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Background: Glioma has the highest fatality rate among intracranial tumours.

Besides, the heterogeneity of gliomas leads to different therapeutic effects even

with the same treatment. Developing a new signature for glioma to achieve the

concept of “personalised medicine” remains a significant challenge.

Method: The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome

Atlas (CGGA) were searched to acquire information on glioma patients. Initially,

correlation and univariate Cox regression analyses were performed to screen

for prognostic pyroptosis-related long noncoding RNAs (PRLs). Secondly,

11 PRLs were selected to construct the classifier using certain algorithms.

The efficacy of the classifier was then detected by the “timeROC” package

for both the training and validation datasets. CIBERSORT and ESTIMATE

packages were applied for comparing the differences (variations) in the

immune landscape between the high- and low-risk groups. Finally, the

therapeutic efficacy of the chemotherapy, radiotherapy, and immunotherapy

were assessed using the “oncoPredict” package, survival analysis, and the

tumour immune dysfunction and exclusion (TIDE) score, respectively.

Results: A classifier comprising 11 PRLs was constructed. The PRL classifier

exhibits a more robust prediction capacity for the survival outcomes in patients

with gliomas than the clinical characteristics irrespective of the dataset (training

or validation dataset). Moreover, it was found that the tumour landscape

between the low- and high-risk groups was significantly different. A high-

risk score was linked to amore immunosuppressive tumourmicroenvironment.

According to the outcome prediction and analysis of the chemotherapy,

patients with different scores showed different responses to various

chemotherapeutic drugs and immunotherapy. Meanwhile, the patient with

glioma of WHO grade Ⅳ or aged >50 years in the high risk group had better

survival following radiotherapy.

Conclusion:We constructed a PRL classifier to roughly predict the outcome of

patients with gliomas. Furthermore, the PRL classifier was linked to the immune

landscape of glioma and may guide clinical treatments.
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Introduction

Glioma represents the highest morbidity, incidence, and

fatality rates compared to other intracranial tumours, with an

annual incidence of 3–6.4/100,000 persons, accounting for

23.3% of brain tumours and 78.3% of malignant tumours

(Sung et al., 2021). Moreover, gliomas are highly malignant

and invasive, making them the leading cause of death

associated with intracranial malignant tumours (Ostrom

et al., 2019). The prognosis of low-grade glioma (LGG) is

relatively good. The median overall survival (OS) of WHO

grade 2 glioma is around 11 years, whereas that of WHO grade

3 glioma is 3 years (Smoll et al., 2012). The median OS of

glioblastoma (GBM) is just 19.2 months (Tesileanu et al.,

2020). Based on pathologic characteristics and molecular

alterations, the 2021 World Health Organisation (WHO)

classification of gliomas brings meaningful instructions to

clinical practice (Louis et al., 2021). However, the

prognostic classifier based on accurate tumour-specific

biomarkers of glioma for personalised precision is still

poor. Therefore, the construction of novel prognostic

signatures and the direction of clinical treatment remain

priorities.

Long noncoding RNAs (lncRNAs), a kind of RNA void of

protein-coding function, are involved in tumour progression

mechanisms, including proliferation, apoptosis, invasion, and

migration (Gou et al., 2018). In gliomas, the involvement of

lncRNA is not fully grasped. Research illustrates that lncRNA

PCED1B-AS1 can up-regulate hypoxia-inducible factor 1-alpha

(HIF-1α) expression, thus promoting cell proliferation, glucose

uptake, and lactic acid release in glioma cells (Yao et al., 2020).

Meanwhile, some lncRNAs also function as biological markers

for predicting glioma patients’ prognoses. For example, the

expression of insulin-like growth factor binding protein 7-

antisense 1 (IGFBP7-AS1) is a biomarker correlated with a

dismal prognosis for glioma individuals (Li et al., 2019).

Furthermore, mounting data show that lncRNAs participate in

pyroptosis regulation. Metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1) is capable of

activating the nucleotide oligomerisation domain-like receptor

family pyrin domain containing 3 (NLRP3) inflammasome by

adsorbing microRNA (miRNA)-133 as a miRNA sponge through

the competing endogenous RNA mechanism during cardiac

ischaemia and reperfusion injury (Yu et al., 2018).

XLOC_000647 has been proven to decrease the proliferative

and invasive capacity of pancreatic cancer cells by reducing

NLRP3 expression (Hu et al., 2018).

Pyroptosis is not the same as the other types of cell death,

including necrosis, apoptosis, and necrotic apoptosis, in that it

releases inflammatory mediators regulated by gasdermin (Shi

et al., 2017). The occurrence of the pyroptosis is the first to

activate caspase 1 and caspase 4/5/11 via the classical and non-

classical pathways to cleave gasdermin D (GSDMD) (Cheng

et al., 2017; Karki and Kanneganti, 2019). After cleaving

GSDMD, the N-terminal segment of GSDMD is implicated in

the formation of oligomers and the binding of these oligomers to

the cell membrane. This results in the generation of pores in the

cell membrane and the production of inflammatory mediators,

such as interleukin (IL)-1β and IL-18. Another mechanism for

pyroptosis activation is the stimulation of caspase 3-induced

cleavage of gasdermin E to produce its N-terminal products,

resulting in cell perforation (Wang et al., 2017). The strong and

complicated relationship between pyroptosis and tumourigenesis

and tumour development has not been elucidated (Xia et al.,

2019). Inflammatory mediators released from cells that undergo

pyroptosis might promote tumourigenesis and induce drug

resistance. On the other hand, pyroptosis of the tumour cells

inhibits tumour growth (Xia et al., 2019). Drugs used to induce

tumour cell death can produce anti-tumour immunity, resulting

in tumour regression. It has been reported that when drugs are

used to induce tumour pyroptosis it leads to anti-tumour

immunity (Wang et al., 2020). The pyroptosis gene GSDMD

may not only participate in regulating macrophage infiltration

and polarisation but also influence the response to temozolomide

in GBM (Liu et al., 2021). Research evidence has illustrated that

pyroptosis-related gene signatures have a good prognostic value

(Yang Z. et al., 2022; Zhang et al., 2022; Zheng et al., 2022).

