure 6A showed the TMB level of all cancer
types in the TCGA database, from which a clear difference in
TMB value was observed between LGG and GBM patients, and
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the TMB level in high-risk patients was evidently higher than that IDH1, EGFR, CIC, NF1, ATRX, TP53, FUBPI, and
in low-risk patients (Figure 6B). The somatic mutation profiles SMARCA4 in LGG patients, and ATRX, IDH1, UGGTI,
revealed that IDH1 mutations were more frequent in low-risk DNAH7, ROBO1, PCNT, EP400, DSG3, SLIT3, RB1, VWF,
patients and high-risk patients possessed specific top mutated TAFIL, and HMCNI in GBM patients were identified that

genes (Figure 6C). Given the difference in TMB value between mutated significantly different between two risk groups
LGG and GBM patients, we then performed differential mutation (Figures 6D,E). Moreover, co-occurrences were confirmed in
analysis between two risk groups both in LGG and GBM patients. the mutations of these genes (Figures 6F,G).
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Immunity and immunotherapy response
analysis

The ESTIMATE algorithm was firstly conducted to quantify
the immune scores, ESTIMATE scores, and stromal scores, and
all the scores were higher in high-riskscore patients (Figure 7A).
Then, according to the ssGSEA Z-scores of 39 immune
signatures, glioma patients were segmented into high- and
low-immunity groups. We could see that high-risk patients
consisted of more proportions of the high-immunity group
(Figure 7B). Between the two risk groups, there were evident
disparities in 39 immune signatures including immune

Frontiers in Genetics

09

functions and immune cells (Figures 7C,D). In light of the
significant role of ICIs therapy in cancer, the expression
distribution of 48 immune-checkpoint-correlated genes was
presented in Figure 7E. Further, the correlation analysis
showed that riskscore had a strong association with PD-1,
PD-L1, PD-L2, and CTLA4 expression (Figure 7F). Most
notably, all these findings revealed that high-riskscore
patients had a stronger immune-signature infiltration.
Figure 8A showed the distribution of the TIDE score. In the
high-risk group, there were 71.01% of patients responded to
immunotherapy, while in the low-risk group, only 53.96% of
patients responded to immunotherapy (Figure 8B). Following,
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Explore differences in immune characteristics between high- and low-risk groups. (A) Differences between the three scores in the high- and
low-risk groups. (B) Based on 39 immune characteristics, the high-risk group had more highly immunized patients. (C,D) Expression differences of
39 immune characteristics between high- and low-risk groups of patients with glioma. (E) Differences in expression of common immune
checkpoints between high- and low-risk groups of glioma patients. (F) Correlation analysis of four immune checkpoints between high- and

low-risk groups of glioma patients.

we conducted a TIDE analysis of our combined cohort, and the
result revealed that the high-risk score linked to the low-TIDE
score, demonstrating that these patients may be more likely to
respond to immunotherapy (Figure 8C). Moreover, the TIDE
analysis in GBM and LGG patients showed the same results
independently (Supplementary Figures S3A,B). Besides the
TIDE prediction, subclass mapping analysis was applied for
verifying our findings, and we were delighted to see that high-
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riskscore patients were more potential to profit from PD-1
checkpoint treatment both in LGG and GBM patients (Figures
8D,E). Finally, the IC50 for each sample of 179 drugs were
estimated via R “oncoPredict” package (version 4.0.2) in the
GDSC database and between the two risk groups, drugs that
have disparities in sensitivity were identified. The drugs with
the most prominent sensitivity discrepancies in the two risk

groups were displayed in Figures 8F,G.
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Discussion

With the most pernicious kind of primary brain cancer,
glioma is famous for its high possibility of metastasis and
recurrence (Yang et al, 2022). In the one hand, most glioma
patients have developed to the intermediate and advanced stages
at the time of diagnosis, missing the optimal treatment time. In
another hand, glioma patients lack targeted therapy for specific
subtypes and the current treatment can not control glioma
invasion to normal adjacent brain tissue (Lee et al, 2018).
The prognosis for patients with glioma remains dismal due to
intratumoral heterogeneity (Jan et al., 2010). Accumulating
evidence revealed a prominent association between different
molecular subtypes and clinical outcomes in glioma patients
(Li et al., 2022; Zheng et al., 2022). And several studies showed
that costimulatory molecules took a great part in initiating anti-
tumor immune responses (Zhang et al., 2020), but there was little
literature focused on the correlation between costimulatory
molecules and stratification of patients with glioma. This
study discovered a novel signature that could effectively reflect
the survival and immunotherapy response of glioma patients.