Nevertheless, research reports on pyroptosis-related lncRNA

(PRLs) and its prognostic value in gliomas are scarce. This

study sought to probe into the prognostic significance of

PRLs, develop a classifier to foresee the survival outcome of

patients with gliomas, and provide a clinical guideline and new

insights into the concept of “personalised medicine” in glioma.

We also intend to discover the most significant lncRNAs that

regulate pyroptosis in gliomas to identify an effective therapeutic

target for treating gliomas. Figure 1 illustrates the study’s flow

chart.

Materials and methods

Collection of data on patients with
gliomas

Data on transcriptomes, somatic mutations, and clinical

characteristics of patients in the TCGA cohort were obtained

from The Cancer Genome Atlas (TCGA). While data on

transcriptomes and clinical parameters of patients in the
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FIGURE 1
Research procedure shown as a flowchart.

TABLE 1 Clinicopathological features of the patients in the TCGA, CGGA_693, and CGGA_325 cohorts.

Variables TCGA (n = 611) CGGA_693 (n = 656) CGGA_325 (n = 309)

Age (Mean ± SD) 47.21 ± 15.10 43.43 ± 12.41 43.27 ± 11.93

Sex

Male 343 374 194

Female 268 282 115

WHO grade

II 219 172 97

III 235 248 73

IV 157 236 135

MGMTp status

Methylated 431 304 151

Unmethylated 139 217 140

NA 41 135 18

1p/19q codeletion

Codel 149 137 62

Non-codel 447 453 239

NA 15 66 8

IDH status

Mutant 384 332 165

Wildtype 210 276 143

NA 17 48 1
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CGGA_693 and CGGA_325 cohorts were extracted from the

Chinese Glioma Genome Atlas (CGGA) (Zhao et al., 2021).

Patients without data on the survival time and those who lived for

less than 30 days after diagnosis were excluded from our study.

Finally, we included data from 1576 glioma samples.

Transcriptomic data of TCGA and CGGA_693 were analysed

to identify the prognostic PRLs. In the subsequent development

of the classifier, the TCGA dataset was chosen as the training set,

while the CGGA_693 and CGGA_325 datasets were the

validation datasets. Before the analysis, these transcriptomes

of patients with gliomas were normalised to fragments per

kilobase million (FPKM), except for the DESeq2 differential

expression analysis. Table 1 summarises the clinical

information of each dataset.

Discovery of prognostic pyroptosis-
related lncRNAs

Previous studies provided us with 33 pyroptosis-related

genes (Ye et al., 2021). The type of RNA aligns with the

annotation of the Genome Reference Consortium Human

Build 38 (GRCh38) to lncRNA would be considered. Then,

the lncRNAs with Pearson’s r absolute value of >0.5 and

p-value <0.001 were considered as PRLs. Lastly, PRLs linked

to prognosis were determined via Cox regression analysis.

Establishment and evaluation of the
predictive potential of the PRL classifier

To select the significant lncRNA linked to the prognoses of

patients with gliomas, the Boruta algorithm, an algorithm based on

random forest, was used for feature selection (Kursa and Rudnicki,

2010). The lncRNA confirmed as the crucial feature for prognosis

will be included in the subsequent study. To further evaluate the

candidate lncRNA for the construction of the PRL classifier, we

applied the least absolute shrinkage and selection operator (LASSO)

algorithm and Cox regression. The classifier was referred to as the

“risk score”. Below is the formula for risk score

risk score � ∑
n

i�1
(Coef ipxi)

Where Coefi denotes the coefficients, and xi denotes the FPKM

value of 11 PRLs. The median value of the risk score was

considered as a threshold value to distinguish between high-

and low-risk score. We compared the survival times of the two

groups utilising the “Survminer” package. The area under the

curve (AUC) value calculated by the “timeROC” package was

used to examine the predictability of the risk score and clinical

factors linked to the prognosis of patients with gliomas, was

derived utilising.

Construction and verification of a
nomogram

First, the risk variables of the clinicopathological parameters

that might impact the prognosis of patients with glioma were

determined bymeans of univariate Cox regression. Predicated on

the prognostic factors, a nomogram was created using

multivariable stepwise logistic Cox regression, and

visualisation was done with the “rms” package in R. The

prediction effectiveness of the nomogram was also evaluated

by calculating the AUC values of each clinical feature using the

“timeROC” package. The predictability of the nomogram was

assessed using calibration curves and AUC values of each factor.

Functional enrichment analysis

Differential expression analysis between the high and low risk

score groups was performed using the “DESeq2” package. The

“ClusterProfiler” package was applied to annotate the function of

differentially expressed genes based onGeneOntology (GO) and the

Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways

enrichment analysis. The enrichment score of each glioma sample

was calculated through Gene Set Variation Analysis (GSVA).

“Limma” package was applied to analyze the differentially

activation of Reactome and KEGG pathways between high and

low risk groups.

Evaluation of the association between the
PRL classifier and the glioma
microenvironment and mutation profile

“CIBERSORT” was used to explore the infiltration levels of

22 distinct types of immune cells in the glioma samples

(Newman et al., 2015). The stromal and immune scores, as well

as the tumour purity of the glioma samples, were computed with the

“ESTIMATE” package (Yoshihara et al., 2013). The tumour immune

checkpoints were retrieved from past studies (Ping et al., 2021; Zheng

et al., 2021). “Maftools” was used to visualise the mutation sites and

calculate the tumourmutation burden (TMB) of each glioma sample.

Prediction of drug sensitivity of glioma

The “oncoPredict” package was applied to predict the 50%

inhibiting concentration (IC50) values of the glioma samples to

various antineoplastic drugs in the Cancer Therapeutics

Response Portal (CTRP) (Maeser et al., 2021). Then

Spearman correlation analysis was implemented for

IC50 values and risk score for identifying the sensitive and

resistant drugs (with the |R | >0.5 and p < 0.05).
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Evaluation of the effectiveness of
radiotherapy

Since there were only a few patients with GBM in the low risk

group, we merged three datasets and grouped the patients based

on their clinical features. Following this, we conducted a survival

analysis to probe the efficacy of radiotherapy in each clinical

subgroup.