In our study, we firstly combined four independent cohorts into
a large glioma cohort and used “sva” R package to decrease bias
resulting in the small sample size. Univariate Cox analysis verified
31 costimulatory molecules closely correlated to patients’ prognosis
and five costimulatory molecules including CD274, TNFRSF11B,
TNFRSF14, TNFRSF19, and TNFRSF21 were selected by
multivariate Cox analysis for signature construction. Recent
research revealed that the expression of CD274 induced under
hypoxia condition was signally associated with poor survival in
glioma patients (Ding et al., 2021). In addition, TNFRSF11B might
be involved in the malignant progression of gliomas and was one of
the signature genes that predicted patient prognosis (Kang et al,
2021). TNFRSF14 served a tumor suppressive role by suppressing
tumor cell proliferation and inducing apoptosis in bladder cancer
and could act as a new diagnosis and prognostic biomarker for
bladder cancer (Zhu and Lu, 2018). Further, TNFRSF19, essential
for cell proliferation and development of nasopharyngeal carcinoma,
represented a mechanism for tumor cells to escape from TGEF-{
growth-inhibitory action (Deng et al, 2018). Besides, a study
demonstrated that the TNFRSF21 expression was strongly
negatively linked to the miR-20a-5p expression, and the
downregulation of TNFRSF21 functioned as an oncogene in
squamous cell carcinoma of the head and neck (Wu et al,, 2018).
With the in-depth study of costimulatory molecules, the significant
costimulatory molecules verified in this study might provide a
foundation for further exploring the prognostic and therapeutic
role of glioma.

We further investigated the potential biological discrepancy
between the two risk groups through GSEA and mutation burden
analysis. We found that riskscore positively associated with all known
immunotherapy correlated positive signals. With the curated gene
sets being a reference set, GSEA analysis indicated that
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Glioblastoma_Mesenchymal, Nakayama_Soft_Tissue_Tumors_
PCA1_Up, Noushmehr_ GBM._Silenced_by_Methylayion, Blanco_
Melo_COVID-19_Sars, Mclachlan_Dental_Caries_Up pathways
were evidently stimulated in high-risk patients. And Acute_
Inflammatory_Response, B_cell_Receptor_Signaling Pathyway,
B_Cell_Mediated_immunity, Adaptive_Immune_Response_Based_
On_Somatic_Recombination and  Adaptive_Immune_Response
were also significantly activated in high-risk patients with the
ontology gene sets being

a reference set. These findings might partially explain the worse
prognosis of high-risk patients and suggested that these patients
might be more suitable for anti-tumor immunotherapy. In addition,
we found that the TMB level was evidently higher in high-risk
patients. Besides, IDHI, associated with a good prognosis in
glioma patients, was also observed in more mutations in low-risk
patients (Bai et al,, 2016).

Moreover, we explored the situation of immune cells and related
immune pathways. Results suggested that high-riskscore patients got
a higher level of most immune features. We also observed higher
levels of PD-L1 and PD-L2 in high-risk patients. Studies had
demonstrated that the PD-L1 was a predictive marker for tumor
immunotherapy (Patel and Kurzrock, 2015). A study also reported
that PD1 expression increased neuronal killing of cancer cells and
was associated with long-term survival (Kingwell, 2013). The results
of TIDE analysis suggested that in the high-risk group, patients had a
higher immunotherapy response rate, which might be correlated to
higher immune-checkpoint-related gene levels in high-risk patients.
In addition, the subclass mapping algorithm analysis verified that
patients with high-risk score were more potential to benefit from
PD-1 checkpoint therapy.

To sum it up, this study successfully constructed and
validated costimulatory molecules based on the prognostic
feature, which might be applied for further guiding treatment
and improving clinical outcomes for glioma patients. However,
there are several limitations to the study. Firstly, bacause only
individuals from Western and China populations are included,
the samples may generate some population and genome bias.
Then, this study lacks verification from other clinical data sets
which will be beneficial to our signature. Finally, given the
incompleteness of patient information and the sensitivity to
incorrect model specification in our multivariate regression
analysis, further analysis of patients with complete clinical
information can be very beneficial in the future. Therefore,
further
costimulatory molecules are needed such as functional

investigation of prospective studies and other

experiments and underlying molecular mechanisms.

Conclusion
In conclusion, we investigated the biological features and

prognostic value of costimulatory molecules in patients with
glioma. We developed a new prognostic signature, and
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demonstrated the potential immune-related mechanisms of this
signature. Then, most importantly, our findings indicated that
high-riskscore patients were more likely to benefit from
immunotherapy.
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SUPPLEMENTARY FIGURE S1

Differential expression analyses and the clinical analyses in microarray
datasets. (A,B) Results of differential expression analyses showed that
patients with glioma had in a higher level of the signature genes in
tumor tissues both in GSE4290 (A) and GSE108474 series (B). And
patients with advanced stage qghad a higher level of riskscore (C,D).

SUPPLEMENTARY FIGURE S2

The validation of the model using LGG and GBM data independently. (A,B)
KM survival curve analysis of the model. (C,D) The plots shows that the
mortality rate of patients increases gradually as their riskscore
increases. (E,F) 1, 3, and 5 years ROC curve analysis of the model in both
LGG and GBM data independently.

SUPPLEMENTARY FIGURE S3

The results of TIDE analyses in LGG and GBM patients independently.
(A,B) The TIDE analyses showed that patients in high risk group with LGG
or GBM all had a lower TIDE score.
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