Prediction of the response to immune
checkpoint blockade (ICB)

On the webpage http://tide.dfci.harvard.edu, an online

computation was performed to determine the tumour

immune dysfunction and exclusion (TIDE) score, which

was applied to anticipate how gliomas respond to ICB. The

cut-off value for predicting the patient’s response to ICB was

set at 0.

Acquisition of glioma samples and real-
time quantitative polymerase chain
reaction (RT-qPCR)

All glioma samples were obtained after the patients provided

informed consent. The Research Ethics Committee of Zhujiang

Hospital affiliated with Southern Medical University approved

this research. In addition, 20 glioma tissue samples (nine LGGs

and 11 GBMs) were obtained from patients who received surgical

resection. TRIzol was utilised to obtain the total RNA from the

samples. A reverse transcription kit (AG11718) was then

employed to extract the genomic deoxyribonucleic acid

(DNA) (gDNA) from RNA samples and synthesise the

complementary DNA (cDNA). The amplification of cDNA

was performed on QuantStudio 3&5 using SYBR green

(AG11718). Gene expression was standardised using the

housekeeping gene glyceraldehyde-3-phosphate dehydrogenase

(GAPDH). The primers for cDNA amplification are depicted in

Supplementary Table S1.

Statistical analysis

Data analysis and visualisation were done with the help of

the R software (4.0.4). The Fisher’s exact test and chi-square

test were employed to explore if there was a significant

variation in clinical characteristics between the groups with

high and low risk score, respectively. When comparing non-

normally distributed continuous variables, we adopted the

Wilcoxon rank-sum along with Kruskal–Wallis tests. The

significance level was established at a two-sided p-value

of <0.05.

Results

Determination of the prognostic
pyroptosis-related LncRNA

As per the annotation of GRCh38 to lncRNA, the TCGA

dataset comprised 14,690 lncRNAs, and the

CGGA_693 dataset comprised 3951 lncRNAs. Then

1074 and 782 prognostic PRLs were obtained from these

two datasets using correlation analysis and univariate Cox

regression analysis. These two datasets then shared

311 lncRNAs that were considered prognostic indicators.

Finally, 11 PRLs, including RP11-303E16.2, RP11-360L9.7,

RP11-513M16.7, RP11-617F23.1, CTD-2521M24.6, paired

box interacting protein 1-antisense RNA 2 (PAXIP1-AS2),

RP11-428J1.5, RP11-158M2.3, SET binding factor 2-antisense

RNA 1 (SBF2-AS1), adenosine diphosphate ribosylation factor

guanosine triphosphatase-activating protein-antisense RNA 1

(AGAP2-AS1), and AP001469.9, were selected to construct the

classifier.

Construction of the PRL classifier and
validation of its predictability

After feature selection using the Boruta algorithm, 87 of the

311 prognostic PRLs were considered essential to anticipate the

survival outcomes of patients with gliomas (Figure 2A). To simplify

these signatures, the LASSO Cox algorithm and multivariate

stepwise Cox regression were applied (Figures 2B,C). Figure 2D

shows the univariate Cox regression coefficient of the 11 PRLs,

suggesting that four of these PRLs are protective factors for glioma

while the others are risk factors. Meanwhile, the correlations

between 11 PRLs and 33 pyroptosis-related genes were presented

in a heatmap (Figure 2E).When determining how to distinguish the

high and low risk group, the median value was employed as the

dividing line. Kaplan-Meier (KM) analysis highlighted that

patients with a high risk score exhibited a dismal survival

prognosis irrespective of the dataset (training or validation

dataset) (Figures 3A–C). Similarly, it was observed that

an increased risk score was associated with shorter survival time

and a poor outcome (Figures 3D–F). The receiver operating

characteristic (ROC) curve of the three datasets presented that

risk score exhibited a larger AUC value than the

clinicopathological parameters, indicating the relatively robust

predictive power of PRL risk score (Figures 3G–I).

All the clinicopathological feature subgroups were

compared for survival differences between the two

classifications to explore whether the PRL classifier was

suitable for all patients with gliomas. In most subgroups,

patients with high risk score exhibited a dismal prognosis,

except for a patient with GBM in the CGGA_325 cohort

(Supplementary Figure S1).
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FIGURE 2
Construction of the prognostic pyroptosis-related lncRNA (PRL) classifier. (A) The Boruta algorithmwas used to select important features. (B,C)
The LASSO cox regressionwas conducted based on theminimumparameters. (D) The 11 PRLs were analyzed using univariate Cox regression. (E) The
association of the 33 pyroptosis-related genes with 11 PRLs in TCGA cohort. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Association between risk score and the
clinicopathological features of glioma

The proportion of the clinicopathological features

suggesting a bad prognosis (isocitrate dehydrogenase

[IDH] wild type, higher WHO grade, more malignant

classification, etc.) was relatively high in the TCGA cohort

(Figure 4A). However, both groups had similar proportions

in terms of sex. Subsequently, the box plot revealed that

elderly patients or those with a higher WHO grade or

more malignant glioma had a higher risk score (Figures

4B–D). Patients with IDH wild type, chromosome 1p/19q

codeletion, and O6-methylguanine-DNA methyl-transferase

(MGMT) promoter unmethylation also had a higher

risk score (Figures 4F–H). This finding was consistent in

the CGGA_325 and CGGA_693 cohorts (Supplementary

Figure S2), suggesting the generalisability of the risk score

in glioma.

FIGURE 3
Validation of the PRL classifier. (A–C) The findings of KM curves for the three different cohorts in the TCGA, CGGA_693, and CGGA_325. (D–F)
Representation of the TCGA, CGGA_693, and CGGA_325 cohorts’ risk score and survival status distribution plots. (E–G) Multiple ROC curves
depicting the risk score as well as clinical variables for the TCGA, CGGA_693, and CGGA_325 cohorts.
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FIGURE 4
Correlation analysis between the PRL classifier and clinical-pathological parameters in TCGA cohort. (A) A heatmap illustrating the distribution
of the clinical-pathological features and expression profiles of the 11 chosen PRLs in the high-and low-risk groups. (B–H) Various levels of risk scores
in patients who had gliomas classified by: sex, age, WHO grade, 2021 WHO classification, IDH mutation status, 1p/19q codeletion, and MGMT
promoter methylation. A, astrocytoma; O, oligodendroglioma; GBM, *p < 0.05, **p < 0.01, and ***p < 0.001. ns, no significance.
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Establishment of a nomogram

Clinical and pathological features were combined to establish

a nomogram for constructing a model that may efficiently

anticipate the outcome of patients with gliomas. Univariate

cox regression revealed risk score, patient age, 2016 WHO

grade, 2021 WHO classification, MGMT promoter

methylation, IDH mutation, and chromosome 1p/19q

codeletion as significant prognostic factors (Table 2). A

nomogram was then developed using risk score, 2016 WHO

grade, patient age, the IDH mutation status, and chromosome

1p/19q codeletion status premised on the multivariate stepwise

regression findings. The nomogram is presented in Figure 5A.

The calibration curves revealed that the nomograms predicted

survivor probabilities that were highly consistent with actual

survivor probabilities intuitively (Figures 5B–D). As a result, the

ROC plot showed excellent predictability for survival

probabilities within 1, 3, and 5 years (Figures 5E–G). The

increase in the predictive power of the nomogram compared

with risk score and clinical features are intuitively clear from the

line chart, irrespective of the cohort (TCGA, CGGA_693, or

CGGA_325 cohorts) (Figures 5H–J).

Functional enrichment analysis

Firstly, the patient distribution in the high and low risk score

groups was separated in the three-dimensional (3D) principal

component analysis (PCA) plot, indicating, at least in part, the

difference in the effect of pyroptosis or the degree of pyroptosis in

glioma between the two groups (Figure 6A). The results of GO

enrichment analysis showed that the 3912 differentially expressed

genes (DEGs) were mostly enriched in immune-related pathways

(immune receptor activity, immunoglobulin receptor binding, antigen

binding, etc.), matrix-related pathways (extracellular matrix structural

constituent, collagen trimer, collagen-containing extracellular matrix,

etc.) and ligand-receptor interaction genset (cytokine binding,

receptor ligand activity, signaling receptor activator activity, etc.)

(Figure 6B). Among these immune-related pathway, humoral

immunity-related pathways (antigen binding, immunoglobulin

complex, circulating, humoral immune response, etc.) account for

a large part. Similarly, the DEGs were also enriched in immune-

related pathway (complement and coagulation cascades, antigen

processing and presentation, Th1 and Th2 cell differentiation, etc.),

matrix-related pathway (ECM-receptor interaction) and ligand-

receptor interaction genset (cytokine-cytokine receptor interaction)

based on the results of KEGG enrichment analysis (Figure 6C).

Moreover, the results of KEGG GSVA showed the increased

activation of cell proliferation related pathways (DNA replication,

cell cycle, pyrimidine metabolism), DNA repaired related pathways

(base excision repair, mismatch repair, homologous recombination)

and metabolism related pathways (glutathione metabolism, amino

sugar and nucleotide sugar metabolism, galactose metabolism) in the

glioma with high risk score (Figure 6D). Similarly, the cell

proliferation related pathways (G2 phase, DNA strand elongation,

G2 M DNA replication checkpoint, etc.), DNA repaired related

pathways (mismatch repair) and cell death related pathways

(TRAIL signaling, FASL CD95L signaling, caspase activation via

TABLE 2 Univariate and multivariate Cox analyses in the TCGA, CGGA_693, and CGGA_325 cohorts.

Variables Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

Age (Continuous) 1.065 (1.065–1.075) <0.001 1.038 (1.025–1.51) <0.001
Gender (Female vs. Male) 1.257 (0.978–1.616) 0.074 — —

WHO grade

II 1.000 — —

III 3.377 (2.295–4.969) <0.001 1.551 (0.999–2.409) 0.0508

IV 18.603 (12.563–27.549) <0.001 1.758 (0.956–3.233) 0.0679

2021 WHO classification

O, IDH mutant and 1p/19q codeletion 1.000 —

A, IDH mutant 1.647 (0.999–2.716) 0.0504 1.861 (1.103–3.140) 0.0200

GBM 12.566 (7.861–20.084) <0.001 1.814 (0.957–3.438) 0.0679

Sample type (Primary vs. Recurrent) 1.438 (0.910–2.274) 0.120 — —

IDH mutation (Mutant vs. wild type) 9.200 (6.962–12.16) <0.001 1 —

1p/19q status (Codel vs. Non-codel) 4.474 (2.857–7.007) <0.001 1 —

MGMTp status (Methylated vs. Unmethylated) 3.063 (2.323–4.039) <0.001 1.285 (0.9283–1.779) 0.131

Riskscore (Continuous) 101.1 (60.93–167.8) <0.001 21.169 (7.826–57.259) <0.001

A, astrocytoma; O, oligodendroglioma; GBM, Glioblastoma.
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FIGURE 5
Development and assessment of a nomogram in TCGA cohort. (A)Nomogram based on the PRL risk score, age, WHO grade, MGMT promoter
status and 2021 WHO classification. (B–D) Calibration curves that indicate the congruence between predicted and observed 1-, 3-, and 5-year
overall survival (OS) in TCGA, CGGA_693 and CGGA_325 cohorts, respectively. (E–G) The receiver operating characteristic (ROC) curve analyses of
the nomogram in predicting 1-, 3-, and 5-year OS in TCGA, CGGA_693 and CGGA_325 cohorts. (H–J) Line chart showing the AUC value of the
nomogram, the risk score, grade, MGMT promoter status, age, and 2021 WHO grade in the TCGA, CGGA_693, and CGGA_325 cohorts.
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FIGURE 6
PCA plot and Functional enrichment analysis in TCGA cohort. (A) PCA showing the distribution differences between the high- and low-risk
groups. (B,C) Results of GO and the KEGG analyses. The immune biological process, matrix-related pathway and intracellular communication
pathways were boxed in red, blue, and green, respectively. (D,E) The top 20 differential activation pathways in KEGG and Reactome geneset between
high and low-risk groups.
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FIGURE 7
The correlation of PRL classifier with heterogeneous microenvironment in the TCGA cohorts. (A) GSVA showing the differences in the energy
source between high and low risk group. (B) Comparison of the stromal, immune, and ESTIMATE scores, as well as the tumour purity between the
high- and low-risk groups. (C) The abundance of 22 immune cells in the high- and low-risk groups. (D) The expression levels of the immune
checkpoints in the high- and low-risk groups. (E,F) The top 20 genes mutation were visualized in the high- and low-risk groups. *p < 0.05, **p <
0.01, and ***p < 0.001. ns, no significance. FAO, fatty acid beta oxidation; PPP, pentose phosphate pathway.
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death receptors in the presence of ligand, etc.) were also upregulated in

the high-risk group based on the results of Reactome GSVA

(Figure 6E). Similar to KEGG and GO enrichment analysis,

immune biological process genesets (RUNX3 regulates immune

response and cell migration, leukocyte transendothelial migration)

and matrix-related pathways (ECM receptor interaction,

glycosaminoglycan degradation, glycosaminoglycan biosynthesis

keratan sulfate) were also activated in the glioma with high-risk

score. In brief, the results of enrichment analysis showed the

differences in the immune biological process, matrix constitution,

intercellular communication and cell metabolism between high and

low risk groups.

Metabolic heterogeneity and
microenvironment of gliomas with
different risk score

Subsequently, we further explored the difference in

metabolism, immunity, and matrix between high and low risk

groups. Energy metabolism GSVA suggested that the energy

metabolic pattern was depended on glycolysis, fatty acid

oxidation and pentose phosphate pathway (Figure 7A). While

glutaminolysis might be a crucial energy source for the glioma

with low risk score. In terms of the differences in immunity and

matrix, ESTIMATE analysis illustrated that patient having a high

risk score exhibited significantly elevated stromal and immune

scores and lower tumour purity (Figure 7B). Further investigation

revealed that immune cells infiltrated gliomas with a high risk score

(M2 macrophages, regulatory T cells, γδ T cells, and T follicular

helper cells) and were mostly immunosuppressive (Figure 7C).

However, certain anti-tumour immune cells (CD8+ T cells and

M1 macrophages) were also found in higher proportions in the

group with a high risk score. The immune cells enriched in the low-

risk group were not special. The phenomenon of the

CGGA_693 and CGGA_325 cohorts is largely consistent with

that of the TCGA cohort (Supplementary Figure S3). Figure 7D

shows that a high risk score was linked to an elevated immune

checkpoint expression level, indicating an immunosuppressive

microenvironment in the high risk group.

The association between the PRL classifier
and somatic mutation profile

The oncoplot showed that the mutations of tumour

protein p53 (TP53), IDH, alpha-thalassemia/mental

retardation, X-linked (ATRX), were prevalent in the high

and low risk groups (Figures 7E,F). The frequency of the

mutations that suggest a relatively good prognosis (IDH1,

TP53, ATRX, and capicua) was lower in the high-risk

group. Patients in the high-risk group exhibited an elevated

frequency of mutations in epidermal growth factor receptor

(EGFR) and phosphatase and tensin homolog (PTEN),

indicating a poor prognosis. The difference in the somatic

mutation between the two groups also reflected the accuracy

of the PRL classifier in the prediction of glioma patients’

prognostic status.

The association between the risk score
and drug sensitivity

The findings of Spearman’s correlation analysis revealed

that the drug sensitivity of 40 antineoplastic agents was related

to the risk score. Among these 40 drugs, 12 were relatively

sensitive in the high-risk group while the others were

relatively resistant (Figure 8). The 12 agents that were

relatively sensitive in the high-risk group comprised 3-

hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)

reductase inhibitors (lovastatin and simvastatin),

phosphatidylinositol-3-kinase (PI3K) pathway inhibitors

(IC-87114 and TGX-221) and B-raf (BRAF) inhibitors

(GDC-0879 and TGX-221). Most of the 28 agents relatively

resistant in the high-risk group were platinum agents

(carboplatin and platin), histone deacetylase inhibitors

(apicidin, BRD-A94377914, pandacostat, BRD-K24690302,

and vorinostat) and EGFR inhibitors (vandetanib,

neratinib, and lapatinib). Further analysis among the six

drugs recommended in the guidelines revealed that the

sensitivities of temozolomide and carboplatin + etoposide

in patients with gliomas patients did not vary considerably

across the two groups (Figure 8). An elevated risk score was

associated with greater sensitivity to procarbazine, vincristine,

and etoposide but greater resistance to vorinostat, carboplatin,

and carboplatin + vorinostat.

The association between the PRL classifier
and the effectiveness of radiotherapy

As demonstrated by the KM survival analysis, no remarkable

variation in the survival outcome was observed among patients

treated with radiotherapy and those who were not, regardless of

their risk score. Patients aged >50 years and those with glioma of

WHO grade 4 benefitted from radiotherapy, while patients with a

low risk score did not benefit from radiotherapy (Figure 8C).

Furthermore, the other subgroup of patients showed no

significant difference in survival time (Supplementary Figure S4).

Different classifications lead to different
responses to ICB

Patients with a higher risk score had a higher TIDE score,

indicating poor responsiveness to ICB (Figure 8D). The bar plot
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FIGURE 8
Association between the risk stratification and drug sensitivity, the effectiveness of radiotherapy, and the predictive response to
immunotherapy. (A) The association of the risk scores with drug sensitivity evaluated using Spearman’s analysis. Each row represents a drug. The
length of the row indicates the correlation, indicating that the risk score is related to drug resistance (Rs > 0) or drug sensitivity (Rs < 0). (B) The IC50 of
the anti-glioma chemotherapeutic drugs in the high- and low-risk groups. (C) The KM curves for all patients, patients with glioma ofWHOgrade
Ⅳ, and patients aged >50 years with or without radiotherapy in the high- and low-risk groups. (D) The TIDE scores of patients within the high- and
low-risk groups. (E) The estimation of immunotherapy responsiveness in high- and low-risk groups. (F) The TMB levels of patients in the high- and
low-risk groups.
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FIGURE 9
Validation of the 11 PRL expression levels. (A) The 11 PRL expression levels between LGGs and GBMs in TCGA cohort. (B) Expression analysis of
the 11 PRLs in 9 LGG and 11 GBM samples. *p < 0.05, **p < 0.01, and ***p < 0.001. ns, no significance.
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revealed that high-risk groups respond less frequently to ICB

(Figure 8E). Subsequent analysis revealed that patients having a

high risk score exhibited a higher TMB (Figure 8F). It was

previously reported that gliomas with a high TMB showed

poor responsiveness to immunotherapy (Samstein et al.,

2019). Therefore, our TMB analysis might explain some of the

variations across the two groups in terms of their responses

to ICB.

Expressions of the 11 prognostic PRLs in
the glioma samples

Among the 11 PRLs selected to construct the classifier, seven

were up-regulated in GBM, while the others were down-

regulated compared with LGG (Figure 9A). According to the

results of the RT-qPCR, CTD-2521M24.6, PAXIP1-AS2, RP11-

303E16.2, RP11-360L9.7, RP11-428J1.5, AGAP2-AS1, and SBF2-

AS1 were up-regulated in GBM, and RP11-513M16.7, RP11-

617F23.1, and RP11-158M2.3 expressions were significantly

lower compared with LGG (Figure 9B). AP001469.9

expression showed no difference between GBM and LGG.

This result was in line with that of the TCGA cohort,

highlighting the applicability of the PRL classifier.

Discussion

Accumulating evidence suggests that tumour development

is influenced by pyroptosis in a dual manner (Xia et al., 2019).

Sustained release of inflammatory mediators by cells that

undergo pyroptosis could promote epithelial-mesenchymal

transition and build an immunosuppressive

microenvironment, resulting in tumourigenesis. However,

chemotherapy-induced pyroptosis could activate an immune

response against tumours (Xia et al., 2019). Moreover,

increasing studies have shown the feasibility and therapeutic

potential of targeting distinct targets to trigger pyroptosis

(Loveless et al., 2021). Nevertheless, pyroptosis in glioma has

only been the subject of a limited amount of research efforts.

The majority of research attention on pyroptosis was focused

on the prognostication of pyroptosis-related genes. Few

researchers investigated the prognostic value and underlying

mechanism of lncRNA in pyroptosis regulation in glioma.

Furthermore, growing evidence has demonstrated the crucial

function of lncRNA in glioma progression regulation (Peng

et al., 2018). Despite the same treatment, different effects are

observed due to the heterogeneity of gliomas. Moreover, even

patients with a similar pathological type of glioma have

completely different prognoses. Therefore, it is important to

establish a universal classifier for all glioma types as a

prognosis-related predictor in patients with gliomas, thereby

guiding clinical decision-making.

In our study, we first identified 311 prognostic PRLs on the

basis of the CGGA_693 and TCGA cohorts. Among the

prognostic PRLs, 11 PRLs (RP11-303E16.2, RP11-360L9.7,

RP11-513M16.7, RP11-617F23.1, CTD-2521M24.6, PAXIP1-

AS2, RP11-428J1.5, RP11-158M2.3, AGAP2-AS1, SBF2-AS1,

and AP001469.9) were selected for construction of the PRL

classifier. Among the 11 PRLs, four were protective factors,

while the rest were risk factors. It has been reported that

PAXIP1-AS2 overexpression leads to a decrease in translesion

DNA synthesis (TLS) by up-regulating the amount of

RAD18 and DNA polymerase η (Swain et al., 2021).

Furthermore, TLS inhibition increases the cell genomic

incompleteness, resulting in tumourigenesis (Knobel and

Marti, 2011). Therefore, PAXIP1-AS2 might participate in

tumourigenesis. Based on the RT-qPCR results, GBM

exhibited higher PAXIP1-AS2 expression than LGG. The

higher expression of PAXIP1-AS2 suggested that it could be a

crucial factor for glioma development. The contribution of

PAXIP1-AS2 to tumourigenesis and progression needs further

research. AGAP2-AS1 could facilitate glioma growth by up-

regulating hepatoma-derived growth factor (HDGF) (Zheng

et al., 2019). In another study, AGAP2-AS1 was considered a

risky prognostic biomarker for the construction of a prognostic

signature (Yu et al., 2021). This result illustrates the contribution

of AGAP2-AS1 to tumour progression, suggesting that AGAP2-

AS1 might be a target to suppress tumour growth. The lncSBF2-

AS1-enriched exosomes induced chemotherapy resistance by

remodelling the microenvironment (Zhang et al., 2019b). To

stimulate angiogenesis, the nuclear factor of activated T cells 5 in

GBM may upregulate SBF2-AS1 expression, which in turn could

sponge miR-338-3p and elevate the HDGF expression level (Yu

et al., 2017). This is consistent with our findings that SBF2-AS1 is

a risk factor in the PRL classifier. Although few studies have been

reported on reaming PRLs, the RT-qPCR results of 11 PRLs in

the glioma sample are broadly consistent with those of the TCGA

dataset, illustrating that the differential expression of the 11 PRLs

might be involved in glioma progression. However, we only

explored the prognostic value of these 11 PRLs. Therefore,

further research is warranted to explore the potential

mechanisms of the 11 PRLs for pyroptosis regulation in gliomas.

The prognostic value and superiority of the PRL classifier

were validated through KM survival analysis and a ROC plot. The

survival rates of patients with a high risk score were quite dismal.

The superior predictability of the risk score was presented using a

ROC plot.

At the same time, the findings of the chi-square test

illustrated that in the group with a high risk score, the

proportion of clinical features suggesting a poor prognosis was

higher. All results demonstrated the accuracy of the PRL classifier

and the contribution of the 11 PRLs in influencing the prognosis

of glioma. However, the prediction accuracy of the PRL classifier

in glioblastoma subgroup needs to be further discussed. As the

number of patients with GBM was low in the low risk group, the
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findings of the KM survival analysis might be inaccurate.

Eventually, clinical characteristics linked to prognosis in

glioma patients were used to generate a nomogram. Moreover,

the predictability of the nomogram improved by the addition of a

clinical covariate. Consequently, the nomogram may be a robust

predictive tool for patients with gliomas.

Subsequent research revealed the underlying mechanism

between the two groups. The 3D PCA plot revealed the

difference in the degree of pyroptosis in glioma, suggesting

the meaningful classification of the PRL classifier. And the

results of GO and KEGG pathways enrichment analysis

showed the differences in the immune biological process,

matrix-related pathways, and receptor-ligand interaction

between high and low risk group. This indicates that the

11 prognostic PRLs might affect the immune and stromal

microenvironment, and intercellular communication of the

glioma by regulating pyroptosis, leading to a difference in the

prognosis of patients with gliomas. Antigen presentation,

humoral immunity, and T cell differentiation are the main

immune processes that differed between high and low risk

groups. It has been reported that damage associated molecular

patterns (DAMPs) released by pyroptosis cell could serve as

immune adjuvant to enhance antigen presentation capacity of

antigen-presenting cells and promote humoral immunity

(Wang et al., 2022). However, the enhancement of humoral

does not imply a better prognosis. A study showed that B cells

located at the invasive margins could facilitate recurrence and

progression (Zhang et al., 2019a). As for T cell differentiation,

it has been shown that IL18, the cytokine released from

pyroptosis cell, was not just involved in the differentiation

of Th1 and Th2, but promoted the IL17 response in concert

with IL23 (Esmailbeig and Ghaderi, 2017). And the anti-

tumor effect of Th1, the pro-tumor effect of Th2 and the

dual role of the Th17 in tumor might be the potential causes

affecting the prognosis of the patients. While the relationship

between pyroptosis and matrix remodelling has previously

been reported. It has been reported that IL-1β can reduce the

expression of the matrix components collagen type II and

aggrecan in chondrocytes (Guo et al., 2021). In breast cancer,

IL-1β has also been shown to up-regulate matrix

metalloproteinase (MMP) 2, and MMP9, thereby

promoting invasiveness and vasculogenic mimicry of

tumour cells (Nisar et al., 2021). Research has shown that

IL-18 promoted the invasive ability of HL-60 human myeloid

leukaemia cells by up-regulating MMP9 expression (Zhang

et al., 2004). And the cytokine released during pyroptosis and

the interaction between cell and matrix might account for the

differences in intercellular communication. While cell-cell

communication in tumor microenvironment is related to

tumor progression and metastasis (Fang et al., 2018). A

more complex intracellular communication may create a

more unstable tumor environment, leading to a completely

different outcome of the patients. While the results of GSVA

broadened our understanding about the different prognosis of

patients in the high and low risk group. We found that the cell

metabolism, cell death and proliferation related pathways and

DNA repair related pathways were increased activation in the

high-risk group. The metabolism of glutathione, amino sugar/

nucleotide sugar and galactose was increased activate in the

high-risk group. It has been reported that excess glutathione

was correlated with tumor metastasis and progression (Fang

et al., 2018). And the enhancement of amino sugar/nucleotide

sugar metabolism would provide feedstock for the hexosamine

pathway, leading to the glycosylation of lipids and proteins.

For example, previous study found that the increased amino

sugar/nucleotide sugar metabolism would increases complex

N-Glycan structures and intracellular OGlcNAcylation,

leading to tumor progression (Kim et al., 2020). Besides, a

study suggested that the GBM could use galactose as energy

sources (Sharpe et al., 2021). Therefore, the galactose could

serve as an additional energy source for gliomas with high risk

score in inadequate tumor perfusion environments, which

may contribute to tumor progression. Thus, the differences in

metabolism pathways might be responsible for the different

survival outcomes between two groups. However, the

underlying mechanism of metabolic reprogramming by the

11 PRL are still poorly understood. Another finding was that

the cell death and proliferation related pathways were

activated simultaneously in the high-risk group, suggesting

that the gliomas might adapt and change the tumor

microenvironment via this pattern. For example, the

efferocytosis of the death cell could create an

immunosuppressive microenvironment (Zhou et al., 2020).

At the same time, the increased activation DNA repair related

pathways in the glioma with high risk score may lead to a

resistant to chemotherapy and radiotherapy (Bao et al., 2006).

In summary, the 11 PRL might affect the immune biological

process, matrix construction, metabolic reprogramming, and

DNA preparation of the glioma, leading to a different

prognosis of the patients in different groups.

The differences in the cell metabolism, immune biological

process, and matrix constitution between two groups were

further discussed. The glycolysis, fatty acid oxidation and

pentose phosphate pathway were the main energy provider

for glioma with high risk score. While the energy source of

glioma with low risk score was depend on glutamine. The

application of drugs targeting different metabolic pathways to

patients in different groups according to their metabolic

characteristics may offer new therapeutic strategies for

glioma. Then the results of the ESTIMATE analysis

revealed that the higher the inflammatory and stromal cell

infiltrate and the lower the tumour purity in the glioma, the

higher the risk score. CIBERSORT analysis revealed that

gliomas with a high score comprised significantly more

immunosuppressive immune cells, suggesting the presence

of an immunosuppressive microenvironment in gliomas with
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high risk score. This is also illustrated by the differential

expression of immune checkpoints between the two

classifications. Collectively, these findings illustrate that the

11 PRLs might influence the formation of an

immunosuppressive microenvironment and matrix

remodelling of the glioma, leading to a dismal prognosis in

patients with a high risk score. However, the infiltration level

of some anti-tumour immune cells (M1 macrophages and

CD8+ T cells) was relatively elevated in gliomas with high risk

score. CD8+ T cells were found to be dysfunctional and failed

to secrete sufficient tumour necrosis factor and interferon-γ to
aid tumour regression (Philip and Schietinger, 2022). This

explains why a higher proportion of CD8+ T cells is associated

with poor survival outcomes. M1 macrophages demonstrated

an anti-tumour effect in most studies (Hambardzumyan et al.,

2016). However, the pro-tumour effect of M1 macrophages

has also been reported. A study revealed that some

inflammatory mediators secreted by M1 macrophages,

namely, chemokine (C-C motif) ligand 5 and IL-6, were

found to be tumour supportive, suggestive of a poor

prognosis. Detailed discussion on this requires further

research. This part of our study revealed the difference in

the degree of pyroptosis in glioma and the

immunosuppressive microenvironment and diverse

metabolism of gliomas with high risk score. Moreover, a

pyroptosis inducer exhibits an outstanding potential to

activate a tumour cell-intrinsic immune response (Loveless

et al., 2021), suggesting that a pyroptosis inducer might be

suitable for treating patients with high risk score.

Currently, the primary treatment performed for gliomas is

a comprehensive treatment based on a combination of surgery

and chemotherapy, radiotherapy, and tumour treatment fields

(TTF). Despite rapid advances in establishing an early

diagnosis and treatment, nearly all gliomas become

chemoresistant and metastatic. Our findings illustrate that

patients with high risk score had a relatively enhanced

sensitivity to HMG-CoA reductase inhibitors, PI3K

pathway inhibitors, and BRAF inhibitors but were more

resistant to platinum agents, histone deacetylase inhibitors,

and EGFR inhibitors. Among the eight recommended

regimens (Nabors et al., 2020), patients with higher risk

score were found to be more sensitive to procarbazine,

vincristine, and etoposide, while patients with lower risk

score were more sensitive to vorinostat, carboplatin, and

carboplatin + vorinostat. According to the current

guidelines for glioma, radiotherapy is recommended for

patients with high-grade and recurrent gliomas. However, it

is unclear whether all patients with high-grade gliomas will

benefit from it. Research has shown the crucial function of

lncRNA nuclear enriched abundant transcript 1 in regulating

the pyroptosis of HCT116 cells induced by ionising radiation

(Su et al., 2021). This article suggests the critical function of

pyroptosis in radiotherapy. Due to the difference in the

sensitivity to pyroptosis, the effectiveness of radiotherapy

might differ between the low- and high-risk groups. As per

the findings of the KM survival analysis, patients

aged >50 years or those with glioma of WHO grade Ⅳ
benefitted from radiotherapy. This finding might guide

clinical decision-making in terms of radiotherapy

administration. Although immunotherapy is not the

primary treatment for glioma, it has gained popularity.

Hu5F9-G4, an anti-CD47 antibody, played a role in

treating paediatric GBMs (Yang K. et al., 2022). The

cytotoxic T-lymphocyte-associated antigen 4 antibody

ipilimumab combined with nivolumab, plays a role in

recurrent GBMs (Yang K. et al., 2022). However, the anti-

programmed death 1 antibody pembrolizumab is ineffective

in most gliomas, except for patients with special mismatch

repair defects (Yang K. et al., 2022). From the studies above,

we found that immunotherapy for glioma is developing.

Nonetheless, immunotherapy may only be effective in

specific patients. The TIDE scores revealed that patients

having a higher risk score might not gain benefit from the

ICB. Subsequently, the comparison of the TMB between the

two groups verified the accuracy of the prediction. Therefore,

other treatment regimens are required.

Indubitably, there are still significant limitations to our

study. First, the medical history, tumour size, tumour

location, and other factors associated with survival

outcomes across the low- and high-risk groups were not

matched. Second, the significance of the 11 PRLs in

tumourigenesis cannot be explained because of the lack of

non-tumour tissue. Further research involving larger

samples is warranted to support the findings of our study.

Third, the mechanism behind the involvement of the

11 PRLs in pyroptosis regulation in gliomas is not well

known, necessitating additional research. The current

studies are retrospective in nature, based on public

databases and predictions. A prospective study to assess

the clinical application of the PRL classifier would be

more convincing.

Conclusion

This study developed a PRL classifier and a nomogram as

predictors for the survival outcome of patients with gliomas.

Furthermore, the different immune landscapes between the

two classifications helped us understand the underlying

mechanisms of PRL in pyroptosis regulation and shaping

the microenvironment of glioma. Simultaneously, the PRL

classifier helped in clinical decision-making regarding

radiotherapy, chemotherapy, and immunotherapy. We

anticipate that these findings will help researchers and

doctors in performing subsequent research and

clinical work.
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SUPPLEMENTARY FIGURE S1
KM curves for the different subgroups of patients in TCGA (A), CGGA_693
(B), and CGGA_325 (C) datasets.

SUPPLEMENTARY FIGURE S2
Relationship between the risk score and glioma clinicopathological
parameters in the CGGA_693 dataset (A) and CGGA_325 dataset (B). A,
astrocytoma; O, oligodendroglioma; GBM, glioblastoma. *p < 0.05, **p
< 0.01, and ***p < 0.001. ns, no significance.

SUPPLEMENTARY FIGURE S3
Correlation between the PRL classifier and the microenvironment in
CGGA_693 and CGGA_325 cohorts. (A,D) The infiltration degree of the
22 inflammatory cells between the two classifications. (B,E) The
expression of the eight immune checkpoints between the two
classifications. (C,F) The stromal, immune, and ESTIMATE scores, along
with tumour purity between the two classifications. *p < 0.05, **p <
0.01, and ***p < 0.001. ns, no significance.

SUPPLEMENTARY FIGURE S4
KM survival curves for the different subgroups of patients with glioma in
the high- and low-risk groups respectively.
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